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ABSTRACT During cooperative growth, microbes often experience higher fitness by
sharing resources via metabolite exchange. How competitive species evolve to coop-
erate is, however, not known. Moreover, existing models (based on optimization of
steady-state resources or fluxes) are often unable to explain the growth advantage
for the cooperating species, even for simple reciprocally cross-feeding auxotrophic
pairs. We present here an abstract model of cell growth that considers the stochastic
burst-like gene expression of biosynthetic pathways of limiting biomass precursor
metabolites and directly connect the amount of metabolite produced to cell growth
and division, using a “metabolic sizer/adder” rule. Our model recapitulates Monod’s
law and yields the experimentally observed right-skewed long-tailed distribution of
cell doubling times. The model further predicts the growth effect of secretion and
uptake of metabolites by linking it to changes in the internal metabolite levels. The
model also explains why auxotrophs may grow faster when supplied with the
metabolite they cannot produce and why two reciprocally cross-feeding auxotrophs
can grow faster than prototrophs. Overall, our framework allows us to predict the
growth effect of metabolic interactions in independent microbes and microbial com-
munities, setting up the stage to study the evolution of these interactions.

IMPORTANCE Cooperative behaviors are highly prevalent in the wild, but their evolu-
tion is not understood. Metabolic flux models can demonstrate the viability of meta-
bolic exchange as cooperative interactions, but steady-state growth models cannot
explain why cooperators grow faster. We present a stochastic model that connects
growth to the cell’s internal metabolite levels and quantifies the growth effect of
metabolite exchange and auxotrophy. We show that a reduction in gene expression
noise can explain why cells that import metabolites or become auxotrophs can grow
faster and why reciprocal cross-feeding of metabolites between complementary
auxotrophs allows them to grow faster. Furthermore, our framework can simulate
the growth of interacting cells, which will enable us to understand the possible tra-
jectories of the evolution of cooperation in silico.

KEYWORDS cross-feeding, mutualism, cooperation, microbial communities, stochastic
growth model, metabolite exchange, Adder, Sizer, gene expression noise, division of
labor, resource allocation

In the laboratory, we study microbes in isolation; however, different species live side
by side in the environment, either competing for the limited resources or cooperat-

ing with each other. Defying general evolutionary expectations, cooperative commun-
ities pervade different ecological niches (1–5), highlighting its purported selective
advantage (6). Cooperative interactions often involve secretions, ranging from extracel-
lular enzymes, scavenging molecules (like siderophores) (7), to leaked metabolites—ei-
ther toxic by-products (8, 9) or essential metabolites like amino acids (10–12).
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Cooperation may also involve living together in a biofilm, which protects the group
from toxins, antibiotics, and predators (13).

Understanding the advantages of cooperation in ecological communities (14) and
implementing them in synthetic communities have been challenging (15–17). The
focus has been on metabolic modeling to identify the keystone “currencies” of cooper-
ation (9, 18–23). The identities of the “traded” metabolites help uncover the mecha-
nisms of cooperation in different environmental conditions. However, to perdure in an
ecological niche, cooperative consortiums must demonstrate high community produc-
tivity and growth compared to other competing (free-living or cooperating) species.
While metabolic modeling approaches can determine the metabolic viability and syn-
ergy in terms of the cooperative consortium’s productivity of metabolic flux, they usu-
ally do not yield the growth kinetics of the consortium. Hence, studying the evolution
of cooperation using existing evolutionary frameworks like fitness landscapes has not
been possible.

Furthermore, there are several shortcomings in the existing modeling approaches.
Microbial growth is often posed as an optimal resource allocation problem and solved
assuming that the cell operates at a steady state. However, computing the steady state
itself often uses an estimate of the growth rate as the rate of dilution due to cell divi-
sion, which leads to inaccurate estimates of growth. Often such models consider only a
part of the cell and coarse grain its dynamics to maximize the energy generation while
minimizing the resource investment in catabolic enzymes and transporters (24, 25).
More sophisticated whole-cell models like bacterial growth laws account for the short-
comings by computing a proxy measure of growth rate using the steady-state ribo-
some fraction of the proteome (26–29). Metabolic flux models assume a biomass
objective function and only compute the steady-state optimal genome-wide flux con-
tributions to biomass to uncover the pathways or enzyme reactions that bottleneck
growth (30–34).

These steady-state approaches neglect the cell-to-cell differences due to stochastic
gene transcription (35–37), leading to differences in the numbers of proteins (38) and
the cell’s metabolic state (39). While such variations are unimportant for predicting the
mean characteristics of the population, it is critical to model the growth of a coopera-
tive consortium with cell-to-cell interactions such as the exchange of metabolites.

In this work, we develop a model that captures the effect of stochastic variation on
the growth of bacterial cells that may or may not exchange metabolites. We imple-
ment stochastic burst-like gene transcription using Monte Carlo methods following the
framework in Golding et al. (40). To determine when a cell divides, we combined the
concept of a biomass objective function (41) with the empirical laws for bacterial cell
growth and size homeostasis: Adder and Sizer (42–45). While Adder proposes that cells
divide upon adding a fixed length to the birth size, Sizer proposes that division occurs
when the cell grows to a characteristic length. We postulate that any cell size incre-
ment corresponds to an equivalent quantity and stoichiometric composition of bio-
mass precursor metabolites. Thus, the cell divides only after producing the required
quantity of metabolites in the correct stoichiometry.

Our framework attempts to capture and study the dynamics of cooperative growth
when cells exchange metabolites. We wanted to find the factors leading to the faster
growth of the consortium to investigate their evolutionary relationships. We obtained
the distribution of cell doubling times, which mimics the experimentally observed dis-
tributions (46, 47) obtained from single-cell growth experiments run on microfluidic
devices (42, 48). Our model recapitulates Monod’s hyperbolic relationship between the
substrate and growth rate (49). Furthermore, we demonstrate that gene expression
noise manifests as noise in metabolite levels that delay cell division (i.e., the noise is
time additive). We also demonstrate that reducing the effective number of limiting
metabolites in a cell, either by auxotrophy or by the direct import of the metabolite,
can accelerate growth. Last, we demonstrate that the growth rate of reciprocal cross-
feeding auxotrophs can be greater than the prototrophs. In all, by incorporating
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stochastic gene expression noise into a cellular growth model, we capture the growth
effect of auxotrophy and metabolite exchange directly and show how it may help
understand the evolution of cooperation.

RESULTS
Model development.We develop a microbial growth model that avoids relying on

cellular steady states and incorporates the stochastic variation in growth.
As discussed, recent studies have put forth the empirical size-based laws for bacte-

rial cell division: Adder and Sizer (42–45). Combining these with the idea of biomass
objective functions (41), we argue that cell size increase requires producing an equiva-
lent quantity of constituent metabolites in proper stoichiometry. We propose the idea
as the “metabolic adder” and “metabolic sizer” and use it as the foundation of our pro-
posed cell growth model. Cell division is triggered only when the cell produces the
minimum amounts of all the necessary metabolites (Fig. 1a). Our model recapitulates
many known cellular phenomena and can even describe the kinetics of single-cell
growth while cells exchange metabolites among each other. We find the Adder and
Sizer models very similar in their outcomes and proceed with Sizer for all the rest of
the simulations in this work, primarily because it is found to be the better fit for the
outcomes in case of poor medium conditions, where growth is on minimal media with
single substrates (44) (see Supplement S4 at https://bit.ly/32ayGpb).

Now, while theoretically, a shortfall in any metabolite could prevent a cell from
dividing, only a few metabolites at a time may act as “kinetic” bottlenecks to cell divi-
sion (i.e., waiting for the production of which delays cell division). These may be
required in substantial amounts, or the respective enzyme’s production may be vari-
able and in low numbers (39), such that the metabolite demand cannot be met in
time. Additionally, some metabolites may be prone to leakage (may serve as public
goods) and hence may act as a bottleneck to growth (50). We assume that the cell is
comprised of p such anabolic pathways, whose products bottleneck cell division. All
metabolite biosynthesis (anabolic) pathways are fed by the substrate supplied by the
upstream catabolic pathways via different shunts from the central carbon metabolism.
We simplify the arrangement and assume that all anabolic pathways are fed a common
substrate supplied at a constant rate Sin per second per bottleneck metabolite (in total
p � Sin per second) (Fig. 1b) (see Supplement S10 at https://bit.ly/32ayGpb for unequal
bottlenecks).

The distribution of cell doubling times across different growth conditions collapse
to one distribution when scaled by their means (47), which leads us to postulate that
the noise in common downstream metabolic pathways like anabolism may be respon-
sible for the observed noise in growth, since under different growth conditions,
upstream catabolic pathways may differ. Hence, our modeling approach focuses on
quantifying the noise from anabolic pathways alone (see Supplement S11 at https://bit
.ly/32ayGpb for catabolic noise). Furthermore, to circumvent the differences due to the
exact structure and kinetic properties of different anabolic pathways, we assume all p
pathways to be linear and comprised of n enzyme-catalyzed steps, all of which we
assume have identical kinetic properties and transcription parameters.

We further assume that these n enzymes in each pathway are present on the same
operon, and hence, the n enzymes share the same transcriptional burst profile (Fig. 1c).
To incorporate the effect of stochasticity in our model, we implement stochastic burst-
like gene expression, using the findings of exponentially distributed durations of tran-
scription burst (tON) and the waiting time between successive bursts (tOFF) (40). We
randomly sample the (tOFF) and (tON) durations iteratively from two exponential distri-
butions of set means, to generate the stochastic burst profile (Fig. 1c). Next, assuming
no shortage of RNA polymerases, transcription proceeds at a constant rate until the
end of tON, where any incomplete transcripts are terminated. Each mRNA produced is
assigned a lifetime by sampling from an exponential distribution. During the lifetime
of an mRNA, only a single ribosome attaches and translates proteins. We assume that
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ribosomes are always sufficient (a ribosome limitation is expected to reduce the pro-
duction of proteins but not affect the overall dynamics). Any incomplete protein is ter-
minated once the mRNA decays. Each protein produced is assigned a lifetime by sam-
pling from an exponential distribution.

We use coupled ordinary differential equations (ODEs) based on Michaelis-Menten
kinetics for the metabolite production, with the stochastic protein profiles as time-vary-
ing parameters (see Materials and Methods). We convert all quantities to molecules
per cell assuming a cellular volume of 1 mm3.

All the biosynthetic pathways compete for the common substrate, and the flux they
can acquire depends only on the number of enzymes present at each time since kinetic

FIG 1 Model schematic and behavior of internal variables. (a) Model schematic. The bacterium takes up the substrate molecules
from the environment and processes it via metabolic pathways to produce all the necessary metabolites for survival. Some (p)
metabolites (colored squares) bottleneck cell growth, since sufficient quantities cannot be produced in time. Our model assumes
a simplified arrangement for all these limiting metabolite anabolic pathways as linear enzyme cascades with n enzyme steps, all
fed by a common substrate supplied at a constant rate. We consider all enzymes are equivalent in terms of expression and
kinetic properties and are expressed in stochastic bursts. ‘, length. (b) Our model implements a “metabolite adder/sizer” model,
wherein we reinterpret the empirical size-based Adder and Sizer laws, in terms of the metabolites necessary for cell size increase
such that cell division is triggered upon production of these metabolites in the required amounts and stoichiometry: always a
fixed amount in the case of Adder and the balance amount in the case of Sizer. (c) Considering our model for p = 2 limiting
metabolites and the metabolic Sizer law. The model implements stochastic burst-like gene expression as a random process of
transcription bursts switching on and off. During the burst, mRNA is produced, which acts as the template for protein translation.
Both mRNA and proteins decay stochastically but mRNA decays much faster. The various protein enzymes allow the production
of the required metabolites at various rates. According to Sizer, the cell divides when both the metabolites cross the threshold
(dashed line). After division, cellular contents are halved.
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parameters are assumed equal. When all the p metabolites cross their requirement
threshold based on the “metabolic adder or sizer” law, the cell divides. After division,
all the cellular content is divided between the two daughter cells equally (51). Thus,
the daughter cells start from the inherited values of the mRNA, proteins, and metabo-
lites but generate unique stochastic burst profiles, going forward.

Model properties and outcome. Simulating our model for a given set of parame-
ters yields the time between successive cell divisions or the cell generation time. The
histogram of the generation times for all simulated parameter sets reveals a right-
skewed distribution with a long tail, which concurs well with many experimental obser-
vations of bacterial growth at a single-cell resolution (42, 44, 45, 47, 52, 53) (see
Supplement S2 at https://bit.ly/32ayGpb for our analysis of the data set in reference
42). These studies indicated that the observed generation time distribution resembled
a Gaussian on a logarithmic scale and hence may be a gamma or log normal distribu-
tion (47). Pugatch, on the other hand, analyzed the single-cell data set extensively and
made a distinction between the quantities: cell generation time (Tdiv) (or interdivision
time) and the cell doubling time (Tm), the time for the doubling of cell size (46).

Doubling time ðTmÞ ¼ Generation time ðTdivÞ
log2

cell size at division
cell size at birth

� �

He tested the fit of different distributions to the experimentally derived doubling
time distribution and found that a log Fréchet or log generalized extreme value (GEV)
(type II) distribution provided the best fit to the data.

In our framework, cell division is triggered by exact size laws and division yields per-
fect halves (see Supplement S6 at https://bit.ly/32ayGpb for alternate modeling crite-
ria). Hence, the ratio of size at division and birth is always 2, and thus, generation time
and doubling time are the same. We tested various combinations of gene expression
and metabolite threshold parameters to obtain distributions that resemble physiology
(see Supplement S3 at https://bit.ly/32ayGpb). The simulated generation times
obtained using the selected parameters give a long-tailed right-skewed distribution
which is fit best by a log generalized extreme value (GEV) (type III) distribution (shape
parameter k, 0) (Fig. 2a) (see supplemental Fig. S3c for comparison of GEV distribu-
tion shapes [https://bit.ly/32ayGpb]). Moreover, since the generation time distribution
obtained is the maximum of the production times of the p metabolites, the obtained
GEV-like distributions match with intuition derived from the extreme value theory (as
the limit distribution of the maxima of a sequence of independent and identically dis-
tributed random variables) (54).

Now, if the number of bottleneck pathways (p) increases, the chance that stochastic
variations in enzymes would prevent the cell from reaching production thresholds at a
given time increases. Hence, the maximum of the first passage times from p pathways,
i.e., the generation time increases. The distribution of cell generation times shifts to
the right and reduces skewness (Fig. 2b; supplemental Fig. S1a at https://bit.ly/
32ayGpb). Moreover, upon scaling the data with the mean, we find that the distribu-
tions overlap (Fig. 2b, inset), but with increasing p, the coefficient of variation (CV) of
the distribution increases, while skewness and kurtosis decreases (supplemental Fig.
S1a at https://bit.ly/32ayGpb).

Substrate flux per pathway (Sin) represents the available concentration of the
nutrients in the environment. The downstream anabolic pathways utilize the substrate
for metabolite production. When Sin is low, the rate of metabolite production is low,
and cell generation times are longer, but as Sin increases, metabolite production picks
up, and cell generation times are shorter, and we observe that the distribution of cell
generation times shifts to the left (Fig. 2c). Upon scaling the data with the mean, the
distributions overlap (Fig. 2c, inset), but with increasing Sin, skewness and kurtosis
decrease, and distribution CV also increases and saturates (see supplemental Fig. S1b
at https://bit.ly/32ayGpb). Next, by plotting the associated population growth rates
against the corresponding Sin values, we observe a hyperbolic relationship for all
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simulated values of p, which recapitulates the hyperbolic relationship between sub-
strate concentration and the cell’s growth rate observed by Monod (49) (Fig. 2d).

Substrate flux is known to be the primary determinant of growth rate in a cell, and
hence, studies have focused on quantifying the noise in catabolic pathways as a mea-
sure of substrate flux variation to estimate growth rate variations (36). However, we
intend to study how growth is affected when the cell imports and secretes different
biomass precursor metabolites or loses a biosynthetic pathway. Therefore, we focus on
the anabolic pathways that synthesize these metabolites instead of the common cata-
bolic pathways that provide the substrate flux to all of the pathways.

Studies have shown that cell division is controlled by more than one factor and lim-
iting agent (55, 56), which in our model is represented by multiple bottleneck path-
ways (p). In a real cell, however, the number of bottlenecks may depend on the cellular
growth conditions, and in the case of poor medium conditions (low Sin), it may
increase. Although our model cannot perform such internal metabolic switches, it can
still recapitulate physiological observations such as the distribution of generation times
and Monod’s law (Fig. 2d).

Effect of metabolite uptake and secretion on simulated cells. Our primary goal is
to develop a framework that can quantify the effect of nutrient uptake and secretion

FIG 2 Model properties. (a) Distribution of cell generation times obtained from model simulation is fitted best by log GEV distributions. The distribution for
simulation with p = 3 and Sin = 9,000/s is shown. (b) Comparison of distribution of generation times for various numbers of limiting metabolites (p) at a
high rate of substrate flux (Sin = 9,000/s). The inset shows the distributions rescaled to their means. (c) Comparison of distribution of generation times
varying the substrate flux rate (Sin) in the simulations for the case of p = 3 metabolite bottlenecks. The inset shows the distributions rescaled to their
means. (d) Comparison of the mean growth rate of the simulated cells with various numbers of bottleneck metabolites (p) for different rates of substrate
flux (Sin). The hyperbolic relationship is reminiscent of Monod’s law.
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on the growth of cells. Our model design captures the effect of importing external
metabolites and exporting internally produced metabolites directly in terms of the
generation time.

Till now, our simulations have considered that cells were grown on media that pro-
vides only the substrate flux (Sin). We now simulate growth when additional limiting
metabolites are present in the media (like amino acids, nucleotides). Our model cell
imports these metabolites directly at a constant rate to meet the internal metabolite
requirement. The imported metabolite effectively lowers the amount that needs to be
produced internally (i.e., the metabolite threshold), and thus, cells on average divide
faster. Since we do not explicitly model any metabolite feedback, the substrate flux
availed by the biosynthetic pathway does not reduce, and the substrate competition
remains the same. (We relax this condition in Supplement S12 at https://bit.ly/
32ayGpb.) With increasing import rates of the limiting metabolite, the generation times
shift to the left (Fig. 3a and b), and the growth rate increases (Fig. 3c). From our mod-
el’s perspective, importing a limiting metabolite at a high rate makes it nonlimiting.
Thus, decreasing the number of bottlenecks (p ! p 2 1) removes its noise contribu-
tion to cell division (Fig. 4d), allowing the cell to divide faster. The growth advantage
from importing a limiting metabolite has an upper bound, and the advantage from a
higher rate of import saturates quickly (Fig. 3d).

Next, we consider the effect of exporting metabolites from the cell. Some metabo-
lites are usually produced in excess and leak out from the cell (10–12, 50) without any
adverse effect on growth. However, if these metabolites are not useless by-products
for the cell, then excess secretion could impede growth. In case one of the limiting
metabolites is secreted, it leads to an effective increase in its metabolite threshold, and
hence, the cell requires more time to divide. We quantify the growth effect of secreting
metabolites by simulating secretion as a fraction of the total metabolite produced per
unit time, rather than a constant amount secreted per unit time since it synchronizes
the secretion to the internal production. It hence captures an accurate estimate of the
amount secreted (low secretion after birth due to low enzyme and higher secretion
before division due to a higher number of enzymes and transporters). As the secretion
ratio increases, cell generation times increase, and the distribution shifts to the right
(Fig. 3e and f). The magnitude of the difference is, however, much more pronounced in
the case of nutrient-poor media (low Sin [Fig. 3e]). With the distributions scaled to the
means, we further see that increased secretion leads to lowered skewness. Moreover,
skewness decreases more in nutrient-poor media (supplemental Fig. S1d at https://bit
.ly/32ayGpb). Unlike the case with nutrient uptake, the effect of secretion is unbounded,
and increased secretion further lowers growth rate (Fig. 3g and h).

Growth advantage of auxotrophy.We have already demonstrated how the direct
import of a limiting metabolite can increase growth and how the advantage is capped.
We described this phenomenon as the partial alleviation of the noise contribution
from one of the bottleneck metabolites, which corresponds to (p ! p 2 1) in our
model. If the modeled prototrophic cell mutates to lose one of the biosynthetic path-
ways for a limiting metabolite (and becomes an auxotroph), then the same outcome
may be obtained. Interestingly, this is a common phenomenon seen in endosymbiotic
bacteria (57) and some free-living bacteria (58, 59). The Black Queen Hypothesis pro-
poses that this genome reduction is driven by a resulting selective advantage (50, 60).
However, such gene loss makes the cell’s survival contingent on a sufficient external
supply of the metabolite.

For the simulation, we consider a cell with three bottleneck pathways (p = 3) and
then delete one of them (Fig. 4a). The cell directly imports the metabolite it cannot
synthesize at a constant “feed” rate. Additionally, the available internal substrate flux
(p � Sin), originally meant for p pathways, is now redistributed among the remaining
p21 pathways. Thus, the auxotroph originally with three bottleneck pathways now
receives 50% more substrate flux in the two remaining bottleneck pathways and hence
divides faster (Fig. 4a). At low import (feed) rates, this missing metabolite determines
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the cell generation time; however, at higher import rates, the missing metabolite is no
longer the bottleneck, and the generation time distributions overlap with the distribu-
tion for p21 (i.e., p ¼ 2) bottlenecks (data from Fig. 2d) (Supplement S8 at https://bit
.ly/32ayGpb) as expected. It is interesting to note that when an auxotroph is grown in
poor medium conditions, represented by the low substrate flux (Sin) in our simulations,
a sufficient rate of import of the limiting metabolite allows the cells to grow much
faster (Fig. 4b and c), relative to the growth advantage observed for high substrate flux
conditions.

Our model does not incorporate the effect of saved protein costs. However, the
effect of saved substrate flux is incorporated and reflected in the growth advantage

FIG 3 Effect of metabolite uptake and secretion on simulated cells. (a to d) Effect of metabolite uptake. (a and b) Comparison of generation times for
different rates of metabolite import, low substrate flux (a) and high substrate flux (b). (c) Comparison of the mean growth rate of the simulated cells with
various rates of metabolite import, for different rates of substrate flux (Sin). (d) Comparison of the relative change in growth rate compared to the case of
no uptake, due to various metabolite feed (uptake) rates, for different substrate flux (Sin). (e to h) Effect of metabolite secretion. (e and f) Comparison of
generation times for different ratios of metabolite secretion (fraction of produced metabolite secreted), low substrate flux (e) and high substrate flux (f). (g)
Comparison of the mean growth rate of the simulated cells with various metabolite secretion (Sec.) ratios for different rates of substrate flux (Sin). (h)
Comparison of the relative change in growth rate compared to the case of no secretion, due to various metabolite secretion ratios, for different substrate
flux (Sin).
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with a low substrate flux (Sin). Moreover, even when the effect of substrate flux satu-
rates, the model predicts a growth difference between the ancestor prototroph and
the auxotroph. Thus, our model presents a novel explanation contributing to the
growth advantage due to gene loss, in addition to resource savings (in terms of protein
cost and substrate flux) (50, 60), leading to the spontaneous evolution of auxotrophs
(61).

It is imperative to note that the magnitude of growth advantage demonstrated
here corresponds to a low number of bottlenecks (low p). If a large number of metabo-
lites are bottlenecks simultaneously (large p), then the relative growth advantage
observed due to loss of one pathway or direct import of one limiting metabolite will
be significantly lower (Fig. 4d). While it is known that different metabolites act as bot-
tlenecks for growth (62) for different nutrient media, it is not immediately clear which
biomass precursor metabolites act as a bottleneck, how their numbers vary, and their

FIG 4 Growth advantage of auxotrophy. (a) Schematic figure comparing an auxotroph (p = 2) with the ancestral prototroph (p = 3). (b) Comparison
of the mean growth rate of the simulated auxotroph with various metabolite feed (uptake) rates for the missing metabolite (colored solid lines) for
different rates of substrate import flux (Sin) on the x axis. The gray and black dashed lines represent the prototrophs with p = 3 and p = 2 bottleneck
metabolites, respectively (data from Fig. 2d). (c) Comparison of the relative change in the growth rate of the auxotrophs for various rates of
metabolite feed and substrate import flux (Sin) compared with the original prototroph (p = 3, grown without any additional metabolite feed). (d)
Comparison of the percentage increase in the growth rate upon loss of a bottleneck pathway for different starting numbers of bottleneck pathways
(p), simulated at different substrate import flux rates (Sin).
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relative limiting effect on growth. In our model, we considered all bottlenecks of equal
strength for simplicity (see Supplement S10 at https://bit.ly/32ayGpb for unequal
bottlenecks).

Towards reciprocal metabolic cross-feeding. As discussed, the survival of auxo-
trophs is contingent on the external availability of the metabolite they cannot produce
internally. Therefore, these cells invade ecological niches where other cells secrete the
necessary metabolites, either as by-products or public goods. In a public-goods sce-
nario, the invading cells act as “cheaters” and reduce community productivity (63–65).
However, if the metabolite is a by-product and its accumulation is toxic, its clearance
from the environment could induce the producer cells to secrete more and improve
community productivity (8, 66, 67).

Analysis of available microbial genomes from various niches has revealed that most
of the microbes are auxotrophic for at least a few essential metabolites, such as amino
acids (60, 68). Although surprising, it explains why ecological examples of metabolite
cross-feeding are commonplace (1–5). During the process of cross-feeding, the metab-
olites secreted by the microbes diversify the environment’s nutrient composition, ena-
bling survival and further evolutionary diversification of the group by allowing for the
spontaneous evolution of auxotrophs (61).

However, prototrophic species could invade such cross-feeding populations by
importing the secreted metabolites and “cheat” to grow faster and outcompete the
consortium (69). To avoid such a fate, cross-feeding must also enable fast growth,
enough to surpass the competing species, in addition to enabling the survival of the
group. Nevertheless, we do not understand how the division of labor may allow coop-
erating cells to improve productivity enough to exhibit growth that is faster than
prototrophs.

We have demonstrated that importing limiting metabolites accelerates growth, but
the secretion of such limiting metabolites at high rates can also slow down growth. In
a cross-feeding interaction, cells reciprocally exchange metabolites by secreting one
metabolite and importing another simultaneously. How must cellular resources be bal-
anced between these processes to achieve a net positive outcome is not completely
understood, even for a simple symmetric exchange (although reference 70 provides
some insights into the process).

Let us consider two reciprocal auxotrophs, each overexpressing the metabolite, the
other needs for survival. These auxotrophs, devoid of one of the metabolic biosynthe-
sis pathways, grow faster because they can redirect the saved resources from the path-
way toward growth and reduce the effect of gene expression noise on growth (as we
demonstrate using our model). However, the need to supply each other metabolites
requires the cells to invest the saved resources toward metabolite overproduction, tak-
ing away the growth advantage. Assuming metabolites of similar costs are exchanged,
intuitively, we may expect that the reinvestment of saved resources may enable a dou-
bling of the metabolite production and hence allow the cells to exhibit a growth rate
as high as an equivalent prototroph if we neglect the possible losses and delays due to
transport of the metabolites or assume alternate arrangements like nanotubes (71). We
demonstrate this result by simulating a steady-state version of our model (see
Supplement S5 at https://bit.ly/32ayGpb). Thus, it is hard to imagine that cross-feeding
can enable such growth advantages.

Pande et al. used synthetic reciprocal amino acid auxotrophs that also overpro-
duced amino acids to study this phenomenon and found a large number of comple-
mentary auxotrophs, when cocultured could cross-feed stably, exhibiting growth rates
faster than the parental prototroph in monoculture (11). However, only a few pairs
could outcompete the prototroph in a competitive coculture, since the prototroph
could feed on the secreted metabolites. Here, we use our stochastic growth framework
in an attempt to explain these observations.

We start with an auxotroph (p = 2), originally a prototroph (p = 3) (Fig. 5a). Next, we
implement the overexpression of the secreted metabolite. Since pathway enzymes are
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equivalent in our model, the resources saved due to the loss of one pathway will allow
another pathway to produce double the number of enzymes (maximum). However, it
is unclear how real cells handle the overexpression of a pathway. In our stochastic
framework, overexpression involves changing the transcription burst frequency, but
since it would be hard to estimate burst parameters that precisely “double” the
enzyme, we instead double the kinetic constant of the enzyme keeping the same sto-
chastic burst profile to set up a fair comparison. Next, we considered secretion at differ-
ent ratios of the amount of metabolite produced per unit time and also vary the direct
import rate of the missing metabolite. Finally, we study the growth of this auxotroph
that produces twice the quantity of metabolites per unit time while importing the
missing metabolite as a proxy for the growth of cross-feeders (Fig. 5a).

We find that the proxy cross-feeders demonstrate growth rates higher than the pro-
totroph, even when they secrete 50% of the metabolite they overproduce (Fig. 5b). For
these overproducing and secreting auxotrophs to sustain a cross-feeding interaction,
they need to secrete metabolites at a rate higher than or equal to the rate at which
they import metabolites. We plot the mean secretion rates for each simulated metabo-
lite feed (import) rate at different values of substrate import rate (Sin) (Fig. 5c). The
dashed lines show that the secretion rate is equal to the metabolite feed. Thus, points
above the diagonal represent secretion rates higher than the metabolite import. The

FIG 5 Reciprocal metabolic cross-feeding. (a) Schematic figure depicting our proxy for reciprocal metabolic cross-feeding, an auxotroph that
overexpresses and secretes one of the limiting metabolites (blue), while importing the metabolite it is unable to produce (green). Sec,
secretion. (b) Comparison of the mean growth rate versus different rates of substrate import flux (Sin) for auxotrophs that overexpress (2�)
and secrete (0.5�) a limiting metabolite (proxy for cross-feeders). The gray and black dashed lines represent the growth profile of
corresponding prototroph (with no additional metabolite feed) and auxotroph (at saturating metabolite feed). (c) Comparison of the mean
secretion rate of metabolites (y axis) for an input metabolite feed rate (x axis) for different substrate flux rates (Sin), represented as different
colors of the plotted circles. The size of the circle represents the magnitude of the growth rate. The circles are filled if the simulated cells
grow faster than the prototroph (p = 3) when grown without any additional metabolite feed. The dashed diagonal line shows when the
secretion and feed rates are equal or identical.
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circle's radius represents the growth rate of the simulated cells, and the circle is filled if
the growth rate is higher than the growth rate of the ancestor prototroph (without any
metabolite feed). Thus, filled circles above the diagonal represent “feasible” parameters
where cross-feeding cells can exhibit faster growth while maintaining higher overall
metabolic productivity. In Fig. 5c, we find such feasible solutions at mid and high val-
ues of Sin. Thus, the kinetic advantage of cross-feeding consortiums may be observed
only when a sufficiently concentrated substrate is available.

Overall, we demonstrate that feasible solutions for cross-feeding can be found even
when there is minimal headroom for improvement of growth rate (i.e., in the symmet-
ric reciprocal cross-feeding, where all the competing bottleneck pathways are of an
equal threshold).

DISCUSSION

We demonstrated that accounting for stochastic burst-like gene expression (40)
captures variations in the production rates of “bottleneck” biomass precursor metabo-
lites (39) and hence the differences in cell growth and division kinetics. All precursor
metabolites considered in a genome-scale metabolic flux model’s biomass objective
function may bottleneck growth, but only at the optimal steady-state flux distribution.
In our model, however, stochastic differences lead to variations in metabolite biosyn-
thetic pathways. Metabolites with very high demand, or with many upstream flux
shunts, or produced by biosynthetic enzymes with large gene expression noise are
expected to be the “kinetic bottlenecks” as described in our model. However, due to a
lack of suitable experimental evidence, we are currently unable to substantiate the ex-
istence and identity of these bottlenecks. By obtaining the changes in the experimen-
tally observed distributions of bacterial cell generation times when they are fed differ-
ent metabolites or are auxotrophic, and combining it with genome-scale metabolic
models, we expect to identify them in the future.

Previously, Thomas et al. have developed a stochastic bacterial growth model that
quantified the relative contributions of different sources of stochastic noise, in the
growth rate (72), by building upon their previous steady-state model (26). They used
the Cooper-Helmstetter model (44, 73) with Donachie’s initiation constant (74) to
determine when cells divide. At high growth rate, the model found that variations di-
minish; however, the variation in cell generation times persist (42). The model does not
connect the stochastic production of individual biomass precursor metabolites and cel-
lular growth and hence is unable to account for changes in growth upon their import
or secretion.

Some studies have pitted genome-scale dynamic flux models of microbes with dif-
ferent auxotrophies and metabolite secretion rates against each other (75, 76). Some
have additionally used evolutionary game theory to intuit evolutionarily successful mi-
crobial combinations (77, 78). These models, while useful in understanding the benefits
of cooperation, cannot be used to simulate the population dynamics and the evolution
of cooperation. Our framework, however, makes this possible by simulating the sto-
chastic growth of individual cells in a population as they interact metabolically.
Combined with a mutational framework, we expect our model will help uncover new
insights toward the evolution of cooperation.

Our framework is however limited to predicting growth in a fixed medium condi-
tion. When the medium conditions shift drastically, the growth rates and associated
Adder and Sizer lengths also change (42), requiring that the model’s internal metabo-
lite thresholds be updated.

Last, we acknowledge the assumption of a greatly simplified metabolic network in
our model. Since all the enzymes are governed by the same kinetic and gene expres-
sion parameters, the common substrate is partitioned equally between the pathways
on average. From the perspective of classic metabolic control theory (79), all the enzy-
matic steps in the metabolic network have equal flux coefficients and elasticities, and
hence, each is a bottleneck of equal strength. Thus, growth effects observed through
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our model arise exclusively from the consideration of stochastic variations in the
enzymes.

MATERIALS ANDMETHODS
Model setup and calibration. Our model ascribes no specific identity to the enzymes in the cell,

and thus, we assume the simulated enzymes to have the average properties of all cellular enzymes. We
obtain the average length of bacterial proteins, the median values of enzyme catalytic constant and
enzyme half-saturation constant (see Supplement S9 at https://bit.ly/32ayGpb for a list of the parame-
ters). For stochastic gene expression, we follow the scheme described by Golding et al. (40). We estimate
parameters and the associated metabolite threshold by simulating the various combination of values
and select for the mean generation time and coefficient of variation (CV) closest to the physiological val-
ues (see Supplement S3 at https://bit.ly/32ayGpb). We finally chose a metabolite threshold 1E7 for
Adder, and 2E7 for Sizer, while tON and tOFF chosen were 4 min and 2.4 min, respectively.

Metabolic Adder and Metabolic Sizer. Using the stoichiometric quantity of metabolites produced
as a proxy for the cell size, we obtain the metabolic Adder and Sizer models. For simplicity, we assume
1E7 molecules of each limiting metabolite is required to make a new cell. Thus, for metabolic Adder, 1E7
more molecules of each limiting metabolite must be produced irrespective of the inherited metabolites.
In the case of metabolic Sizer, the cell’s total production of each limiting metabolite needs to exceed
2E7 to trigger cell division. Figure 1a shows this schematically.

System of coupled differential equations used to compute metabolite production. After gener-
ating the stochastic enzyme profile, we pass it as a time-varying parameter to a system of coupled ordi-
nary differential equations (ODEs), based on Michaelis-Menten kinetics. However, instead of concentra-
tions, all the variables are converted to absolute numbers assuming a cell of volume 1 mm3. See
Supplement S9 at https://bit.ly/32ayGpb for a list of parameters used.

While it is possible to also consider the noise from the stochastic metabolic reaction processes, we
disregard it in our model. The nature of this noise leads only to fluctuations in the mean catalytic con-
stant of the enzyme, which becomes important at the timescales of single-molecule experiments (80),
but averages out when we consider the metabolite production at the time scales of cell growth and
division.

The primary substrate S common to all the pathways is supplied at a constant rate Sin per bottleneck
metabolite (thus p � Sin in total), and the enzymes of the p pathways feed off it. i represents the bottle-
neck pathways 1 to p.

dS
dt

¼ p� Sin 2
Xp

i¼1

ki1catEi1
S

S1Ki1
m

The subsequent products except the final products are modeled as:

dPi;j
dt

¼ kijcatEij
Pi21;j

Pi21;j 1Km
2kijcatEi11;j

Pi;j
Pi;j 1Km

where j represents the linear enzyme steps in each pathway.
The final step of the biosynthetic pathway is modeled as:

dPi;n
dt

¼ kincatEin
Pi;n

Pi;n 1Km

For secretion, the production term is multiplied by (1 2 secretion ratio). Constant import rate term is
added for metabolite import. We considered each of the enzymes in the concurrent pathways equiva-
lent in terms of their expression and kinetic parameters for our simulations. Thus, kijcat ¼ kcat for all i; j.

We evaluate the ODEs in MATLAB (81), using ode15s with an events function to trigger division
when the metabolite threshold is reached. The number of enzymes Eij varies with time and is obtained
by interpolation from the stochastic protein profile generated, every time the ODE function is evaluated.

Model simulation. We start the simulation of the model with the obtained parameters; however,
we start with all zero for the initial conditions since we have no information about them. As we start the
simulation, first, stochastic mRNA and protein profiles are generated based upon the set gene expres-
sion parameters, which are then used as time-dependent parameters while solving the system of
coupled ODE numerically using ode15s in MATLAB (81). When all the p metabolites have met their pro-
duction requirements, the events function is triggered, which terminates the evaluation of the ODE, and
marks the cell division. The difference between the end and start times of the ODE solution gives us the
growth duration or generation time.

Before we start recording values from the simulation, we allow the system to stabilize and saturate
by letting the cell run through 100 divisions or generations, following only one of the daughter cells,
starting from the zero initial values. Thereafter, we simulate an exponential population growth by simu-
lating all the daughter cells for 13 generations starting from 1 cell, and hence obtaining growth data for
213 2 1 = 8,191 cells. We use the generation times to compute the growth rate of the population, as
described in the next section. We repeat the simulations with three or five unique seed values to obtain
concordant observations.
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Computing growth rate from generation times. From our simulations, we obtain the birth and di-
vision time of each simulated cell. If we sort the cells in the ascending order of their birth and consider
each birth event as a unit increment to the population, it gives us the microbial population growth
curve. The points appear as a straight line in a semilog graph; however, the last part appears to saturate
because there are no more cell divisions. We consider only the first 40% of the sorted data set to obtain
data from only the log or exponential growth phase to estimate the growth rate. We plot the best-fit
line on the semilog plot and obtain the slope of the line as the population growth rate. To improve the
estimate and make use of the entire data set, we take 100 permutations of the order of the cells during
population growth and compute the growth rate. We take the average from the 100 estimates as the
population growth rate.

Fitting to log GEV distribution. In a log GEV distribution, log-transformed variables follow a gener-
alized extreme value (GEV) distribution. Thus, we plot the histogram of the log-transformed generation
times and then fit a GEV distribution to the log-transformed data set to obtain the fitted probability den-
sity function (PDF). We note down the histogram bins’ edges on the log scale and transform them back
to the linear scale to obtain the log GEV distribution.

Statistical tests. We have performed two-way analysis of variance (ANOVA) tests using anova2 in
MATLAB (81) on the data sets comparing the effect of multiple parameters on the growth rate in the arti-
cle to test whether the observed patterns are statistically significant. (See Supplement S7 at https://bit
.ly/32ayGpb).

For all the tests, we use the raw simulated generation times. We have 213 2 1 = 8,191 data points for
each independent run with a unique seed value (for the random number generator), and we performed
three to six independent runs of the simulations. Thus, in each data set, we have at least 8,191 � 3 =
24,573 replicate data points for each combination of the factors.

Data availability. All MATLAB simulation codes used in this study are available in the GitHub reposi-
tory (https://github.com/debudutta1/noisy-cell-growth).
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