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Background: Children with attention-deficit/hyperactivity disorder (ADHD) have a high risk for substance use
disorders (SUDs). Early identification of at-risk youth would help allocate scarce resources for prevention programs.
Methods: Psychiatric and somatic diagnoses, family history of these disorders, measures of socioeconomic distress,
and information about birth complications were obtained from the national registers in Sweden for 19,787 children
with ADHD born between 1989 and 1993. We trained (a) a cross-sectional random forest (RF) model using data
available by age 17 to predict SUD diagnosis between ages 18 and 19; and (b) a longitudinal recurrent neural network
(RNN) model with the Long Short-Term Memory (LSTM) architecture to predict new diagnoses at each age. Results:
The area under the receiver operating characteristic curve (AUC) was 0.73(95%CI 0.70–0.76) for the random forest
model (RF). Removing prior diagnosis from the predictors, the RF model was still able to achieve significant AUCs
when predicting all SUD diagnoses (0.69, 95%CI 0.66–0.72) or new diagnoses (0.67, 95%CI: 0.64, 0.71) during age
18–19. For the model predicting new diagnoses, model calibration was good with a low Brier score of 0.086.
Longitudinal LSTM model was able to predict later SUD risks at as early as 2 years age, 10 years before the earliest
diagnosis. The average AUC from longitudinal models predicting new diagnoses 1, 2, 5 and 10 years in the future was
0.63. Conclusions: Population registry data can be used to predict at-risk comorbid SUDs in individuals with ADHD.
Such predictions can be made many years prior to age of the onset, and their SUD risks can be monitored using
longitudinal models over years during child development. Nevertheless, more work is needed to create prediction
models based on electronic health records or linked population registers that are sufficiently accurate for use in the
clinic. Keywords: Machine learning; substance use disorder; attention-deficit hyperactive disorder; comorbidity;
risk factor.

Introduction
In recent years, prevalence of substance use disor-
ders (SUDs) has increased significantly (Merikangas
& McClair, 2012; Whiteford et al., 2013), magnifying
the impact of many adverse consequences (Cain,
Bornick, & Whiteman, 2013; Hall, 2015; Hall &
Degenhardt, 2014; Karila, Petit, Lowenstein, & Rey-
naud, 2012; Kuntsche, Kuntsche, Thrul, & Gmel,
2017; Merrin, Davis, Berry, D’Amico, & Dumas,
2016; Moss, 2013). From 2005 to 2015, death due
to opioid, cocaine, and amphetamine use disorders
increased 30%–68% (Mortality & Causes of Death,
2016). In 2015, over 306,000 deaths were caused by
SUD globally, which is 26 times of the total deaths
caused by natural disasters and 44% more than all
deaths caused by forces of war, violence, and legal
interventions (Mortality & Causes of Death, 2016).

Twin studies showed that genes and their interac-
tion with the environment constitute 50%–75% of the
liability to develop SUD (Kendler et al., 2012;
Tsuang, Bar, Harley, & Lyons, 2001). Many risk-

modifying environmental factors have been studied
including stress and trauma in early life and family,
education, socioeconomic status (SES), and cultural
influences (Barr, Silberg, Dick, & Maes, 2018; Crum
& Anthony, 2000; Karriker-Jaffe, 2013; Kendler
et al., 2012; Mulia & Karriker-Jaffe, 2012; Schnohr
et al., 2004; Thompson, Lizardi, Keyes, & Hasin,
2008; Windle & Windle, 2018). Having attention-
deficit/hyperactivity disorder (ADHD) is associated
with a significantly increased risk for later SUDs
(Biederman et al., 2006; Lambert & Hartsough,
1998; Molina & Pelham, 2003). Relatives of individ-
uals diagnosed with ADHD also have a higher risk
for SUDs (Skoglund, Chen, Franck, Lichtenstein, &
Larsson, 2015). A large study on the UK Biobank
data (N = 135,000) found that the polygenic risk for
ADHD significantly predicted alcohol and nicotine
use (Du Rietz et al., 2018). Furthermore, ADHD
symptoms, such as inattention, hyperactivity, and
impulsivity, can cause behavioral problems and
stress at home and school, which in turn can
increase the risk for substance use.

For individuals with ADHD, however, stimulant
therapy was found to decrease the rates of smoking
and other SUDs later in life (Chang, Lichtenstein,
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Halldner, et al., 2014; Quinn et al., 2017; Schoen-
felder, Faraone, & Kollins, 2014; Wilens, Faraone,
Biederman, & Gunawardene, 2003). Behavior ther-
apy was also found to significantly reduce substance
use reported by ADHD youth at least to 24-month
follow-up (The Multimodal Treatment Study of Chil-
dren with ADHD (MTA) study, (Molina et al., 2007)).
These data suggest that early identification of ADHD
youth who are at risk for SUD would allow for more
targeted early interventions and possibly prevention
of future SUD. Recent studies have demonstrated the
feasibility of developing risk prediction models in
psychiatry, but the literature is very limited, and most
studies are based on small samples (Barak-Corren
et al., 2017; Bernardini et al., 2017). Few studies have
applied machine-learning algorithms to large-scale
data from electronic health records (Simon et al.,
2018) or linked population registers, and no previous
study using such data has been performed in the
context of ADHD. Moreover, many prior machine-
learning studies in psychiatry have been limited by
small samples sizes and lack of appropriate replica-
tion samples (see, e.g., Zhang-James’ et al. review of
machine-learning applications to neuroimaging data
(Zhang-James et al., 2019 (Preprint)).

To address these limitations, the present study
sought to develop prediction models using machine-
learning algorithms to identify ADHD youth at risk for
SUDs. We used information available from the Swed-
ish population registries to construct potential predic-
tors, including the medical history of psychiatric and
somatic illnesses for the index children and their
immediate family members, as well as their available
perinatal records, and socioeconomic, educational,
and geographic data. Our goal was to determine if
the information from the registries could be used to
train a clinically useful machine-learning algorithm to
accurately identify youth with ADHD at risk for SUDs.

Methods
Data sources and study population

The study was approved by the Regional Ethical Review Board
in Stockholm, Sweden. The sample comprised 19,787 children
born between 1989 and 1993 who had a life-time diagnosis of
ADHD (National Patient Registry (NPR) ICD-9: 314; ICD-10:
F90). We excluded those (a) who died or emigrated prior to age
20, (b) who had no father’s information, or (c) who had no
socioeconomic records during the ages 0–18. The final dataset
contained 19,184 individuals. SUD was defined by either a
diagnosis (ICD-9 304, 305, 306; ICD-10: F10-19) or a pre-
scription of medication for SUD treatment (Table S1). We
considered the first diagnostic or prescription record as the
‘onset’ of SUD in this study. Table S2 shows that 10% of the
sample had SUD onset prior to age 17, 8.8% had SUD
diagnoses recorded during the ages 18 and 19, and 5.9% of
the total sample had a SUD onset during age 18–19.

Predictors and missing information

We used personal identity numbers (PINs) to link different
registers. The PIN consists of the date of birth and a four-digit

number and was introduced in Sweden in 1947 (the fourth
digit was added in 1967) (Ludvigsson, Otterblad-Olausson,

Pettersson, & Ekbom, 2009). Therefore, since then, every

person residing in Sweden on a permanent basis (i.e., recorded

in the Total population register, TPR) is assigned a PIN. The PIN

is routinely used by governmental agencies (e.g., tax agency,

healthcare providers, prison services, schools). Governmental

agencies (such as Statistics Sweden) can merge data from

different registers using the PIN. Eight different registers were

used in our study to extract linked data using the unique PIN:

(a) Medical Birth Register, which was established in 1973 and

includes data on prenatal and perinatal measures of all births

in Sweden (National Board of Health & Welfare, 2014); (b)

National Patient Register, which contains inpatient care since

1964 (psychiatric care since 1973) and outpatient visits to

specialty care since 2001 (Ludvigsson et al., 2011); (c) Total

Population Register, which provides information on life events

such birth, death, migration and family relationships (Lud-

vigsson et al., 2016); (d) Multi-Generation Register, which

constitutes a part of the Total Population Register, but links

individuals born in Sweden since 1932 and registered as living

in Sweden since 1961 to their biological parents (Ekbom,

2011); (e) Prescribed Drug Register provides information on

dispensed drugs to the entire Swedish population since July

2005. Active ingredients of drugs are coded according to the

anatomical therapeutic chemical (ATC) classification system

(Wettermark et al., 2007); (f) Longitudinal integration database

for health insurance and labor market studies (LISA) was

established in 1990 and contains annually updated data on

highest level of education, civil status, unemployment, social

benefits, and income for all Swedish residents aged 16 years or

older (Statistics Sweden, 2011); (g) National School Register

(NSR) provides individual-level data on final grades from

school leaving certificates and eligibility to upper secondary

school (The Swedish National Agency for Education, 2017); (h)

National Crime Register covers violent and nonviolent crime

convictions since 1973 (Chang, Larsson, Lichtenstein, & Fazel,

2015).
Predictors extracted from these eight registers are listed in

Table S1, including (a) parental information: age and (mater-

nal) weight at child birth, educational and marital status,

criminal records, medical records; (b) family size and the

numbers of siblings, full- and half-sibling medical and criminal

records; (c) family SES: neighborhood deprivation scores

(NDEP, (Sariaslan et al., 2013), family location (metropolitan

area or not), family income, and social allowance received; (d)

Index child information: perinatal records (child birth compli-

cations, APGAR scores, body measurements at birth), medical

and criminal records. Medical records included inpatient and

outpatient discharge records for 34 disorders and seven

categories of prescription drugs. These disorders and prescrip-

tion records were chosen based on prior knowledge of their

relevance to ADHD or SUD. The complete ICD and prescription

codes are listed in Table S1. For criminal records, disorder

diagnoses, and prescription records, we summed the total

numbers of records within each age, or each life periods

(prenatal: (prior to birth), perinatal (age 0–2), childhood (2–12),
and adolescence/teenage (12–17)) and used the summed totals

as predictors.
Missing information is common in register databases. 71.8%

subjects had missing prenatal and perinatal information from
the Medical Birth Register; 55.2% subjects had one or more
years of social economic data missing from the LISA register;
and 11.6% children have no records for merit scores or
graduation records (Table S1). For some variables, missing
status could be informative for prediction. For example,
missing father’s information and family income could indicate
childhood adversity. Instead of removing subjects or variables
with missing data, which would lead to a biased and reduced
sample size and lost information, we added a new category to
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indicate ‘missing’ status. Some continuous variables were
recoded as categorical variables according to the nature of the
variables. For example, head circumferences and birth weight
were recoded as five categories (normal, above or below 1x and
2x standard deviations) at each gestational age (weeks)
according to published standards for the Swedish population
(1990–1999; Skjaerven, Gjessing, & Bakketeig, 2000). Family
incomes were normalized across the whole sample population
by year (between 0 and 1) to eliminate economic differences
across years. The normalized family income and NDEP scores
were then examined within the index child’s three age periods:
perinatal (age 0–2), childhood (2–12), and adolescence/teenage
(12–17). A small number of subjects (n = 48) with complete
missing records in any of the three periods were removed. For
the remaining subjects, we summarized the mean, minimum
and maximum values of each period as predictors. Other
continuous variables with a large amount of missing informa-
tion were coded into seven ordinal categories (between 0%, 5%,
10%, 25%, 75%, 90%, 95%, and 100%) across the whole
sample with one additional category to denote missing status.
Diagnostic, prescription, and criminal records were summed
as the total numbers of records per year for the longitudinal
model or summed for the above three periods for the cross-
sectional model. Finally, all the categorical variables were one-
hot encoded as dummy variables (0 or 1) and continuous
variables were scaled between 0 and 1.

Machine-learning models

The sample was randomly divided into training (70%), valida-
tion (15%), and test subsets (15%). The training and validation
sets were used to optimize the model parameters and hyper-
parameters. The hyperparameters control structural features
of the model such as the number of trees in a random forests
model. The test set was reserved only for evaluating the
performance of the final models. This is a commonly accepted
practice in statistical learning to ensure that different subsets
of samples were from the same distribution and that test set
were not used in model selection and optimization (Goodfellow,
Bengio, & Courville, 2016; Hastie, Tibshirani, & Friedman,
2009; Ng, 2019). We also use the training set to define the
minimum and maximum values for each predictor to scale all
continuous features between 0 and 1. This scaling function
was applied to the validation and test set data.

We designed two types of prediction models: (a) a cross-
sectionalmodel to predict SUDdiagnoses during age 18–19 and
(b) a longitudinal, recurrent neural network (RNN) model to
predict newSUDcases each year. For the cross-sectionalmodel,
we used the random forest classifier (RF, Pedregosa et al., 2012)
based on its stable and superior performance during initial
screening of several machine-learning algorithms including
support vector machine, multilayer perceptron, gradient boost-
ing, and k-nearest neighbors classifiers (results not shown), as
well as its ability to evaluate feature importance, which helps to
improve the interpretability of the machine-learning models
(Holzinger, Biemann, Pattichis, & Kell, 2017).

We used Scikit-Learn’s grid search algorithm to search the
hyperparameter spaces for RF models, including numbers of
estimators (trees), maximum percentage of features used in
each tree, maximum depth, and class weight. Because our
case and control classes are highly imbalanced, higher minor-
ity class weights encourage more accurate predictions of
samples from the under-represented class. Feature selection
was incorporated into the RF model using Scikit-Learn’s
pipeline function in combination with the SelectKBest func-
tion, in which ‘K’ numbers of best features were selected by
their ANOVA F-values prior to feeding to the RF models. ‘K’ was
also tuned as a hyperparameter during the RF grid search.

For the longitudinal model, we implemented the Long Short-
Term Memory (LSTM) model (Hochreiter & Schmidhuber,
1997) to learn the sequential features at each year. The LSTM

model uses an RNN architecture with improved gradient-based
learning. It was designed to overcome problems caused by lags
of unknown duration between important events in a time series
(Hochreiter & Schmidhuber, 1997). Such problems exist in
register data, for example, missing records/visits. The LSTM
model focused on predicting new SUD cases only. At each age,
the newly diagnosed SUD were removed from the sample once
the prediction was made for that age. This ensures that the
model only predicts new onsets at the next age. This process,
however, reduces the numbers of positive outcomes at each
age. For this reason, we increased the randomly selected and
reserved test set to be ~30% of the total sample. Training and
validation sets were split with a ratio of 80:20. HyperOpt
(Bergstra, Yamins, & Cox, 2013) was used to tune the number
of LSTM units. We used TensorFlow library to implement the
LSTM network with the adaptive moment estimation (Adam)
optimizer and binary cross-entropy as the loss function.
Furthermore, stratified balanced sampling was applied to the
LSTM training processes, which compensates the class imbal-
ance by oversampling the minority class. Early stopping was
implemented to avoid overfitting. Best models were chosen
based on the lowest total validation loss and tested on the test
set. All machine-learning algorithms were written in Python
3.5.

Diagnostic accuracy statistics

For the test set performance, we computed receiver operating
characteristic (ROC) curves and used the area under the ROC
curve (AUC) as our primary measure of accuracy. The AUC and
its confidence intervals were calculated in Stata 15 using the
empirical method and compared with nonparametric approach
by DeLong, DeLong, and Clarke-Pearson (1988). We also report
the Brier loss for the final model. Hosmer–Lemeshow test was
used to estimate the model’s goodness-of-fit and visualized
with a calibration curve. In addition, the predicted probabil-
ities were used to calculate sensitivity/recall, specificity,
positive predictive power (PPP, or precision), negative predic-
tive power (NPP), and F1 scores at various probability cutoff
points. Such conditional probability analyses aid in the
selection of classification cutoff points that are useful in
different clinical situations.

Learning curves

We used learning curve analysis to evaluate the model’s bias
and variance (Webb et al., 2011). The learning curve plots the
training and test set AUCs from different fractions of the
training sample up to the total sample size. With increasing
sample size, the training and validation scores should gradu-
ally converge. Ideally, the training and validation scores
converge at a high level of accuracy, indicating that the model
learns well from the training set and generalizes well to the test
set. If the training and validation scores converge at a lower
point, then the model has been underfit, that is, it does not
learn sufficiently from the training samples, but it can gener-
alize this low level of fit to the test samples. If the training
scores are high, validation scores are low, and the two scores
do not converge, then the model is overfitting the data and
generalizes poorly. Inspection of the learning curves provides
clues to how models might be improved in the future.

Feature importance scores

We computed each feature’s importance score for the RF
model. The feature importance score is the fraction of the
sample’s predictions due to the feature. These scores add up to
a total of 100% for each model. For individual features, the
higher the value, the more important their contribution to the
prediction model. We further evaluated the contribution of the
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top important features by fitting the models with or without
these features using RF classification. We also determined the
predictive accuracy of a logistic regression model using only
the top features.

Results
Cross-sectional model

The RF cross-sectional model achieved an AUC of
0.73 (95%CI 0.70–0.76) on the test samples when
predicting SUD diagnoses at all visits during age 18–
19 from prior data (Figure 1). Having had a prior
SUD diagnosis before age 17 was the most important
predictor, accounting for 25% of predictive accuracy
(Table 1). Figure 2, Left shows the feature impor-
tance scores across main categories. When prior
SUD diagnoses for the index child were not used as a
predictive feature, the remaining family members’
SUD diagnoses together accounted for 3% of predic-
tive accuracy and other categories such as criminal
records and family SES increased their contribution.
When prior SUD diagnoses were removed from the
prediction model, the AUC decreased to 0.69 (95%CI
0.66–0.72, Figure 1), suggesting that prior diagno-
sis, although highly informative, is not needed for
significant predictions.

For our cross-sectional model, the most useful
clinical prediction would be new onsets of
SUD during age 18–19. For these individuals, the
RF AUC was 0.67 (95%CI: 0.64, 0.71, Figure 3A).
Model calibration (Figure 3B) was good, with a

nonsignificant Hosmer–Lemeshow test p value
(v2ð6Þ = 9.8, p = .13) and low Brier score 0.086. Fig-
ure 3D gives the precision–recall curve, which plots
the PPP against sensitivity. Two examples of proba-
bility cutoffs were selected, and the corresponding
model metrics at these two cutoff points are listed in
Figure 3D. The sensitivities/recall was 2.71% and
27.2%, respectively, and their corresponding PPP/
precision was 54.6% and 20.4%.

Top features

In Table 1 lists the top 20 most important features
with their relative feature importance scores.
Besides a prior SUD diagnosis, the most important
features were teenage criminal records (from onset
age 15 up to age 17) and a childhood (age 2–12)
ADHD diagnosis, followed by stimulant treatment
prior to age 18, diagnosis of anxiety disorder and
SES indices (such as family income and neighbor-
hood deprivation scores) during teenage years (age
12–17). Father’s nonviolent crimes before birth and
SES indices, as well as ADHD diagnosis during
teenage years, were also among the top 20 list but
ranked lower.

To examine the predictive importance of these top
features, we compared the AUCs of models predict-
ing new onsets of SUD with or without these
features. We also examined logistic regression mod-
els using the top 10 or 20 features as predictors.
Figure S1 compares these models. For RF model,
when we removed the top 10 most important fea-
tures, prediction accuracy for new SUD cases was

Figure 1 RF cross-sectional model prediction of all SUD diagnoses
during age 18–19. Receiver operating characteristic (ROC) curves
for the RF model were shown with or without using prior
diagnosis of SUD as a predictor [Colour figure can be viewed at
wileyonlinelibrary.com]

Table 1 Top 20 important features

Rank
Importance
(%) Features

1 25 SUD diagnosis (index child: 12–17)
2 10 NonViolent Crimes (index child: 12–17)
3 6 Violent Crimes (index child: 12–17)
4 3 ADHD Diagnosis (index child: 2–12)
5 2 Psychostimulants treatment (index

child: 12–17)
6 2 Family Income (min percentile: 12–17)
7 2 Anxiety diagnosis (index child: 12–17)
8 1 NonViolent Crimes (father: prenatal)
9 1 NDEP (max score:12–17)
10 1 Family Income (max percentile: 12–17)
11 1 Family Income (mean percentile: 12–17)
12 1 Family Income (min percentile: 2–12)
13 1 NDEP (mean score: 0–2)
14 1 Family Income (min percentile: 0–2)
15 1 Family Income (max percentile: 0–2)
16 1 NDEP (max score: 0–2)
17 1 Family Income (mean percentile: 0–2)
18 1 Family Income (mean percentile: 2–12)
19 1 ADHD Diagnosis (index child: 12–17)
20 1 NDEP (max score: 2–12)

Importance score represents percentage of contribution toward
the prediction accuracy.
NDEP, Neighborhood deprivation scores.
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significantly reduced (AUC 0.59, 95%CI: 0.56–0.63,
v2ð1Þ = 16.2, p = .0001), although the prediction was
still significantly above chance (at AUC 0.5).

Excluding 10 more features (Top 20) did not signif-
icantly reduce further the AUC (0.58, 95%CI 0.54–
0.62). The importance of the top 10 ranked features

Figure 2 Feature Categories. Features important scores were combined into seven main categories, and their total contribution to the
model predictions were plotted for the RF models with (Left) and without (Right) using prior diagnosis as a predictor [Colour figure can
be viewed at wileyonlinelibrary.com]

Figure 3 RF cross-sectional model predicting only new SUD cases during age 18–19. (A) Receiver operating characteristic (ROC) curve. (B)
Calibration curve. (C) precision–recall curve. (D) Sensitivities, specificities, PPPs, NPPs, and F1 Scores at two example probability cutoffs
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was further confirmed by the significance and
magnitude of the AUCs when using only these
10 features (0.66, 95%CI 0.62–0.70) and similar
results when using the top 20 features in the RF
model (0.67, 95%CI: 0.64–0.71). Logistic regression
models using the top 10 or top 20 features derived
from the RF analyses produced slightly but signifi-
cantly lower AUCs when compared with the corre-
sponding RF models (0.63, 95%CI 0.60–0.67,
v2ð1Þ = 3.96, p = .047 and 0.64, 95%CI 0.60–0.68,
v2ð1Þ = 4.75, p = .03).

Longitudinal model

Figure 4A illustrates the longitudinal model design
depicting the input predictors at each age. The
prediction AUCs at each age are shown in Figure 4B,
for predicting new SUD diagnoses one, two, five, or
ten years in the future. An inserted table lists the
numbers of diagnosed SUD cases at each age,
starting from age 12, and the total numbers of new
cases and their prevalence (%) at each age in the test
set. The average AUCs were similar (0.65 ~ 0.66) for
all the intervals and majority of the AUCs were
significant with their 95% CI intervals above 0.5. We
compared the two-year outlook prediction of new
SUD cases at age 17 for the cross-sectional and
longitudinal models. Figure S2 shows that both
models have significant AUCs that were above 0.5.
However, the cross-sectional model had a signifi-
cantly higher AUC than the longitudinal model
(v2ð1Þ = 6.60, p = .01).

Learning curve analysis

The learning curve was plotted for the RF cross-
sectional model (Figure S3). Training and validation
AUCs gradually converged with the increased sam-
ples used. However, their final scores did not fully
converge. In addition, the validation AUCs plateaued
rather quickly. The learning curve characteristics
suggest that more training samples and additional
informative features are both needed to improve the
prediction accuracy and reduce overfitting.

Discussion
Using Swedish population register data, we applied
different ML models to predict SUDs in ADHD youth.
The cross-sectional model significantly predicted the
probability of having SUD during ages 18–19. The
longitudinal model predicted short- and long-term
risks for future new diagnoses at each age. Both
models yielded significant predictions. Notably, the
longitudinal model was able to predict future SUD
diagnoses at young ages, many years prior to their
ages at first SUD diagnosis.

This study is the first to apply machine-learning
algorithms to predict a serious and public health
relevant outcome in the context of ADHD. We

evaluated the potential clinical utility of the predic-
tion models by computing sensitivity/recall, speci-
ficity, PPP/precision, NPP and F1 scores at various
cutoff points (Figure 3B–D). Ideally, a prediction
model would identify most patients who would go on
to future substance use (high sensitivity/recall) and
few who would not (high PPP/precision). Although
our reported metrics showed that our model perfor-
mance was not ideal, they do, however, indicate that
large-scale data combined with machine learning
may eventually arrive at clinically useful prediction
models. Analyses of the full electronic health records
ascertained from the actual healthcare system or
even more detailed predictor information from linked
population register are two strategies to improve the
predictive power.

Future research also needs to carefully consider
clinically useful cutoff points for the obtained risk
scores. For example, Figure 3B shows that using a
cutoff point with a sensitivity of 2.7% defines a
sample in which 54.6% (the PPP at that cutoff point)
will have a subsequent SUD diagnosis. If we instead
use a cutoff point with a sensitivity of 27.2%, the PPP
decreases to 20.4%, which means that only 1 in 5
patients defined by the model as being at risk for
SUD are truly at risk. Although this cutoff point gives
a low PPP, it could be useful because the burden of
data collection is low (the data are already available
in the medical record) and the results can be used for
economical and noninvasive interventions such as
parent and patient education or more frequent
monitoring of high-risk patients.

Explainable machine-learning models are extre-
mely important in translational medicine as they
facilitate transparent and trustworthy implementa-
tions (Holzinger et al., 2017). In contrast to the
difficult to interpret ‘Black Box’ underlying most
machine-learning methods, random forest’s feature
importance scores aid the interpretability of the
prediction models and serve as an effective feature
selection method. Our examination of all features
extracted from eight different registers showed that
only 10 features are needed for obtaining signifi-
cant predictions. These features mainly include
criminal records, prior diagnoses of SUD, ADHD
and anxiety, ADHD stimulant treatment and family
social economic status (Table 1). In addition,
having a handful of useful features, rather than
hundreds or thousands of registry records, signif-
icantly eases the difficulty of any clinical imple-
mentation in the future. In fact, we showed that a
logistic regression model with these identified top
features produced almost equally significant pre-
diction accuracies.

However, it is also important to fully understand
the limitations of RF feature importance scores. Top
features in the RF models are not adjusted for
confounders and should be interpreted as useful
predictors but not, based on our analyses, etiologic
risk factors. Furthermore, although the feature
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importance scores from the RF algorithm will extract
important features, we cannot conclude that fea-
tures not extracted are not relevant to SUD. For
example, if two features are highly correlated, the
one which is most predictive will be deemed impor-
tant. The other one will have a low importance score
because it is not useful after the first one has been
selected into the model (Breiman, 1984). Therefore,
although the importance scores are useful for
explaining the performance of our models, they
should not be used to make relative comparisons
between features with regards the degree of risk they
impart for SUD. In other words, the top features may
mask other smaller but important predictors of
SUDs. Because of such correlations, when we
dropped the prior diagnoses of SUD from our mod-
els, their AUCs did not drop dramatically, indicating
a substantial amount of redundant information in
the remaining feature set.

Consistentwithpriorwork (Havnes, Clausen,Brux,
& Middelthon, 2014; Lichtenstein et al., 2012; Stod-
dard et al., 2015), we found that prior committed
crimes (both nonviolent and violent crimes) during
teenage years contributed 16% to the predictive
accuracy. Indeed, in our sample, those who commit-
ted crimes during teenage years had three times
higher SUD prevalence (29.4%) during age 18–19
than those who did not have criminal history (preva-
lence9.6%).Manypreviousstudieshave reported that
low family socioeconomic status is associated with
SUDs (e.g., Barr et al., 2018; Butterworth, Becker,
Degenhardt, Hall, & Patton, 2018). Indeed, numerous
SES features in our study, including family income
and neighborhood deprivation scores, had high fea-
ture importance scores. Altogether, features from the
SES category accounted for 18%–24% of predictive
accuracy (Figure 2B). Having had an ADHDdiagnosis
inchildhoodwas ranked fourth in feature importance.

Figure 4 Longitudinal model predicting new SUD diagnoses at each age. (A) Model architecture. (B) AUC at each age for 1-, 2-, 5-, and
10-year outlook predictions [Colour figure can be viewed at wileyonlinelibrary.com]
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Interestingly, children who had been diagnosed with
ADHDduringchildhoodhadlowerrisks forSUD(5.2%
would have SUD during 18–19) than those who were
diagnosed with ADHD during adolescence (9.4%).
Those who were diagnosed with ADHD during 18–19
had the highest SUD prevalence 14.3%. This could
reflect changes in diagnostic and treatment practices
with calendar time but it is possible that delayed
diagnoses of ADHD increase the risk for SUD due to
delayed treatment. This idea is supported by many
studies showing that the treatment of ADHD in youth
leads to lower risks for outcomes such as criminality
(Lichtenstein et al., 2012), traffic accidents (Chang,
Lichtenstein, D’Onofrio, Sjolander, & Larsson, 2014),
smoking (Schoenfelder et al., 2014), and SUDs
(Chang, Lichtenstein, Halldner, et al., 2014; Quinn
et al., 2017).

One limitation of the study concerns the reliability
and accuracy of diagnoses by ICD codes in registry
data. Although formal validity studies are lacking for
clinically diagnosed SUD in the Swedish national
patient registry, most validated diagnoses in the
register have a positive predictive value of about 85–
95% when compared with research diagnoses (Lud-
vigsson et al., 2011). The national patient registry
has been used substantially in prior research about
SUD to generate research findings that fit with
findings from studies using other types of measures
for SUD (Fazel, Langstrom, Hjern, Grann, & Licht-
enstein, 2009). For ADHD, recent validation checks
indicate low numbers of false-positive diagnoses of
ADHD in the Swedish patient registry (Larsson et al.,
2013). The ascertainment of individuals with ADHD
was predominantly based on ICD-10 diagnoses. The
ICD-10 definition of ADHD is somewhat stricter
compared with that in DSM-5, meaning that gener-
alizations to cases of less severe ADHD symptoms
should be made with caution. We also do not know if
our model predictions would generalize to the pop-
ulation, because our sample only contains patients
with an ICD-10 diagnosis of ADHD. Future studies to
predict the SUD in the entire population would be
needed.

There are several other limitations in our study.
First, our learning curve analyses suggest that
improvements in predictive accuracy will require
additional features and a larger sample size. It is also
possible that major improvements to prediction will
require a different source of data, such as biomarker
or behavioral assays, which are not available in the
registries. Second, we have only information available
up to age 20 for all patients. Therefore, we are only
predicting the SUD onset risks up to age 20 and
cannot draw conclusions about predictive accuracy
for older ages. Finally, our feature importance analy-
sis, albeit informative for prediction mechanisms,
does not provide direct evidence for etiological risk
factors for SUD. However, future research based on
new ideas derived from our feature importance

analysis could provide evidence clarifying if there are
any causal mechanisms and perhaps discover novel
links.

Despite these limitations, our results suggest that
population registry data are useful for machine-
learning algorithms to predict the future onset of
SUDs when the actions taken based on the predic-
tions are neither costly nor invasive. Future work
should focus on improving the sensitivity and pos-
itive predictive value by including more detailed
information from predictors.
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Key points

� Population registry data and linked electronic health records can be used to predict at-risk comorbid SUDs in
individuals with ADHD.

� Risk predictions can be made many years prior to the first diagnosis.
� Risk monitoring over years during child development can be achieved using longitudinal deep learning

models.
� Although promising, more work is needed to improve the prediction accuracy to be sufficient for use in the

clinic.
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