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Mesenchymal stem cells (MSCs) have rapidly been applied in a broad field of immune-mediated disorders since the 
first successful clinical use of MSCs for treatment of graft-versus-host disease. Despite the lack of supporting data, 
expectations that MSCs could potentially treat most inflammatory conditions led to rushed application and development 
of commercialized products. Today, both pre-clinical and clinical studies present mixed results for MSC therapy and 
the discrepancy between expected and actual efficacy of MSCs in various diseases has evoked a sense of discouragement. 
Therefore, we believe that MSC therapy may now be at a critical milestone for re-evaluation and re-consideration. 
In this review, we summarize the current status of MSC-based clinical trials and focus on the discrepancy between 
expected and actual outcome of MSC therapy from bench to bedside. Importantly, we discuss the underlying limitations 
of MSCs and suggest a new guideline for MSC therapy in hopes of improving their therapeutic efficacy.
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Introduction 

  Mesenchymal stem cells (MSCs) are self-renewing mul-
tipotent progenitor cells with multi-lineage potential to 
differentiate into other cell types of mesodermal origin. 
The International Society for Cellular Therapy established 
the minimal criteria for MSCs, which defines MSCs as 

plastic-adherent cells that express specific cell-surface 
molecules (CD105＋, CD73＋, CD90＋, CD11b-, CD79a-, 
CD19 and human leukocyte antigen (HLA)-DR-) and 
have the ability to differentiate into osteoblasts, adipo-
cytes, and chondroblasts under standard in vitro con-
ditions (1). MSCs have created growing interest in various 
fields of medicine due to their unique properties includ-
ing differentiation and regenerative potential, immune 
modulation and migration toward sites of inflammation 
(2). While MSCs were initially used for tissue repair and 
regenerative medicine, discovery of immune-modulating 
mechanisms of MSCs have prompted their use in immune 
disorders. Currently, the therapeutic potential of MSCs 
has been investigated in numerous immune-mediated con-
ditions in both pre-clinical and clinical studies, including 
graft-versus-host disease (GVHD), cardiovascular diseases, 
and chronic inflammatory autoimmune diseases. 
  Contrary to initial expectations, however, MSCs have 
failed to demonstrate clear efficacy in recent trials. 
Therefore, a critical evaluation of MSC therapy is needed 
at this point in research and development. In this review, 
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Table 1. Immunomodulatory effects of mesenchymal stem cells

Cell Subset Effects Potential mechanism

Innate 
immunity

Monocytes -Induce anti-immunosuppressive functions
-Inhibit differentiation to mature dendritic cells

Through IL-6, PGE2, TGF-β, HGF production

Macrophages -Inhibit pro-inflammatory M1 macrophages
-Alternatively activate anti-inflammatory M2 macro 

phages

Through IL-6, PGE2, TGF-β, HGF production

NK cells -Inhibit proliferation
-Inhibit cytotoxicity

Through TGF-β, PGE2, IDO production and direct 
cell-to cell contact

Dendritic 
cells

-Induce semi-mature tolerogeneic DCs with reduced 
ability to stimulate allogeneic response

Through IL-6, PGE2, TGF-β, HGF production

Adaptive 
immunity

T cells -Suppress T-cell proliferation
-Modulate inflammatory profile of helper T cells
-Induce regulatory T cells

Through PGE2, TGF-β, HGF, NO, HO, IDO 
production and direct cell-to cell contact

B cells -Inhibit B-cell proliferation
-Inhibit plasma cell differentiation induced by allosti 

mulation
-Inhibit Ig production

Through direct cell-to cell contact and arrest of cell 
cycle G0/G1

DC: dendritic cell; HGF: hepatocyte growth factor; HO: hemoxygenase; IDO: indoleamine 2,3-dioxygenase; Ig: immunoglobulin; IL: 
interleukin; NO: nitric oxide; PGE2: prostaglandin E2; TGF-β: transforming growth factor-β.

we highlight the immunomodulatory properties of MSCs 
that contribute to their therapeutic potential. We summa-
rize the current status of MSC-based clinical trials and fo-
cus on the discrepancy between expected and actual out-
comes of MSCs from bench to bedside. Finally, we discuss 
the underlying limitations of MSCs and suggest a new 
guideline for MSC therapy to improve their therapeutic 
efficacy. 

Immunomodulatory properties of MSCs

  The rationale of MSCs as a novel therapeutic approach 
in a wide variety of disorders is based on their potent im-
munosuppressive and anti-inflammatory effects. MSCs in-
teract with various lymphocytes and play a regulatory role 
in both the innate and adaptive immune system. MSC-based 
immune modulation primarily occurs through paracrine 
effects by production of soluble factors, including trans-
forming growth factor-β (3-5), hepatocyte growth factor 
(HGF) (6), nitric oxide (NO) (7), hemoxygenase (HO) (8), 
interleukin (IL)-6 (9-11), prostaglandin E2 (PGE2) (5, 
12-16) and indoleamine 2, 3-dioxygenase (IDO) (15, 17), 
but may also occur through direct cell-to cell contact (4, 
16, 18, 19). The immunomodulatory properties of MSCs 
are summarized in Table 1. 
  Within the innate immune system, MSCs are able to in-
hibit the activation of pro-inflammatory monocytes and 
macrophages (14, 20). At the same time, monocytes and 
macrophages may acquire anti-immunosuppressive func-

tions, in the presence of MSCs and their soluble factors. 
Classical M1 macrophages, which possess pro-inflammatory 
functions become alternatively activated into anti-in-
flammatory M2 macrophages, which are characterized by 
high expression of interleukin (IL)-10 and low levels of 
tumor necrosis factor (TNF) and interferon (IFN)-γ pro-
duction (21, 22). Furthermore, MSCs inhibit the differ-
entiation of monocytes into fully mature dendritic cells 
(DCs) (9, 10, 12, 13, 23-25). DCs generated in the presence 
of MSCs are characterized by semi-mature phenotype, in 
which the DC maturation markers and co-stimulatory 
molecules are down regulated. These tolerogenic DCs pro-
duce high levels of IL-10 and have reduced ability to stim-
ulate allogeneic T-cell proliferation in a mixed lympho-
cyte reaction. Also, MSCs inhibit proliferation and cyto-
toxicity of natural killer (NK) cells mediated mainly 
through PGE2 and IDO production and often requires cell 
to cell contact (4, 15). 
  In the adaptive immune system, MSCs are able to sup-
press T-cell proliferation through the secretion of various 
soluble factors (3, 6-8, 17) and can also inhibit T-cell acti-
vation through cell-to-cell contact (18). Importantly, MSCs 
are able to modulate the T-cell response by orchestrating 
the balance between the pro-inflammatory and anti-in-
flammatory profiles. In an environment that consists of 
strong inflammatory components, MSCs are able to shift 
the pro-inflammatory Th1 profile to an anti-inflammatory 
Th2 profile (26, 27). MSCs also modulate Th17 cell sub-
sets by preventing the differentiation of naïve Th0 cells 
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to Th17 cells and by suppressing the production of Th17 
cytokines, including IL-17 and IL-22 (16, 28). In addition, 
MSCs can induce the differentiation of CD4＋ helper T 
cells (Th0) into regulatory T cells (Tregs), a unique sub-
population of T cells that are specialized in suppressing 
immune responses. The coculture of MSCs with periph-
eral blood mononuclear cells (PBMCs) induces the differ-
entiation of Foxp3＋ Tregs through PGE2 and TGF-β (5, 
29). Moreover, MSCs-induced Tregs demonstrated potent 
inhibitory functions against alloreactive T-cell proliferation 
in vitro. 
  While the effects of MSCs on B cells remain contra-
dictory, there is evidence that MSCs have close inter-
actions with B cells (30). MSCs are able to inhibit B-cell 
proliferation through cell-to-cell contact and by arrest of 
cell cycle G0/G1 (19, 31). Furthermore, MSCs inhibit 
plasma cell differentiation induced by allostimulation (32) 
and Ig production (33). Studies have also suggested that 
while MSCs are able to suppress B cells activated under 
various stimuli, MSCs are unable to modulate naïve or 
memory B cells that do not require such signals (34). 

Overview of MSC-based therapies in clinical 
practice

  Along with the initial reports on in vitro and in vivo im-
munosuppressive functions of MSCs (35), the first success-
ful clinical application of MSCs to treat GVHD triggered 
an explosive interest in numerous research groups (36). 
Since the first clinical use in 2004, over 480 MSC-based 
clinical trials worldwide are listed in the clinical trial reg-
istry of the U.S. National Institutes of Health and more 
than 50 publications on MSC therapy have been reported 
for the treatment of at least 10 different target diseases 
(Table 2). The validation of safety of MSCs from different 
donor sources in clinical trials encouraged the commerci-
alization of MSC products. In 2005, Osiris Therapeutics, 
Inc developed the first off-the shelf MSC product, 
Prochymal, using the bone marrow of healthy donors. In 
2012, Prochymal received FDA-approval in Canada and 
New Zealand as a first-line treatment for acute GVHD in 
pediatric patients. In Korea, the first FDA approval of 
MSC product came in 2011 when Hearticellgram-AMI de-
veloped by Pharmicell was approved for treatment of my-
ocardial infarctions. Subsequently, in 2012 two more mes-
enchymal stem cell products (Cartistem developed by 
Medipost for knee cartilage regeneration and Cupistem 
developed by Anterogen for Crohn’s disease) were ap-
proved by the Korean FDA (37). 
  Although the initial expectations for MSC-based thera-

pies led to the wide clinical application and rapid develop-
ment of commercialized products, the therapeutic efficacy 
have been unsatisfactory. Series of phase I/II clinical trials 
using MSCs produced ambiguous results and yet further 
large-scale randomized trials were continued. The under-
lying foundation of MSC-based therapy built on uncertain 
clinical data led to weak clinical outcomes in the random-
ized placebo-controlled phase III trials of MSC products 
reported by Osiris Therapeutics, Inc for both acute my-
ocardial infarction (38) and steroid-refractory GVHD (39). 
In addition, outcomes of Korean MSC-products have yet 
to publish official results in peer-reviewed journals since 
their FDA approval. 
  The contradicting clinical outcomes may be a major set-
back to the entire MSC field. However, we believe that 
MSC-based therapy, now more than ever, need thorough 
analysis and reconsideration in the hopes of overcoming 
their limitations in future studies.

Discrepancy between expected and actual results 
of MSC efficacy from bench to bedside

  Despite the considerable progress that has been made 
in the development of MSC therapy for various diseases, 
studies have produced mixed results regarding their ther-
apeutic efficacy. Below we describe the discrepancy be-
tween expected and actual results of MSCs from both 
pre-clinical and clinical studies (summarized in Table 2). 

Graft-versus-host disease
  Graft-versus-host disease (GVHD) is a major complica-
tion associated with morbidity and mortality following al-
logeneic hematopoietic stem cell transplantation (HSCT) 
characterized by dysregulation of inflammatory cytokines 
and activated donor cells that attack recipient organs and 
tissues. In the pilot study using MSCs for GVHD, Le 
Blanc et al. reported the successful use of third-party 
MSCs to treat steroid-refractory GVHD following alloge-
neic stem cell transplantation (36). This initial study pro-
vided a rationale for the use of MSCs in GVHD and en-
couraged further pre-clinical and clinical studies of MSCs. 
  Unlike in vitro studies that have clearly demonstrated 
MSCs’ immunosuppressive effects against allogeneic T 
cell responses, in vivo studies have been more ambiguous. 
Pre-clinical studies revealed that various factors, including 
cell dose, timing of infusion, and pre-activated state of 
MSCs contribute to the therapeutic effects of MSCs. 
While some studies have suggested that MSCs can effec-
tively treat GVHD in a dose-dependent manner (40, 41), 
others have shown that therapeutic effect could not be ob-
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Table 2. Discrepancy of mesenchymal stem cell therapy: expected versus actual results

Target 
disease

Expected results
Actual results

Pre-clinical Clinical

GVHD Immunosuppressive effects against allo-
geneic responses based on in vitro 
studies

Clinical efficacy based on Le Blanc’s 
study (36)

Cell-dose, timing of infusion, and the 
presence of IFN-γ levels affect the 
therapeutic efficacy

Clinical efficacy is limited to pediatric 
patients with steroid-refractory acute 
GVHD. 

Efficacy depending on organ-involve-
ment is controversial.

MI Cardiovascular regeneration and repair 
of damaged myocardium

Immune modulation of inflammatory re-
sponse following MI through paracrine 
factors

MSC therapy showed overall positive 
results

MSCs do not persist following admin-
istration indicating minimal possibility 
for regeneration and tissue repair

MSC therapy is well tolerated and safe, 
with positive results during initial fol-
low-up

Efficacy do not persist at 18 months of 
follow-up

IBD Immune modulation of inflammatory re-
sponse present in gastrointestinal tract

Mixed results: MSCs have produced 
both positive negative results in IBD

Most studies focus on modification of 
MSCs for treatment, rather than as sin-
gle agent

Systemic infusion of MSCs show limited 
clinical efficacy compared to intrale-
sional treatment

MS Immune modulation that regulate effec-
tor cells involved in pathogenesis of 
neurodegenerative diseases

MSC therapy was only effective when 
used at disease onset and not during 
chronic phase of disease

Limiting number of clinical trials, but 
feasibility and safety has been reported

Mixed reports on clinical efficacy: im-
provements and deterioration were 
both reported

SLE Immune modulation of inflammatory re-
sponse involved in multiple organs

Allogeneic and umbilical cord blood de-
rived MSCs improve renal functions 
but not anti-double stranded DNA an-
tibody production levels

Worsening of disease in one study was 
also noted

Allogeneic and umbilical cord-derived 
MSCs show therapeutic efficacy, but 

RA Immune modulation of Th17-related in-
flammatory response

Mixed results: aggravation of disease re-
gardless of timing of treatment was 
noted. Positive effects of MSCs at the 
time of CIA induction prevented in-
cidence

Only one report on MSC therapy for RA 
demonstrating feasibility: 6 months fol-
low-up show improved clinical out-
come

CIA: collagen-induced arthritis; GVHD: graft-versus-host disease; IBD: inflammatory bowel disease; IFN: interferon; MI: myocardial infarction; 
MS: multiple sclerosis; MSC: mesenchymal stem cells; SLE: systemic lupus erythematosus; RA: rheumatoid arthritis.

tained at any dose (42-45). In addition to cell dose, studies 
proposed that the timing of treatment might play a more 
critical role in MSC-mediated immune suppression. Re-
garding the timing of administration, Polchert et al. re-
vealed that MSCs were ineffective before GVHD develop-
ment or when GVHD was too severe. This study attributed 
the inconsistency of MSC treatment to the difference in 
IFN-γ levels at different time points of GVHD develop-
ment (43). Th1 cytokine, IFN-γ play a pivotal role in the 
immunomodulatory function of MSCs. MSCs pretreated 
with IFN-γ could prevent GVHD even when administered 
at the time of transplantation. Nonetheless, several pre-clin-
ical studies failed to exhibit therapeutic potential of MSCs 
regardless of various timing and dose (2, 44, 46). 
  With the dramatic outcome of the first GVHD patient 

treated with MSCs, MSC therapy has undoubtedly showed 
promising results for the treatment of GVHD. In Ringden’s 
subsequent study (47), MSCs administered in patients 
with grades III to IV steroid-refractory GVHD showed a 
complete remission rate of 75%. The European Group for 
Blood and Marrow Transplantation obtained similar re-
sults in a multicenter phase II study using allogeneic and 
third-party bone marrow derived MSCs (48). Patients with 
steroid-refractory GVHD were treated with MSCs from 
various donor sources and had a significantly reduced lev-
el or transplantation-related mortality. While the small 
sample size and heterogeneous treatment protocols and 
MSC products limit the characterization of MSC efficacy, 
it is becoming clear that MSC therapy may be more effec-
tive in specific environments indicating that mixed results 
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of MSCs for GVHD may arise depending on age, organ 
involvement, and severity of GVHD patients. In a multi-
center trial, a greater proportion of pediatric patients re-
sponded to MSCs than adults (48). Furthermore, patients 
with skin-involved GVHD generally had a higher response 
rate to MSC treatment (49-51) whereas some studies have 
suggested that gastrointestinal GVHD may respond better 
(52, 53). In addition, studies that included both acute and 
chronic GVHD patients, the response was higher in acute 
GVHD (49, 51). It is important to recognize, however, that 
there is generally a lack of studies on de novo GVHD, 
chronic GVHD, and GVHD prophylaxis. Majority of stud-
ies involved patients resistant to conventional steroids and 
failed at least their first-line of treatment (13, 25, 43, 50, 
54, 55) suggesting a better outcome in these settings. In 
contrast, there is some evidence that MSCs may be less 
effective in cGVHD (31) and GVHD prophylaxis (50).
  Despite these potential variables in identifying optimal 
clinical settings for MSC therapy, the efficacy of MSCs 
is still unpredictable. In the phase III industry-sponsored 
trial (NCT00366145) using Prochymal for the treatment 
of steroid-refractory GVHD, public reports announced 
that Prochymal failed to achieve increased complete re-
sponse rate compared to placebo controls (39, 52).

Myocardial Inflammation
  Despite rapid medical advancements in the cardiovascular 
field, inflammatory reactions that occur upon heart dis-
eases and failures continue to be associated high morbid-
ity and mortality rates. Initially, MSCs were used follow-
ing myocardial infarction due to their regenerative and 
tissue repair properties. Pre-clinical studies focused on the 
evaluation of MSC therapy through the measure of cardiac 
function and effects on cardiac remodeling (56-58). However, 
with the discovery that only a small portion of the injected 
MSCs remained present in the heart (59, 60), interest 
shifted toward MSC-produced paracrine factors as a crit-
ical role post myocardial infarction (61, 62). Despite dif-
ferent reported mechanisms of actions, MSC therapy in 
cardiovascular diseases of animal models have showed 
overall positive results. 
  In a pilot clinical trial, patients with acute myocardial 
infarction received intracoronary injection of autologous 
MSCs compared to saline (63). The administration of 
MSCs showed significant clinical improvement compared 
to the control group. Through cardiac electromechanical 
mapping, Chen et al. were able to detect viable MSCs up 
to three months after infusion and increased cardiac func-
tions as demonstrated by cardiac echocardiography. Since 
then, further clinical trials attempted to assess the safety 

and efficacy of MSC transplantation for the treatment of 
cardiovascular diseases, including myocardial infarction 
and chronic ischemic cardiomyopathy (64-69). Similar to 
GVHD trials, the heterogeneity of clinical protocols has 
limited the direct comparison of MSC efficacy in car-
diovascular diseases. 
  The different administration routes by MSC therapy 
may especially affect the outcomes of cardiovascular 
diseases. The delivery methods of MSCs include percuta-
neous coronary intervention, intracoronary injection, in-
tramyocardial injection, and intravenous injection. However, 
direct comparison between the administration routes and 
following clinical outcomes is not available. There is evi-
dence, however, that the intracoronary delivery may cause 
microinfarction by microvascular obstruction (70) or un-
desired tissue differentiation, such as bone, in the myocar-
dium (71). Interestingly, the intravenous injection of 
MSCs in the randomized placebo-controlled dose-escalat-
ing trial by Osiris Therapeutics, led to an improved clin-
ical outcome compared to the placebo group (65). However, 
in this study, 6-months follow-up was too short to evaluate 
the role of MSC in the recovery of cardiac function. 
Similarly, patients receiving intracoronary injection of 
MSCs initially showed significant improvement in left 
ventricular ejection compared control; however this differ-
ence did not last up to 18 months (38). Therefore, while 
both direct and systemic infusions of MSCs are clinically 
feasible for cardiovascular diseases, the efficacy of MSCs 
remains to be elucidated due to limited follow-up. 

Crohn’s Disease
  Crohn’s disease, also referred to as inflammatory bow-
el’s disease (IBD), is a chronic inflammatory autoimmune 
disease in which the immune system attacks the gastro-
intestinal tract. In pre-clinical studies, MSCs were hy-
pothesized to exert immunomodulatory effects that would 
improve the pathogenesis of IBD. Previously, we reported 
for the first time that MSCs are not clinically beneficial 
in IBD treatment (72). Other pre-clinical studies have sug-
gested the positive outcomes of MSCs for the treatment 
of IBD; however, in these studies, MSCs were not used 
alone, but rather genetically modified to IL-12p40 (73), 
coated with antibodies (74), or genetically depleted with 
autoimmune regulators (75). In a single study that did 
claim the positive effects of MSCs, improved clinical IBD 
score consisting of weight loss, stool consistency and stool 
bleeding were noted but immune modulation of in-
flammatory cytokines was not described (76). 
  In contrast to the clinical application of MSCs for other 
diseases, the use of MSCs for IBD treatment demonstrates 
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the most homogeneity in the source of MSCs and admin-
istration protocols. Majority of trials used either allogeneic 
(77-82) of autologous MSCs (83) derived from adipose tis-
sue; however, the use of bone-marrow derived MSCs has 
also been reported (84, 85). Furthermore, majority of clin-
ical trials used direct intralesional infusion of MSCs 
mixed with fibrin glue (77-84) whereas only a single study 
reported the intravenous injection of MSCs (85). While 
MSC therapy showed local healing of Crohn’s fistula 
through intralesional infusions, the efficacy of MSC ther-
apy in refractory IBD patients treated with systemic in-
fusions is ambiguous. Only a small portion of patients 
showed clinical response six weeks post-treatment (85). 
The observations that intralesional treatment of MSCs 
mainly improved local symptoms rather than the basic 
pathogenesis itself support the notion that the systemic 
delivery of MSCs may not be efficacious indicating the 
important discrepancy of MSC therapy based on admin-
istration routes. 

Multiple Sclerosis
  In addition to Crohn’s disease, MSCs for the treatment 
of autoimmune diseases in various animal models, such 
as experimental autoimmune encephalomyelitis, systemic 
lupus erythematosus (SLE), and rheumatoid arthritis 
(RA) have been reported. Multiple sclerosis is a chronic 
inflammatory demyelinating disease of the central nervous 
system. Initially, the therapeutic potential of MSCs have 
been implicated in neurodegenerative diseases of the cen-
tral nervous system including stroke (86), Parkinson’s dis-
ease (87), and spinal cord injury (88). Although the pre-
cise mechanisms of MSCs were not understood at the 
time, it was hypothesized that the immunomodulatory ef-
fects of MSCs could regulate various effector cells in-
volved in the pathogenesis of neurodegenerative diseases. 
In experimental autoimmune encephalomyelitis, a model 
for multiple sclerosis, the intravenous administration of 
MSCs induced tolerance to myelin oligodendrocyte glyco-
protein promoting improvement in clinical symptoms as-
sociated with the reduction of demyelination and CNS in-
filtration by lymphocytes (89). However, MSC therapy was 
only effective when used at disease onset or at the peak 
point during inflammation; however, not during chronic 
phase. Therefore, MSCs may be highly dependent on the 
timing of administration in multiple sclerosis, as in 
GVHD. 
  Clinical studies on MSCs for multiple sclerosis are 
limiting. The intrathecal administrations of autologous 
MSCs for these patients were feasible and safe; however, 
the clinical results remain unclear. While clinical im-

provements associated with reduced expanded disability 
status scale were reported in some patients, others showed 
no improvement or worsening of diseases (90-92). However, 
limited studies and small sample size prevent definitive 
conclusions on the effects of MSC therapy for multiple 
sclerosis. 

Systemic Lupus Erythematosus (SLE)
  Next, SLE is an autoimmune inflammatory disease with 
multi-organ involvement including the kidney, brain, 
lung, and hematopoietic systems. It has been previous sug-
gested in both mice (93) and humans (94) that MSCs de-
rived from the diseased individuals have abnormalities in 
terms of phenotype, proliferation, and differentiation. The 
transplantation of MSCs from healthy donors, however, 
was able to ameliorate the disorder (93). These observations 
support the use of allogeneic, rather than autologous, 
MSCs for SLE. In murine models, allogeneic MSCs or 
xenogeneic human cord-blood derived MSCs for the treat-
ment of SLE. However, the results have not been consistent. 
While both human and allogeneic murine MSCs were able 
to alleviate renal functions associated with SLE (95), other 
clinical symptoms including proteinuria or double-stranded 
DNA levels remained unchanged (19). Furthermore, allo-
geneic MSCs could also enhance anti-double stranded 
DNA antibody production levels and worsen the disease 
(96).
  Similarly, in the clinical setting, the use of allogeneic 
and umbilical cord-derived MSCs have shown therapeutic 
potential in active SLE patients correlated with amelio-
rated disease activity, improved serological markers, and 
stabilized renal functions (93). Furthermore, MSC therapy 
was feasible in patients with refractory SLE (97, 98). The 
results of these initial clinical trials are encouraging; how-
ever, the absence of larger randomized controlled clinical 
trials for SLE and other autoimmune diseases need to be 
resolved for further analysis. 

Rheumatoid Arthritis (RA)
  RA is a T-cell-mediated autoimmune disease charac-
terized by cartilage and bone destruction. Despite con-
tinued research on the role of MSCs in RA, therapeutic 
potential of MSCs is controversial. In our study, we ob-
served that MSCs are ineffective for treatment of colla-
gen-induced arthritis (CIA), a murine model for rheuma-
toid arthritis, promoting Th17 related cytokines and sub-
sequently aggravating symptoms of CIA (99). In another 
study, the negative effects of MSCs in CIA were associated 
with the presence of TNF-a, which reversed the im-
munomodulatory properties of MSCs and worsened clin-
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ical symptoms (100). Various doses were injected at the 
time of immunization or booster injection; however, the 
aggravation of clinical symptoms was similar in both 
conditions. In contrast, therapeutic effects have also been 
demonstrated (100). A single injection of MSCs at the 
time of CIA induction could prevent the incidence of CIA. 
Interestingly, MSC treatment following the establishment 
of CIA could also prevent the exacerbation of disease in 
which 7 of 10 animals treated with MSCs showed sig-
nificantly lower disease score (101). 
  The mixed results demonstrated in pre-clinical studies 
have delayed the application of MSCs for RA treatment 
in clinical trials. The use of MSCs in RA patients had not 
been reported in the clinic until recently. In 2013, Wang 
et al. reported the safety and efficacy of umbilical cord 
derived MSCs in the treatment of RA (102). In the on-
going cohort, 172 patients with active RA refractory to tra-
ditional treatments were allocated into two groups, in 
which patients received anti-rheumatic medication with or 
without MSCs. MSC therapy in RA were safe and effective 
in controlling the refractory disease. In MSCs-treated 
groups, improvements of clinical manifestations correlated 
with decreased levels of inflammatory cytokine and in-
creased percentages of regulatory T cells. The clinical ben-
efits were persistent up to 6 months with a single infusion 
and repeated infusions could be tolerated and further en-
hanced efficacy. Thus, in contrast to animal models, MSCs 
may provide significant benefits for RA. 

Limitations of MSCs-based immune modulation

  Overall, previous studies described above have demon-
strated the feasibility and safety of MSCs. However, the 
discrepancies regarding therapeutic efficacy for most dis-
eases have dampened the initial enthusiasm and optimism 
for MSC therapy. The causes for these discrepancies could 
be countless. Recently, Galipeau presented a review article 
discussing the potential variables affecting MSC therapy 
in response to the discrepancy between the European mul-
ticenter GVHD trials and the Osiris sponsored trial. He 
focused mainly on the lack of standardized MSC products 
throughout industrial and academic centers, including do-
nor variance, epigenetic reprogramming and senescence 
followed by culture expansion, immunogenicity induced 
during culture and cryopreservation (103). While the pro-
cedures involved in isolation, culture, expansion, and de-
livery of MSCs are critical, we believe that our attention 
must now shift toward the MSC-based immune modu-
lation in different clinical settings and varying inflam-
matory environments. The source of MSCs may be critical 

in models such as SLE and optimal delivery route of MSC 
treatment may be important in cardiovascular diseases, 
Crohn’s fistula and multiple sclerosis that involve local in-
jection; however, ultimately, the fundamental therapeutic 
benefits of MSC therapy arise from their immunomodulatory 
properties and their capability to elicit these properties 
following administration. 
  The lessons we have learned from pre-clinical studies 
of MSC therapy is that MSCs are highly-dependent on the 
environmental inflammatory conditions. These ob-
servations highlight the inevitable limitation of MSC ther-
apy for immune-mediated diseases. MSCs are not con-
stitutively inhibitory, but require the “licensing” by acute 
inflammatory cytokines including IFN-γ, TNF, IL-α 

and/or IL-1β to acquire immunosuppressive effects (104). 
Treatment of MSCs with IFN-γ induced increased secre-
tion of chemokine receptor ligands ICAM-1, CXCL-10, 
and CCL-8 (105, 106), as well as increased production of 
immunosuppressive IDO (107). The role of IFN-γ in 
MSC-mediated immune suppression was also demon-
strated in vivo (43). When IFN-γ knock-out mice were 
used as effectors of GVHD, MSCs were unable to improve 
the survival regardless of the time of treatment. In addi-
tion to inflammatory cytokines, immunosuppressive cyto-
kines such as TGF-β that exist in certain environments 
could modulate the capacities of MSCs. Interestingly, 
MSCs present receptors for TGF-β and depending on the 
inflammatory conditions, TGF-β can reverse the im-
munomodulatory effects of MSCs. In combination with 
IFN- γ and TNF, MSCs may become less immunosup-
pressive (108). Moreover, the activation of Toll-like re-
ceptors (TLRs) present in MSCs, such as TLR3 and TLR4 
can be activated to acquire distinct immunoregulatory 
functions (109). Therefore the understanding of the patho-
logical processes involved in various diseases will be crit-
ical for appropriate clinical applications of MSCs. 
  Different states of inflammation can result in different 
responses to MSC treatment, which indicates the im-
portance of timing of MSC administration. As described 
in pre-clinical GVHD model (43), a narrow window exists 
for MSC in which adequate levels of inflammatory IFN-γ 

can license MSCs. This observation might partly explain 
the discrepancies in GVHD models. Furthermore, while 
Th1-related cytokines, such as IFN-γ, is dominant in 
GVHD, chronic inflammatory autoimmune diseases are 
characterized by up-regulated Th17 levels. The effects of 
Th17 response on MSCs are less clear as there is evidence 
that MSCs may promote the expansion of Th17 cells 
(110-112). In the presence of pro-inflammatory cytokines, 
such as IFN-γ and TNF-α, MSCs produce significant 
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levels of IL-6 in addition to TGF-β and this combination 
of TGF-β and IL-6 can induce polarization of naïve T 
cells into Th17 cells (113). On the other hand, IL-17 may 
be helpful in enhancing the immunosuppressive functions 
of MSCs, even in low IFN-γ conditions (114). Therefore, 
understanding the role of Th17 cytokines on MSC-based 
immune modulation could provide important insights on 
clinical application of MSCs for autoimmune diseases in-
cluding IBD, multiple sclerosis, SLE, and RA. 
  Furthermore, inflammatory conditions change through-
out the course of pathogenesis and immune response, 
which may affect the plasticity of MSCs following 
administration. Therefore, understanding the biological 
fate of MSCs in vivo may be necessary. While the in vivo 
monitoring have been previously discussed to investigate 
the migratory functions and differentiation potential of 
MSCs (115), tracking the cell-distribution and the persis-
tence of cells in vivo may indirectly address the inter-
actions of MSCs with different cytokines depending on the 
location and the time-course following administration. 

Why we still need MSC therapy? 

  Therapeutic efficacy and mechanisms of MSC therapy 
still remains to be elucidated. Nevertheless, MSCs are still 
an attractive alternative for the treatment of various 
diseases. First, MSCs have the ability to regenerate and 
differentiate into different cell lineages similar to that of 
embryonic stem cells. However, MSCs have several advan-
tages over embryonic stem cells in that MSCs are free of 
ethical issues, have low immunogenicity and no teratoma 
risks. Second, MSCs can be easily propagated ex vivo from 
various sources including, bone marrow, adipose tissue, 
and umbilical cord blood to reach clinically relevant cell 
doses. Third, and most importantly, MSCs possess unique 
immunomodulatory and migratory features that make 
then attractive for treating various diseases. Despite mixed 
clinical outcomes and lack of established data on in vivo 
efficacy, evidence continues to suggest that, when exposed 
in an appropriate setting, MSCs have the potential to dis-
play a potent immunomodulatory effect. In addition, the 
concept that MSCs can be polarized by certain stimuli 
provides the potential for manipulating MSC to obtain 
more predictable clinical effects. Therefore, the current 
challenges and limitations of MSCs need to be addressed 
through extensive investigation of MSC based immune 
modulatory mechanisms and continued applications in an-
imal models and clinical trials. 

A new paradigm for MSCs: enhancing MSC-based 
immune-modulation

  The understanding that MSCs are highly responsive to 
environmental stimuli provides a new guideline for both 
exogenous and endogenous modifications of future MSC 
therapies. Therefore, we suggest a new paradigm for 
MSC-based therapies that focuses on enhancement of 
MSC-based immune-modulation.

Gene-modified MSCs
  Sustained expression of therapeutic genes through gene 
modification can significantly enhance the potency of 
MSCs independent of external inflammatory stimuli. 
IL-10 transduced MSCs have been used to treat GVHD 
(116). While untransduced MSCs were ineffective in sup-
pressing the development of GVHD, IL-10 transduced 
MSCs significantly decreased mortality rates of mice, 
which correlated with decreased levels of pro-inflammatory 
cytokines. This clinical benefit also correlated with MSCs 
ability to deliver IL-10 to target inflammatory sites. 
Gene-modified MSCs have also been reported in various 
experimental autoimmune models. We have previously 
showed that MSCs transduced with TGF-β could po-
tently suppress CIA models compared to untransduced 
MSCs (99). IL-12p40 expressing MSCs could also amelio-
rate murine colitis compared to normal MSCs (46). Also, 
MSCs engineered to overexpress IL-4 could attenuate ex-
perimental autoimmune encephalomyelitis (117). 

Pre-activated MSCs
  However, genetically engineered MSCs have yet to be 
applied in the clinical setting for immune modulation. 
The use of genetically engineered MSC may raise critical 
safety issues for clinical application. In addition to genetic 
manipulation, the consistent secretion of anti-inflammatory 
cytokines may paradoxically cause pathological immune 
responses depending on the factors involved in disease 
progression. Therefore, efforts to transiently strengthen 
MSC-based immune modulation may be more clinically 
relevant. 
  The pre-treatment of IFN-γ has been previously dis-
cussed in GVHD (43). Furthermore, pre-treatment of 
MSCs with growth factors, including fibroblast growth 
factor, insulin-like growth factor, bone morphogenetic pro-
tein and stem cell derived factors have been reported to 
enhance cell survival and cytoprotective effects of MSCs 
exposed to hostile environments of hypoxic myocardial is-
chemia (118, 119). Moreover, activation of nucleotide-bind-
ing oligomerization domain 2 expressed on human um-
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bilical cord-blood derived MSCs by muramyl dipeptide in-
duces upregulation of PGE2 which significantly enhances 
the inhibition of mononuclear cell proliferation (120). 
NOD2 signaling could be useful in that it is specifically 
expressed on umbilical cord-blood derived MSCs rather 
than other cell sources. 

MSC-based combination cell therapy
  One of major mechanisms of MSC-based immune mod-
ulation is the induction of regulatory cell subsets includ-
ing Tregs, both in vitro and in vivo (40, 121). Therefore, 
MSC-mediated immune modulation is interdependent on 
the presence of endogenous Tregs. We postulated that 
soluble factors secreted by MSCs can promote the in-
duction of Treg differentiation, and in turn, the cytokines 
produced by Tregs can promote immunosuppressive po-
tential of MSCs. The combination of two immunosup-
pressive cell types, MSCs and Tregs, could synergistically 
support their functions and stabilize their plasticity. 
Supporting this hypothesis, a study reported that MSCs 
and Tregs, in combination, do not impair each other’s re-
spective functions (122). In our study, we compared single 
cell therapy groups (MSCs or Tregs alone) with combined 
cell therapy group initially in an acute GVHD model 
(123). We observed that the combined-cell therapy ap-
proach had synergistic immunomodulatory effects in in-
ducing long-term survival and reducing clinicopatho-
logical symptoms of GVHD which was associated with ef-
fective inhibition of both Th1 and Th17 responses com-
pared to MSCs-treated alone. In subsequent studies, we 
further investigated combined-cell therapy of MSCs and 
Tregs in other transplantation models, including the in-
duction of mixed chimerism following nonmyeloablative 
allogeneic HSCT (124), and the prevention of allogeneic 
skin-graft rejection (125), and observed similar results.

Identifying therapeutic windows between conventional 
therapies for MSC treatment
  Based on reported clinical studies, MSC therapy seems 
to be most effective in immunosuppressant-resistant con-
ditions, while randomized studies involving immunosup-
pressant-sensitive patients did not show therapeutic efficacy. 
Conventional immunosuppressants used to treat im-
mune-mediated disorders involve potent inhibition of in-
flammatory responses. Although additive effects of MSCs 
and immunosuppressants may be expected in theory, the 
administration of MSCs during the use of immunosup-
pressants such as cyclosporine A (126) and dextametasone 
(127) has shown to disable the immunomodulatory func-
tions of MSCs. This suggests that sufficient levels of cyto-

kines or various paracrine factors involved in the micro-
environment may be required for supporting MSCs’ 
functions. Therefore, either the application of MSCs in 
immunosuppressant-resistant patients or the timely ad-
ministration of MSCs during periods of immunosuppressant 
tapering could be considered. 

Concluding remarks 

  In conclusion, we are at a critical milestone of MSC 
therapy for application in immunological diseases. The re-
sults of many animal and clinical studies have revealed 
the limitations of MSCs for therapeutic use, but at the 
same time, these studies have addressed numerous under-
lying mechanisms of immune modulation illuminating the 
possibility for overcoming the current limitations of MSC 
therapy. Therefore, a shift in MSC therapy toward the fo-
cus on enhancing MSC-based immune modulation may al-
low MSC therapy to continue to advance forward in future 
studies. 
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