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Abstract: Ecological well-being performance (EWP) is central to achieving coordinated and sustain-
able economic and social development and environmental protection. This study constructed an
evaluation index system of EWP, measured the EWP of 30 Chinese provinces or cities from 1997 to
2018 using the super-efficiency slack-based model (Super-SBM), and analyzed the spatial and tem-
poral evolutionary characteristics of EWP. Under the division of four regions and eight regions, the
Dagum Gini coefficient decomposition is applied to analyze the regional differences and sources of
differences in EWP in China. Then, the Geographically and Temporally Weighted Regression (GTWR)
model analyzes the factors influencing EWP. Results show that the inter-provincial differences in
EWP in China are significant, with the eastern region having significantly higher EWP than the
western, central, and northeastern regions. From 1997 to 2018, the overall spatial differences in EWP
in China decreased. The four regions and eight regions show that reducing inter-regional differences
is the key to mitigating regional unbalance in China. Urbanization significantly enhances EWP in
China and the degree of openness and industrial structure has a significant heterogeneous effect on
EWP. Therefore, future policy formulation should focus on transforming the economic development
model, promoting coordinated regional development, and exploring the optimal ways to improve
EWP according to local conditions. This study aims to provide a scientific basis and reference for
promoting sustainable regional economic and social development and improving the imbalance.

Keywords: ecological well-being performance; spatial difference; super-SBM; Dagum Gini coefficient
decomposition; geographically and temporally weighted regression

1. Introduction

The rapid growth of China’s economy is accompanied by intensified environmental
pollution [1,2] and unbalanced regional development [3]. The economic growth model at
the cost of environmental pollution enhances human economic well-being and reduces
environmental well-being from sustainable development [4], harming overall human
well-being. In the new era, China’s economy has entered the stage of high-quality devel-
opment [5] and promoting people’s well-being has become the fundamental purpose of
development. Thus, China must explore a high-quality development path that synergizes
economic and social development with environmental protection, shifting its focus from
improving people’s economic well-being to enhancing their overall well-being. Therefore,
simultaneously building a well-being performance evaluation system that can character-
ize economic, social, and environmental (i.e., ecological well-being performance (EWP))
elements is crucial to improve people’s comprehensive well-being with the minimum con-
sumption of resources. Most existing studies have been conducted to measure a country’s
well-being level or region from economic well-being and social well-being, but many of
them do not focus on the comprehensive well-being that includes economic, social, and
environmental elements. How to coordinate the relationship among economic growth,
social development, and environmental protection and seek a new way of high-quality
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development based on low consumption, low pollution, and high well-being has become a
vital issue in China’s current economic and social development. The quantitative measure-
ment of regional differences in EWP is an essential reference for promoting high-quality,
coordinated regional development in China. Furthermore, based on measuring EWP, ex-
ploring the influencing factors of EWP can also provide possible suggestions for China to
develop differentiated strategies to improve EWP.

Maximizing comprehensive well-being is an inevitable choice to achieve sustainable
development [6], and the scarcity of natural capital has become an essential factor limit-
ing human development [7]. The focus of attention is how to deal with the relationship
among resource consumption, economic growth, and well-being improvement within the
ecological boundary [8]. To achieve the win–win goal of coordinating economic and social
development with environmental protection and human well-being improvement, assess-
ing the level of EWP is crucial. The concept of EWP was first introduced by Daly (1974) [9]
to assess the efficiency of natural consumption for enhancing well-being. EWP reflects
the degree of harmony between the relative changes in human well-being improvement
and ecological resource consumption. Assessing EWP for coordinating economic, social,
and environmental development and well-being improvement has become the focus of
government and economic and environmental researchers [10]. In addition, exploring the
sources and influencing factors of regional differences in EWP is necessary to provide a
reference for promoting coordinated regional development and improving EWP.

This study aims to construct a comprehensive and objective EWP evaluation index
system and measure the EWP of 30 provinces in China by using the Super-SBM model.
It helps grasp the current situation of EWP in China, deepen people’s understanding
of EWP, and promote sustainable economic and social development. Moreover, an in-
depth analysis of the spatial unbalance of EWP is conducted, and its sources of difference
can clarify the policy focus points for promoting the formation of regional synergistic
development patterns in the future. Finally, the driving factors of EWP are analyzed to
explore the paths to enhance EWP. This study has theoretical and practical significance for
the sustainable development of China’s economy and society. It provides a reference for
other countries to quantitatively evaluate EWP and improve the unbalanced EWP.

2. Literature Review

The economic system is a subsystem of the ecosystem [11], and the ecological boundary
constrains the expansion of the economic system. Human beings have changed from
an “empty world,” where artificial capital is relatively scarce, to a “full world,” where
natural capital is scarce. In a “full world,” the constraint of resources and environment on
economic growth is becoming increasingly apparent, and the development of society must
be achieved within the ecological carrying capacity [12]. It belongs to the category of strong,
sustainable development. The traditional pursuit of economic performance based on the
consumption of ecological resources, that is, eco-efficiency, still belongs to weak sustainable
development [13]. In contrast to weak sustainability, strong sustainability emphasizes the
non-decreasing nature of key natural capital and argues that man-made capital cannot
wholly replace natural capital [14]. Based on the theory of strong sustainability, social
development must increase the comprehensive well-being level, including economic, social,
and environmental well-being with the least possible ecological resource consumption
under the ecological threshold constraint, that is, improving EWP. It also realizes the change
from a material-based view of pursuing ecological efficiency to a human-centered view of
development pursuing EWP. We established an analytical framework (Figure 1) for EWP
based on the article by Zang et al. (2013) [13].

The concept of EWP was first proposed by Daly (1974), who defined the low entropy
resources consumed, high entropy waste released to the environment as throughput, the
utility or well-being obtained from the ecosystem as service, and the ratio of service to
throughput to characterize the efficiency of resource consumption into well-being level [9].
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However, Daly did not propose specific indicators to quantify service volume and through-
put, making the concept of EWP not widely applied.
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Well-being maximization is a socially accepted goal, and GDP is often used as a proxy
for the relative efficiency of an economy. However, using the amount of GDP as a measure
of a country or region has been highly controversial [15,16]. From the perspective of EWP,
GDP also covers its economic dimension only. The Human Development Index (HDI) [17]
proposed by the United Nations Development Program in 1990 has extended the well-
being indicator from the economic dimension to the social dimension and enabled the
quantification of well-being levels. However, all high-level countries have unsustainable
ecological impacts, and no indicators cover ecological sustainability in HDI calculation [18].
In addition to HDI, happy life years [16], life expectancy at birth [19], and sustainable
economic well-being index [20] are also used as indicators of well-being levels. They go
beyond GDP to measure the utility that people derive from ecosystems. Regardless of
the indicator used to measure the level of well-being, in addition to economic growth,
social and environmental issues should be considered, including education, health, and
environmental variables [21].

Rees (1992) introduced the concept of ecological footprint to quantify natural con-
sumption in 1992 [22]. According to Wackernagel and Rees (1998) [23], the ecological
footprint is calculated from six types of land area, and this method calculates the size of
resources that humans obtain from ecosystems. The ecological footprint can measure the
natural consumption of a country or region over a certain period. For example, Haberl
et al. (2001) calculated and explored the ecological footprint of Austria in 1926–1995 [24],
Mcdonald and Patterson (2004) calculated the ecological footprint of the Auckland region
using input–output analysis [25], and Yin et al. (2017) calculated the ecological footprint
of five provinces in northwest China in 2005–2014 and compared it with the regional
development capacity [26]. The materials and energy provided by the ecosystem are the
material basis of a region’s development. Economic and social development is achieved
through labor and capital input while exporting waste to the environment [16]. Therefore,
when evaluating the EWP of a country or region, elements such as labor and capital, which
achieve resource utilization, must be considered. An ecological footprint is only a tool for
evaluating the state of environmental stress in a region [27], and its calculation formula
does not include the inputs of labor and capital. EWP is a concept covering economic,
social, and environmental dimensions and is a complex system with multiple inputs and
outputs. The input must cover resource consumption and labor and capital elements to
achieve resource utilization [28].

Studies on EWP have emerged after quantifying “service volume” and “throughput”
(Table 1). It is mainly manifested in the following three aspects. Firstly, ecological well-
being performance (EWP) is measured and analyzed. Measuring EWP has two main
approaches. The first is based on the ratio of social well-being to the ecological footprint
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or resource consumption. For example, Abdallah et al. (2009) defined the ratio of the
happy life index to ecological footprint as the Happy Planet Index and used it to measure
sustainable development in 143 countries [29]. Zhang et al. (2018) constructed an EWP
model using the ratio of HDI to ecological footprint and measured the EWP of countries
with a population of 10 million or more [30]. The second one is based on the Stochastic
Frontier Approach (SFA) and Data Envelopment Analysis (DEA). Dietz et al. (2009) used
SFA to measure the well-being performance of 135 countries [31]. Bian et al. (2020)
measured the EWP of 30 provincial capitals in China by Super-SBM model and found
that the EWP showed a spatial distribution pattern of the firm in the east and a weak
one in the west [32]. Ibrahim et al. (2021) measured the socio-ecological efficiency of
sub-Saharan African countries using the DEA approach [33]. Yao et al. (2021) assessed
the EWP of 30 Chinese provinces through the Super-SBM model and analyzed the spatial
correlation of eco-well-being performance through the Moran index [3]. Second, regional
differences in EWP are investigated. Wang and Feng (2020) calculate the Theil index for
three regions in China and find that interregional differences contribute the most to the
overall differences [34]. Li et al. (2020) analyzed ecological total factor productivity in
China and find spatial convergence [1]. Third, the influencing factors of EWP are explored.
Zhang et al. (2020) apply a panel data model to investigate the influencing factors of
ecological consumption [35].

Table 1. Studies related to ecological well-being performance.

Category Method Model Author Objective Area

Ecological well-being
performance evaluation

Ratio method

The ratio of happy life index
to Ecological Footprint Abdallah et al. (2009) [29] 143 countries

The ratio of HDI to
Ecological Footprint Zhang et al. (2018) [30] 82 countries

Parametric
method

Stochastic Frontier
Analysis (SFA) Dietz et al. (2009) [31] 135 countries

Non-parametric
methods

Super-SBM Bian et al. (2020) [32] 30 provinces in China
Super-SBM Yao et al. (2021) [3] 30 provinces in China

Data Envelopment
Analysis (DEA) Ibrahim et al. (2021) [33] sub-Saharan

African countries

Regional differences
on EWP

Theil Wang and Feng (2020) [34] 30 provinces in China

Convergence analysis
method Li et al. (2020) [1] 30 provinces in China

Factors influencing
EWP Panel data models Zhang et al. (2020) [35] 90 countries

Existing studies provide theoretical and methodological references for this study but
still have room for improvement in the following three aspects. First, in constructing the
evaluation index system of EWP, the existing studies only consider the resource consump-
tion on the input side but ignore the capital and labor factors that transform resource
consumption into objective well-being levels. Second, studies have shown significant
regional differences in EWP in China [34,36]. However, most of the studies on EWP are
focused on the intuitive comparison of efficiency, and studies on the quantitative measure-
ment of the degree of regional differences and the sources of regional differences are few.
Finally, the studies on the factors influencing EWP are mainly based on regression models,
revealing the overall influence of explanatory variables on EWP. However, they do not
consider temporal and spatial factors, thus making the regression results possibly biased
and unable to analyze the direction and magnitude of the influence of each explanatory
variable on provinces’ EWP.

The marginal contributions of this study are as follows. First, this study compre-
hensively constructs an EWP evaluation system in China. Comprehensive well-being is
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characterized by economic, social, and environmental dimensions, and environmental
pollution is characterized through wastewater, waste gas, industrial solid waste, and car-
bon emissions. The EWP of 30 Chinese provinces is measured quantitatively using the
Super-SBM model. Second, China’s regional unbalance of EWP is measured and analyzed
from four regions and eight regions using a combination of Theil index and Dagum Gini
coefficient, revealing the sources of regional difference in EWP in China. Third, this study
analyzes the drivers of EWP using a geographically and temporally weighted regression
(GTWR) model innovatively, calculates the direction and magnitude of the influence of
each explanatory variable on EWP, and reveals the spatial differences in the magnitude of
their influence.

The construction of an evaluation index system for EWP breaks through the limitations
of the traditional use of GDP to measure economic and social development status and
provides a reference for other countries or regions to measure EWP levels. It also studies
the regional differences in EWP, reveals the sources of their regional differences, explores
the driving factors of EWP, and comprehensively examines the unbalanced status of
regional EWP. Formulating strategies for differentiated improvement of regional EWP and
promoting coordinated regional development are crucial.

3. Materials and Methods
3.1. Methods
3.1.1. EWP Measurement: Super-SBM Model

The Super-SBM model proposed by Tone (2002) [37] considers both slack variables
from a non-radial perspective and has the advantage that the efficiency values vary with
the degrees of input and output slack. The model has now been widely used to measure
EWP [32,34]. Therefore, this study adopted the super-efficiency SBM (Super-SBM) model
considering undesirable outputs to measure the EWP of 30 provinces in China from
1997 to 2018. Suppose n decision units, m input elements, s1 desirable outputs, and s2
undesirable outputs are available, corresponding vectors are x ∈ Rm, yg ∈ Rs1 , yb ∈ Rs2 ,
matrix X = (xij) ∈ Rm×n, Yg = (Yg

ij) ∈ Rs1×n, Yb = (Yb
ij) ∈ Rs2×n is defined, assuming

X > 0, Yg > 0, Yb > 0. The inputs and desirable outputs are freely disposed. The model
can be expressed as follows:

G =
{(

x, yg, yb
)
| x > Xλ, yg 6 Ygλ, yb = Ybλ, ∑n

i=1 λ = 1, λ ≥ 0 (1)

The super-SBM model is constructed by introducing undesirable outputs into the
model, and the planning equation of the model is as follows:

minρ∗ =
1
m ∑m

i=1
s−i
xi0

1
s1+s2

(
∑

s1
r=1

sg
r

yg
r0
+∑

s2
r=1

sb
r

yb
r0

)

s.t. x0 = Xλ + s−, yg
0 = Ygλ− sg, yb

0 = Ybλ + sb

s− > 0, sg > 0, sb > 0, sg > 0, λ > 0

(2)

where S−, Sg, and Sb denote the input, desired output, and undesired output slack variables,
respectively; λ denotes the weight vector; ρ∗ denotes EWP, with larger values indicating
higher levels of EWP. This study measures EWP based on Equation (2).

3.1.2. Spatial Unbalanced Measurement: Dagum Gini Coefficient Decomposition

The Dagum Gini coefficient and its decomposition method proposed by Dagum
(1997) [38] compensate for the shortcomings of traditional methods of measuring regional
differences by decomposing the Gini coefficient by subgroups, effectively solving cross-over
among samples. Therefore, this study used the Dagum Gini coefficient decomposition to
measure the overall degree of differences quantitatively in EWP among the four and eight
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regions in China and reveal the sources that lead to differences in EWP. In this method,
the overall Gini coefficient (G) is decomposed into intra-regional difference contribution
(Gw), inter-regional difference contribution (Gnb), and hyper-variance density contribution
(Gt), and all three satisfy G = Gw + Gnb + Gt. The overall Gini coefficient is calculated by
Equation (3).

G =
∑k

i=1 ∑k
m=1 ∑ni

j=1 ∑nm
r=1

∣∣yij − ymr
∣∣

2 · n2 · µ µm ≤ · · · ≤ µi ≤ · · · ≤ µk (3)

where µ is the mean value of EWP of each region and is ranked according to the mean
value of EWP of each region. n, k, and ni(nm) are the number of provinces, the number of
regions, and the number of provinces in the i(m) region, respectively. yij(ymr) represents
the EWP of the j(r) province in the i(m) region.

Gii =
∑ni

j=1 ∑ni
r=1

∣∣yij − yir
∣∣

2 · n2
i · µi

(4)

Gim =
∑ni

j=1 ∑nm
r=1

∣∣yij − ymr
∣∣

ni · nm · (µi + µm)
(5)

Ggb = Gnb + Gt (6)

Gw = ∑k
i=1 Gii · pi · si (7)

Gnb = ∑k
i=2 ∑i−1

m=1 Gim · (pi · sm + pm · si) · Dim (8)

Gt = ∑k
i=2 ∑i−1

m=1 Gim · (pi · sm + pm · si) · (1− Dim) (9)

Dim =
dim − pim
dim + pim

dim =
∫ ∞

0
dFi(y)

∫ y

0
(y− x)dFm(x) (10)

pim =
∫ ∞

0
dFm(y)

∫ y

0
(y− x)dFi(y) (11)

pi =
ni
n

si =
ni · µi
n · µ i = 1, 2, · · · , k (12)

Equation (4) denotes the Gini coefficient for region i, and Equation (5) denotes the
net inter-regional differences between regions i and m. Dim denotes the relative impact
of EWP between regions i and m. Fi (Fm) is the cumulative density distribution function
for region i(m). dim denotes the difference in EWP between regions (i.e., the mathematical
expectation of all sample values in regions i and m for which yij − ymr > 0 in the i and
m regions), and pim is the mathematical expectation of the sum of all sample values of
ymr − yij > 0 in the i and m regions.

3.1.3. Analysis of Influencing Factors: GTWR

Unlike the traditional geographically weighted regression model that only considers
the spatial dimension, geographically and temporally weighted regression (GTWR) incor-
porates the temporal dimension, thus providing an analytical basis for dealing with the
“time–space” non-stationarity. Tian and Li (2020) apply the GTWR model to explore the
factors influencing the ecological footprint of Zhejiang Province of China [39]. This study
uses geographically and temporally weighted regression to analyze the impact factors of
different spatial–temporal dimensions. The GTWR model [40,41] equation is as follows:

EWPi = β0(ui, vi, ti) + ∑k βk(ui, vi, ti)Xik + εi (13)

where EWPi is the observed value of EWP in i region; ui and vi are the dimension and
longitude of the i observation, respectively; ti is the time sequence in which i observation
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is made; (ui, vi, ti) is the spatial–temporal coordinate of i observation; β0(ui, vi, ti) is the
regression constant; βk(ui, vi, ti) is the regression coefficient of the k independent variable;
Xik is the value of the k independent variable at i point; εi is the residual.

In existing studies, industrial structure (IS), degree of openness (FDI) [42], environ-
mental regulation (ER) [2], and urbanization level (UR) [35] have been used to investigate
efficiency. To examine the factors influencing EWP, we set the variables as follows: (1) UR.
China’s urbanization rate had increased from 17.9 in 1978 to 59.58% in 2018. On the one
hand, integrating education and medical resources during urbanization improves social
well-being. By contrast, urbanization promotes the transfer of population from primary
to secondary and tertiary industries to improve economic well-being [43]. However, on
the other hand, urbanization leads to environmental pollution problems, such as air pol-
lution and water quality deterioration, thus reducing environmental well-being [44]. UR
is characterized by the number of the urban population in each province as a percentage
of the total population in that area. (2) IS. The high input, high consumption, and high
pollution characteristics of the secondary industry enhance people’s economic well-being
while reducing environmental well-being [45]. IS is expressed as the share of the added
value of the secondary industry in the regional gross domestic product (GDP). (3) ER.
Increasing ER can discourage the development of pollution-intensive industries and im-
prove people’s environmental well-being, but excessive ER may affect the development
of regional economies. ER is characterized by the share of investment in environmental
pollution control in GDP. (4) Degree of openness (FDI). The expansion of FDI will harm the
environment of the host country and reduce environmental well-being [46]. However, at
the same time, it will bring advanced technology and management experience, promote
regional economic development, and improve economic well-being [47]. The degree of
openness is characterized by foreign direct investment. (5) Marketization level (MI). In-
creasing MI can promote resource utilization. However, excessive marketization may lead
to disorderly competition and have adverse effects on economic growth. The marketization
index is used to characterize MI. (6) Water resource endowment (WR). The abundance
of WR affects environmental well-being. If water resources are abundant in a region but
underutilized, then EWP can also be harmed. Total water resources characterize water
endowment. The correlation coefficients of the variables are presented in Table 2, and the
results indicate no problem of multicollinearity among the variables.

Table 2. Correlation coefficients between the variables.

Variable Description UR IS ER FDI MI WR

UR Urbanization level/% 1 −0.045 0.215 *** 0.563 *** 0.61 *** −0.434 ***
IS Industrial structure/% −0.045 1 0.13 *** 0.171 *** 0.055 0.028
ER Environmental regulation/% 0.215 *** 0.13 *** 1 −0.137 *** −0.108 *** −0.39 ***
FDI Degree of openness (logarithm) 0.563 *** 0.171 *** 0.137 *** 1 0.813 *** 0.018
MI Level of marketization (logarithm) 0.61 *** 0.055 −0.108 *** 0.813 *** 1 −0.083 **
WR Water resources (logarithm) −0.434 *** 0.028 −0.39 *** 0.018 −0.083 ** 1

Note: ***, ** represent significant levels of 1% and 5%, respectively.

3.2. Materials
3.2.1. Measurement for EWP in China

Figure 2 shows the measurement index system for studying the EWP of China’s
provinces. The left input side is divided into two parts: natural resource inputs and non-
natural resource inputs. Zhang et al. (2018) define EWP as the efficiency of the process of
transforming ecological consumption into human well-being [30]. The human processing
of resources into natural products that enhance human well-being requires technological,
capital, and labor inputs as intermediate means [36], which are indispensable for the
transformation from ecological consumption to human well-being. Income, education,
and health cover economic and social dimensions, when extending EWP to the context of
sustainable development, the whole process must be compatible with the environment.
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Reinhard et al. (2000) put environmental pollution as a cost in the production process on
the input side when calculating environmental efficiency [48]. At the same time, this study
argues that, in converting ecological consumption into well-being level, environmental
pollution is a factor that reduces the comprehensive human well-being level. Its resource-
like consumption that leads to environmental pollution has been put as a cost on the input
side, and putting environmental pollution as an input again leads to double counting. Thus,
this study corrects EWP by making environmental pollution-type indicators as undesired
outputs. EWP is defined as the efficiency of transforming natural and non-natural resource
consumption to a comprehensive well-being level that includes economic, social, and
environmental well-being, corrected by environmental pollution.
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3.2.2. EWP Evaluation Index System

This study measures the EWP of 30 provinces in China from 1997 to 2018 using the
Super-SBM model. Table 3 shows the evaluation index system of EWP in China’s provinces.
Wang and Feng (2020) [34] and Yao et al. (2021) [3] measure the level of well-being output
by using energy, land, and water consumption as inputs, ignoring the importance of
technology, labor, and capital in integrated well-being transformation. Based on previous
studies on EWP [36], this study adds to the input indicators characterizing technology,
capital, and labor; expenditure on R&D per capita; investment in fixed asset per capita;
employed persons. Among the output indicators, well-being output is divided into three
dimensions of economic well-being, social well-being, and environmental well-being to
reflect people’s comprehensive well-being output level in each province. Furthermore,
environmental pollution, which harms the well-being output level, is included as a non-
desired output in the evaluation index system of EWP. As the DEA has strict requirements
on the number of input indicators. This study downscaled the four indicators characterizing
environmental well-being output and the four categories of pollutants characterizing
environmental pollution by principal global components to obtain the environmental
well-being index and the environmental pollution index and thus control the number of
input–output indicators and improve the model recognition.

Among the input indicators, expenditure on R&D per capita and investment in fixed
asset per capita is calculated as stocks by the perpetual inventory method, which char-
acterizes technology input and capital input. Taking investment in the fixed asset as an
example, Kit, Iit, and δit denote the capital stock, fixed asset investment, and capital de-
preciation rate of the i province, respectively, in period t. The formula for the perpetual
inventory method is Kit = (1− δit)·Ki(t−1) + Iit. The base period capital stock is calculated
as K0 = I0/(gi + δ), where gi is the geometric average growth rate of the fixed asset invest-
ment in province i. Expenditure on R&D and investment in fixed assets was converted
to compare prices with 2000 as the base period before estimating the stock. The number
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of employed persons characterizes labor input. Energy, land, and water consumption are
characterized by energy consumption per capita, area of built districts per capital, and
water consumption per capita, respectively. Among the output indicators, GDP per capita
is used to characterize the economic well-being output of each province, and was converted
to constant prices in 2000 as the base period before calculating GDP per capita. The average
years of education and the average life expectancy characterize the level of education and
the level of health care of social well-being outputs, respectively. The formula uses the
average years of education in Wang and Feng (2020) [34]. We used the three indicators
characterizing technology, capital, and labor inputs to represent non-natural resource con-
sumption. Meanwhile, energy, land, and water consumption represent natural resource
consumption. The levels of economic development, educational development and health
care, and environmental well-being are used to characterize comprehensive well-being,
and four categories of pollutants are used to represent environmental pollution.

Table 3. Evaluation index system for ecological well-being performance.

Category 1st Tier Indicators 2nd Tier Indicators 3rd Tier Indicators

Input indicators

Non-natural resource inputs

Technology Expenditure on R&D per capita

Capital Investment in fixed asset per capita

Labor Employed persons

Natural resource consumption

Energy Energy consumption per capita

Land Area of built districts per capital

Water resource Water consumption per capita

Output indicators

Desirable outputs:
comprehensive

well-being

Economic well-being Economic Per capita GDP

Social well-being
Education Average years of education

Health care Average life expectancy

Environmental
well-being

Environmental
well-being level

Forest coverage

The proportion of nature reserves in
the area of the jurisdiction

Greening coverage of the built area

Park area per capita

Undesirable
outputs:

environmental
pollution

Environmental
Pollution Index

Wastewater Wastewater discharge per capita

Exhaust gas Waste gas emissions per capita

Solid waste Industrial solid waste per capita

Carbon emissions Carbon emissions per capita

We performed descriptive statistics on all variables before calculating EWP and run-
ning the GTWR model. The results are presented in Table 4.

3.2.3. Data Sources and Division of Regions

Data on expenditure on R&D by province are from the China Statistical Yearbook
on Science and Technology: (1998–2019). Data on energy consumption by province are
from the China Energy Statistical Yearbook (1998–2019). Data on the four indicators char-
acterizing ecological and environmental well-being and the four categories of pollutants
characterizing environmental pollution are from the China Environmental Statistical Year-
book (1998–2019). Data on average life expectancy are from the China Population and
Employment Statistical Yearbook. Data on carbon emissions were obtained from the China
Carbon Accounting Database (https://www.ceads.net.cn, accessed on 26 March 2021).
Marketability index data are from the China Marketability Index Report. Data for other

https://www.ceads.net.cn
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indicators are from the China Statistical Yearbook (1998–2019). Missing data for specific
indicators in individual years are supplemented by internal and external interpolation.

Table 4. Descriptive statistics of input and output indicators and explanatory variables.

Category Variable Obs Min Max Mean Std. Dev.

Input and
output

indicators

Technology 660 28.001 34,635.826 1891.087 3750.040
Capital 660 2243.591 448,151.708 83,223.992 79,729.157
Labor 660 254.800 6767.000 2482.318 1656.835

Energy 660 0.484 10.320 2.657 1.609
Land 660 6.942 81.051 30.393 14.733

Water resource 660 161.200 2738.895 515.241 438.217
Economic 660 2153.116 96,286.977 20,807.850 16,477.114
Education 660 4.690 12.880 8.409 1.185

Health care 660 63.118 82.745 74.266 3.514
Environmental well-being level 660 5.361 32.374 19.738 5.866
Environmental Pollution Index 660 2.056 20.510 6.437 3.130

Explanatory
variables

UR 660 14.039 89.600 47.971 15.989
IS 660 18.630 61.500 45.682 7.834
ER 660 0.061 4.231 1.242 0.709

FDI (logarithm) 660 0.746 3.179 1.965 0.758
MI (logarithm) 660 0.111 1.069 0.745 0.156
WR (logarithm) 660 0.925 3.470 2.596 0.632

The four major regions are the eastern, central, western, and northeastern regions. The
eight regions are the northern coast, the northeastern, the eastern coast, the middle Yellow
River, the southern coast, the northwest, the southwest, and the middle Yangtze River. The
specific provinces included in the four major and eight regions are referred to as Ma et al.
(2019) [49] and Wang et al. (2021) [50].

This study measured the EWP of 30 provinces in China using MaxDEA 6.0 software.
Matlab R2015b (MathWorks, Natick, Massachusetts, United States) was used to calculate
the Dagum Gini coefficients and their decomposition terms for the regions. ArcGIS 10.7
(Environmental Systems Research Institute, RedLands, United States) was used to calculate
the magnitude and direction of the effects of each explanatory variable on EWP.

4. Results
4.1. Analysis of the Spatial and Temporal Evolution of EWP
4.1.1. Time-Series Evolution of EWP in China

From Table 5, China’s EWP is characterized by a rise followed by a fluctuating decline
from 1997 to 2018, and the EWP of the four regions as a whole, from high to low, is the
eastern (1.182), western (1.060), central (1.036), and northeastern (1.028) regions. The
eastern region’s EWP was higher than the national average in 1997–2018, and its efficiency
is closest to the production frontier, which is consistent with Song and Mei’s (2021) [51]
findings. By contrast, the central, western, and northeastern regions’ EWP differs slightly
from Song and Mei’s findings, which may be due to model differences. However, the
studies suggest that improving EWP in the western and northeastern regions is key to
improving the overall level.

Table 5. Ecological well-being performance of 30 provinces, four regions and eight regions in China: 1997–2018.

Region 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Anhui 1.004 1.017 1.017 1.032 1.005 1.022 1.045 1.075 1.077 1.055 1.050
Beijing 1.106 1.115 1.124 1.117 1.125 1.218 1.263 1.276 1.338 1.349 1.333
Fujian 1.222 1.213 1.205 1.195 1.133 1.132 1.120 1.116 1.122 1.101 1.097
Gansu 0.560 0.570 0.589 0.607 0.663 1.005 1.012 1.013 1.012 1.011 1.004

Guangdong 1.042 1.030 1.027 1.034 1.037 1.029 1.041 1.043 1.042 1.074 1.060
Guangxi 1.007 1.006 1.006 1.028 1.020 1.033 1.062 1.089 1.090 1.106 1.095
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Table 5. Cont.

Region 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Guizhou 1.606 1.453 1.492 1.603 1.490 1.515 1.446 1.374 1.343 1.279 1.315
Hainan 1.945 1.882 1.987 1.874 1.836 1.751 1.731 1.866 2.144 2.255 2.258
Hebei 1.041 1.059 1.006 1.002 1.007 1.005 1.018 1.022 1.020 1.022 1.019
Henan 1.090 1.100 1.098 1.118 1.091 1.111 1.128 1.131 1.147 1.116 1.128

Heilongjiang 1.022 1.018 1.016 1.018 1.049 1.035 1.038 1.048 1.075 1.067 1.065
Hubei 0.711 0.735 0.700 0.691 0.624 0.648 0.692 0.777 0.811 0.874 1.005
Hunan 1.028 1.026 1.024 1.036 1.004 1.013 1.008 1.021 1.026 1.043 1.052

Jilin 1.112 1.126 1.119 1.076 1.055 1.057 1.052 1.053 1.038 1.019 1.016
Jiangsu 0.676 0.686 1.001 1.002 1.000 1.000 0.644 0.645 0.682 0.668 0.696
Jiangxi 1.319 1.401 1.326 1.237 1.279 1.172 1.154 1.097 1.106 1.064 1.071

Liaoning 1.061 1.063 1.051 1.058 1.069 1.057 1.062 1.046 1.036 1.020 1.016
Inner Mongolia 1.143 1.127 1.125 1.147 1.119 1.099 1.068 1.048 1.037 1.036 1.038

Ningxia 1.100 1.103 1.058 1.058 1.058 1.057 1.033 1.025 1.022 1.025 1.026
Qinghai 1.332 1.282 1.298 1.258 1.094 1.081 1.092 1.063 1.084 1.083 1.089

Shandong 1.051 1.045 1.051 1.051 1.057 1.061 1.053 1.046 1.045 1.048 1.042
Shanxi 1.086 1.090 1.128 1.143 1.137 1.141 1.126 1.148 1.178 1.182 1.167

Shaanxi 1.089 1.076 1.168 1.171 1.151 1.106 1.141 1.132 1.123 1.111 1.108
Shanghai 1.159 1.124 1.119 1.113 1.117 1.151 1.174 1.107 1.107 1.104 1.104
Sichuan 1.015 1.039 1.041 1.017 1.017 1.001 0.801 1.010 0.829 1.016 1.016
Tianjin 1.340 1.327 1.293 1.331 1.418 1.378 1.384 1.369 1.340 1.359 1.345

Xinjiang 1.039 1.027 1.040 1.043 1.011 1.023 1.017 1.010 1.001 1.006 1.007
Yunnan 1.113 1.078 1.093 1.101 1.116 1.107 1.120 1.125 1.090 1.109 1.091
Zhejiang 1.034 1.035 1.040 1.035 1.036 1.034 1.032 1.031 1.025 1.036 1.042

Chongqing 1.163 1.137 1.146 1.182 1.145 1.160 1.177 1.142 1.055 1.057 1.043

East 1.161 1.152 1.185 1.175 1.177 1.176 1.146 1.152 1.186 1.202 1.200
Northeast 1.065 1.069 1.062 1.051 1.058 1.050 1.051 1.049 1.050 1.035 1.032

Central 1.040 1.061 1.049 1.043 1.023 1.018 1.025 1.042 1.058 1.056 1.079
West 1.106 1.082 1.096 1.110 1.080 1.108 1.088 1.094 1.062 1.076 1.076

Northern coast 1.135 1.137 1.118 1.125 1.152 1.165 1.180 1.178 1.186 1.194 1.185
Eastern coast 0.956 0.948 1.053 1.050 1.051 1.062 0.950 0.928 0.938 0.936 0.947

Southern coast 1.403 1.375 1.406 1.367 1.336 1.304 1.297 1.341 1.436 1.477 1.472
Northeast 1.065 1.069 1.062 1.051 1.058 1.050 1.051 1.049 1.050 1.035 1.032

Middle Yellow River 1.102 1.098 1.130 1.145 1.125 1.114 1.115 1.115 1.121 1.111 1.110
Middle Yangtze

River 1.016 1.045 1.017 0.999 0.978 0.964 0.975 0.993 1.005 1.009 1.045

Northwest 1.008 0.995 0.996 0.992 0.957 1.042 1.038 1.028 1.030 1.031 1.031
Southwest 1.181 1.142 1.156 1.186 1.158 1.163 1.121 1.148 1.081 1.113 1.112

Region 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Anhui 1.023 1.011 0.664 1.001 0.736 0.719 1.006 1.002 1.004 1.002 1.007
Beijing 1.368 1.363 1.446 1.492 1.561 1.546 1.557 1.544 1.461 1.424 1.430
Fujian 1.093 1.090 1.081 1.077 1.074 1.080 1.081 1.078 1.074 1.076 1.077
Gansu 1.000 0.694 1.005 1.001 1.001 0.725 0.730 0.744 0.766 1.013 1.027

Guangdong 1.071 1.077 1.091 1.096 1.108 1.112 1.122 1.128 1.130 1.130 1.125
Guangxi 1.072 1.073 1.020 1.023 1.014 1.019 1.024 1.026 1.022 1.019 1.020
Guizhou 1.339 1.278 1.248 1.244 1.207 1.199 1.180 1.158 1.146 1.107 1.089
Hainan 2.149 2.116 2.229 2.078 2.082 1.952 1.969 1.935 1.875 1.842 1.802
Hebei 1.024 1.031 1.038 1.037 1.047 1.051 1.044 1.049 1.046 1.047 1.043
Henan 1.114 1.100 1.092 1.097 1.082 1.081 1.114 1.101 1.111 1.110 1.103

Heilongjiang 1.064 1.057 1.039 1.044 1.042 1.047 1.053 1.060 1.073 1.083 1.091
Hubei 0.906 0.874 0.831 1.000 1.003 1.003 0.884 0.917 0.893 0.866 0.838
Hunan 1.054 1.053 1.064 1.056 1.049 1.067 1.079 1.092 1.104 1.110 1.099

Jilin 1.020 1.005 0.772 1.001 0.740 0.793 0.859 1.001 1.007 1.004 1.002
Jiangsu 0.694 0.689 0.678 0.706 0.684 0.691 0.680 0.673 0.662 0.655 0.658
Jiangxi 1.058 1.048 1.042 1.042 1.054 1.044 1.028 1.022 1.018 1.018 1.018

Liaoning 1.011 1.016 1.010 1.017 1.029 1.035 1.031 1.029 1.021 1.024 1.033
Inner Mongolia 1.043 1.042 1.038 1.046 1.046 1.036 1.035 1.040 1.049 1.038 1.041

Ningxia 1.037 1.025 1.028 1.016 1.019 1.023 1.020 1.038 1.039 1.035 1.017



Int. J. Environ. Res. Public Health 2021, 18, 9299 12 of 23

Table 5. Cont.

Region 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Qinghai 1.093 1.105 1.115 1.125 1.172 1.142 1.166 1.159 1.146 1.162 1.192
Shandong 1.038 1.038 1.027 1.023 1.025 1.027 1.022 1.027 1.031 1.037 1.037

Shanxi 1.179 1.162 1.147 1.125 1.095 1.075 1.082 1.090 1.089 1.115 1.145
Shaanxi 1.103 1.103 1.106 1.098 1.088 1.075 1.061 1.067 1.067 1.043 1.039

Shanghai 1.118 1.112 1.105 1.071 1.071 1.069 1.093 1.119 1.137 1.148 1.116
Sichuan 1.022 1.027 1.031 1.068 1.092 1.095 1.082 1.080 1.094 1.081 1.089
Tianjin 1.358 1.338 1.348 1.350 1.357 1.336 1.334 1.314 1.300 1.296 1.267

Xinjiang 1.004 1.004 0.481 1.005 0.427 0.432 1.001 0.444 0.453 1.001 0.476
Yunnan 1.080 1.083 1.085 1.090 1.100 1.125 1.151 1.122 1.108 1.133 1.152
Zhejiang 1.038 1.065 1.057 1.053 1.053 1.039 1.039 1.038 1.038 1.043 1.046

Chongqing 1.031 1.021 1.023 1.030 1.052 1.053 1.060 1.078 1.080 1.082 1.082

East 1.195 1.192 1.210 1.198 1.206 1.190 1.194 1.190 1.175 1.170 1.160
Northeast 1.032 1.026 0.941 1.021 0.937 0.958 0.981 1.030 1.033 1.037 1.042

Central 1.056 1.041 0.973 1.054 1.003 0.998 1.032 1.037 1.036 1.037 1.035
West 1.075 1.041 1.016 1.068 1.020 0.993 1.046 0.996 0.997 1.065 1.020

Northern coast 1.197 1.192 1.215 1.226 1.247 1.240 1.239 1.233 1.209 1.201 1.194
Eastern coast 0.950 0.955 0.947 0.943 0.936 0.933 0.937 0.943 0.946 0.949 0.940

Southern coast 1.438 1.428 1.467 1.417 1.421 1.381 1.390 1.380 1.360 1.349 1.334
Northeast 1.032 1.026 0.941 1.021 0.937 0.958 0.981 1.030 1.033 1.037 1.042

Middle Yellow River 1.110 1.102 1.096 1.091 1.078 1.067 1.073 1.074 1.079 1.077 1.082
Middle Yangtze

River 1.010 0.997 0.900 1.025 0.960 0.958 0.999 1.008 1.005 0.999 0.990

Northwest 1.033 0.957 0.907 1.037 0.905 0.830 0.979 0.846 0.851 1.053 0.928
Southwest 1.109 1.096 1.081 1.091 1.093 1.098 1.099 1.093 1.090 1.084 1.086

The eastern region’s EWP increased slightly from 1997 to 2018, the western region
showed a fluctuating downward trend from 1997 to 2018, and the central and northeastern
regions showed a clear upward trend in recent years. The western region’s EWP was ahead
of the central and northeastern regions from 1997 to 2012, and the central and northeastern
regions’ EWP surpassed that of the western region in 2013 and 2015, respectively. The
central and northeastern regions have shown a clear upward trend in recent years, whereas
the western region’s EWP has been characterized by an apparent decline in fluctuations
after 2008. Therefore, special attention should be paid to lowering the western region’s
EWP when formulating policies to improve regional EWP. In 2010, the EWP of the country
and the central, western, and northeastern regions declined rapidly, mainly because Anhui,
Xinjiang, and Jilin had different degrees of redundancy in labor, investment in fixed
assets, and energy consumption, and economic and social well-being still has room for
improvement. However, the central, western, and northeastern regions’ EWP tend to
increase after 2010, indicating that the government has taken measures to control the
declining trend.

In 1997, the eastern region’s EWP was the absolute leader, and the national, central,
western, and northeastern regions were relatively close. Given that the absolute gap
between regions has been increasing, especially in 2010, the EWP of the eastern region
(1.209) was 1.28 times that of the northeastern region (0.940).

The EWP of the northern coast and southern coast is higher than that of other regions
in 1997–2018, which is an important reason why the eastern region’s EWP is significantly
higher than that of the other three regions. The eastern coastal region efficiency pulls down
the EWP of the eastern region because of the drag of Jiangsu Province’s EWP. The average
value of Jiangsu Province’s EWP is only 0.735 in 1997–2018, which is much lower than the
national average. In the input–output slack results (results not given, available from the
authors), the non-resource consumption indicators and energy consumption indicators
of Jiangsu Province have excessive inputs in most years. At the same time, outputs and
severe environmental pollution are observed to be simultaneously insufficient, making
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Jiangsu Province’s EWP pull down the EWP level of the eastern coastal region. The EWP of
Southwest China and the middle Yellow River is in the middle position of the eight regions
and close to the national average. The EWP of the Northwest, Middle Yangtze River, and
Northeast regions is lower than the national average. The key to improving EWP in the
western region lies in improving the four northwestern provinces’ EWP and improving
EWP level in the central region lies in improving the middle Yangtze River’s EWP.

4.1.2. Spatial Distribution Patterns of EWP in China

The spatial distribution pattern of EWP in China in 2018 can be analyzed from Table 5.
In 2018, China’s top 10 EWPs were in Hainan, Beijing, Tianjin, Qinghai, Yunnan, Shanxi,
Guangdong, Shanghai, Henan, and Hunan. Among them, five provinces were in the
eastern region, three in the central region, and two in the western region. In the four major
regions, the eastern region’s EWP value was the highest, followed by the northeastern,
central, and western regions. In the eight regions, the southern coast had the highest
EWP value, followed by the northern coast, the southwest, the middle Yellow River, the
northeast, the middle Yangtze River, the eastern coast, and the northwest. The south-
ern and northern coasts have apparent advantages in human social capital, progressive
education, with less environmental pollution. The southwest region has a more impover-
ished industrial base but consumes fewer resources than other regions and is ahead of the
national leader in environmental well-being. The eastern coastal region ranks relatively
low among the eight regions because of the drag of Jiangsu Province’s EWP. The EWP
of the south region is 1.081, higher than that of the north region at 1.063, with a small
overall gap. At the provincial level, Hainan Province ranks first probably because of its
industrial development focus on ecotourism, real estate, and sustainable industries that
focus on reducing pollution [32]. Beijing ranked second because of its current ecological
and environmental protection policies, environmentally friendly industries, and leading
medical and educational standards. Hou et al. (2020) [10] also find that Beijing and Hainan
are ahead of other provinces regarding EWP. They conclude that both perform well in
terms of environmental protection.

4.2. Spatially Unbalanced Analysis of EWP in China

The analysis of EWP in the previous section of this paper identified spatially unbal-
anced features. We adopted the Theil index and the Dagum Gini coefficient to measure the
overall differences in China’s EWP quantitatively and decompose the overall differences
through the Dagum Gini coefficient decomposition method and thus reveal more precisely
the size of the relative gap in China’s EWP and its sources in the next section.

4.2.1. Spatial Unbalance of EWP in China

Figure 3 shows the spatial Gini coefficient and Theil index of China’s EWP decreased
from 1997 to 2018, indicating that the inter-provincial differences decreased from 1997 to
2018. The trends of the Gini coefficient and the Theil index of EWP in China are the same,
with an overall characteristic of “falling–rising–fluctuating and falling,” indicating that the
overall difference in EWP in China tends to decrease. Specifically, from 1997 to 2002, the
Gini coefficient and the Theil index of EWP in China continued to decline, indicating that
China’s EWP’s overall differences continued to decrease during this period. From 2003 to
2010, the Gini coefficient and the Theil index of EWP continued to increase, especially from
2009 to 2010, indicating that the unbalanced EWP continued to deteriorate in this period.
After 2010, the Gini coefficient and the Theil index of EWP shows a fluctuating downward
trend, and the problem of unbalanced EWP has been alleviated. During the 12th Five-Year
Plan period, China proposed the overall regional development strategy and the primary
functional area strategy and insisted on reducing regional disparities because of regional
development strategies and policies.
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Figure 3. Spatial Gini coefficient and Theil index of ecological well-being performance in China.

4.2.2. Unbalanced Analysis of EWP in Four Regions

The spatial unbalance of China’s EWP was analyzed from the four major regions
(Table 6). As shown in Table 6, the differences in EWP among these regions gradually
changed from differences among provinces within the region to differences between regions.
In terms of the Gini coefficient, the intra-regional Gini coefficient fluctuates less, and hyper-
variance density decreased significantly in 1997–2018, and inter-regional difference is more
stable in 1997–2008 but fluctuates significantly after that. Before 2009, the intra-regional
difference, inter-regional difference, and hyper-variance density of the four regions’ EWP
are 0.026, 0.026, and 0.036, respectively, and hyper-variance density was the primary
source of the overall difference. After 2009, the intra-regional difference, inter-regional
difference, and hyper-variance density of the four major regions were 0.028, 0.039, and
0.031, respectively, with the inter-regional difference being the primary source of the overall
difference. From the perspective of contribution rate, the contribution rate of intra-regional
difference was higher than the contribution rate of inter-regional difference in 1997–2000,
indicating that the differences in China’s EWP in this period were mainly manifested as
intra-regional province-to-province differences. In 2001, the contribution rate of inter-
regional differences exceeded the contribution rate of intra-regional differences, indicating
that the differences in EWP began to change from differences among provinces within
regions to differences among the four regions. After 2001, the contribution rate of intra-
regional differences continued to decline, the inter-regional differences fluctuated and rose,
and the differences between regions became the primary source of EWP in China.
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Table 6. Gini coefficients and contribution rates of the four regions.

Year
Nationwide Gini Coefficient by Region Contribution Rate (%)

Gw Gnb Gt East Central West Northeast Gw Gnb Gt

1997 0.033 0.023 0.052 0.128 0.090 0.108 0.019 30.66% 20.99% 48.35%
1998 0.030 0.018 0.052 0.122 0.095 0.092 0.022 30.27% 17.68% 52.05%
1999 0.028 0.026 0.040 0.102 0.094 0.096 0.022 30.07% 27.57% 42.36%
2000 0.028 0.025 0.039 0.096 0.084 0.101 0.012 30.29% 27.45% 42.26%
2001 0.026 0.029 0.034 0.095 0.102 0.082 0.004 29.31% 32.54% 38.14%
2002 0.021 0.029 0.024 0.091 0.084 0.054 0.005 28.51% 39.38% 32.11%
2003 0.026 0.023 0.039 0.122 0.074 0.068 0.005 29.73% 25.80% 44.47%
2004 0.023 0.021 0.035 0.130 0.059 0.045 0.001 29.37% 27.04% 43.59%
2005 0.027 0.027 0.037 0.145 0.058 0.054 0.008 29.69% 29.51% 40.81%
2006 0.025 0.031 0.030 0.153 0.047 0.035 0.010 29.18% 36.05% 34.77%
2007 0.024 0.028 0.028 0.150 0.027 0.036 0.011 29.75% 35.29% 34.96%
2008 0.024 0.030 0.028 0.145 0.043 0.037 0.011 29.28% 36.16% 34.56%
2009 0.027 0.032 0.031 0.141 0.046 0.059 0.011 29.69% 35.67% 34.64%
2010 0.033 0.052 0.034 0.154 0.092 0.076 0.063 27.84% 43.51% 28.64%
2011 0.023 0.032 0.023 0.145 0.024 0.033 0.010 29.17% 40.67% 30.17%
2012 0.032 0.048 0.033 0.150 0.056 0.082 0.072 28.39% 42.25% 29.36%
2013 0.033 0.045 0.036 0.140 0.057 0.100 0.059 28.97% 39.33% 31.70%
2014 0.026 0.037 0.029 0.143 0.038 0.054 0.044 28.56% 40.30% 31.14%
2015 0.030 0.041 0.030 0.140 0.034 0.094 0.013 29.88% 40.16% 29.96%
2016 0.029 0.037 0.031 0.132 0.039 0.089 0.014 29.79% 38.42% 31.79%
2017 0.021 0.027 0.026 0.128 0.044 0.026 0.017 27.90% 36.26% 35.83%
2018 0.026 0.029 0.034 0.124 0.051 0.073 0.019 29.65% 32.79% 37.56%

Note: Gw, Gnb, Gt represent the intra-regional difference, the inter-regional difference and the hyper- variance density, respectively.

The east (0.131) had the highest Gini coefficients intra-regional, followed by the west
(0.068), central (0.061), and the northeast (0.021). The most significant regional differences
in the east’s EWP are mainly because of high-value areas of EWP in the region, such as
Hainan, Beijing, and Shanghai. In terms of the evolution of intra-regional differences, the
Gini coefficient in the eastern region continued to decline after 2010, indicating that the
regional imbalance in the eastern region gradually improved, and the Gini coefficient in the
central and northeastern regions tend to increase slightly in recent years. Measures should
be taken to avoid a continuous deterioration of this situation. The Gini coefficient of the
western region has been changing in recent years, indicating that the regions have actively
adjusted their strategies. However, attention should be paid to the mechanism of the effect
of strategy implementation on the regional unbalance situation, and the combination of the
two aspects should improve EWP within the region while reducing regional differences.

4.2.3. Unbalanced Analysis of EWP in Eight Regions

This study quantitatively measured the Gini coefficient of eight regions’ EWP in
China. Table 7 shows that inter-regional differences are the most crucial source of eight
regions’ EWP in China. From 1997 to 2018, the mean values of intra-regional differences,
inter-regional differences, and hyper-variance density of eight regions in China were
0.008, 0.062, and 0.022, respectively, and inter-regional differences were significantly more
significant than intra-regional differences and hyper-variance density. Regarding the
trend of contribution rate changes, in 1997–2018, the contribution rate of intra-regional
difference decreases from 10.27% to 9.08%, and the contribution rate of inter-regional
difference increases from 53.44% to 68.34%. Intra-regional difference kept decreasing,
and inter-regional difference kept increasing, resulting in the primary source of EWP in
China being the inter-regional difference, consistent with the results calculated from four
regional divisions.
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Table 7. Gini coefficients and contribution rates of the eight regions.

Year
Nationwide Gini Coefficient by Region Contribution Rate (%)

Gw Gnb Gt 1 2 3 4 5 6 7 8 Gw Gnb Gt

1997 0.011 0.057 0.039 0.052 0.019 0.112 0.010 0.143 0.147 0.091 0.114 10.27% 53.44% 36.29%
1998 0.010 0.052 0.038 0.050 0.022 0.103 0.009 0.138 0.139 0.070 0.120 10.16% 52.03% 37.81%
1999 0.010 0.050 0.035 0.052 0.022 0.025 0.012 0.152 0.135 0.075 0.116 10.22% 53.08% 36.70%
2000 0.009 0.053 0.030 0.058 0.012 0.024 0.009 0.136 0.124 0.089 0.103 10.26% 57.04% 32.70%
2001 0.009 0.053 0.026 0.071 0.004 0.025 0.011 0.133 0.088 0.074 0.126 10.07% 60.18% 29.75%
2002 0.007 0.046 0.021 0.068 0.005 0.032 0.007 0.123 0.016 0.079 0.102 9.92% 62.02% 28.06%
2003 0.009 0.050 0.029 0.069 0.005 0.124 0.012 0.118 0.015 0.100 0.091 9.84% 57.30% 32.86%
2004 0.007 0.056 0.016 0.067 0.001 0.111 0.017 0.136 0.010 0.055 0.064 8.80% 70.56% 20.64%
2005 0.008 0.060 0.022 0.066 0.008 0.101 0.025 0.171 0.016 0.079 0.058 9.12% 66.79% 24.08%
2006 0.007 0.064 0.014 0.069 0.010 0.103 0.025 0.178 0.015 0.042 0.036 8.33% 75.06% 16.62%
2007 0.007 0.059 0.014 0.067 0.011 0.096 0.023 0.181 0.017 0.047 0.012 8.40% 73.93% 17.67%
2008 0.007 0.060 0.016 0.070 0.011 0.099 0.024 0.167 0.019 0.049 0.030 8.60% 72.43% 18.97%
2009 0.008 0.064 0.017 0.068 0.011 0.098 0.021 0.162 0.082 0.042 0.036 8.71% 71.85% 19.45%
2010 0.010 0.084 0.024 0.081 0.063 0.100 0.019 0.174 0.132 0.038 0.098 8.75% 70.88% 20.37%
2011 0.006 0.059 0.012 0.088 0.010 0.086 0.014 0.157 0.023 0.037 0.013 8.23% 75.75% 16.02%
2012 0.010 0.080 0.023 0.096 0.072 0.092 0.009 0.158 0.156 0.032 0.065 8.85% 70.72% 20.43%
2013 0.010 0.084 0.019 0.093 0.059 0.090 0.008 0.140 0.183 0.032 0.071 8.69% 74.31% 17.01%
2014 0.008 0.066 0.018 0.096 0.044 0.098 0.015 0.142 0.085 0.029 0.038 8.73% 71.25% 20.02%
2015 0.009 0.076 0.017 0.092 0.013 0.105 0.012 0.138 0.180 0.023 0.034 8.51% 75.02% 16.47%
2016 0.008 0.072 0.017 0.080 0.014 0.112 0.012 0.131 0.173 0.020 0.040 8.52% 74.00% 17.48%
2017 0.006 0.052 0.015 0.073 0.017 0.115 0.017 0.126 0.030 0.019 0.047 8.48% 70.65% 20.87%
2018 0.008 0.061 0.020 0.073 0.019 0.108 0.022 0.121 0.145 0.020 0.050 9.08% 68.34% 22.58%

Note: 1, 2, 3, 4, 5, 6, 7, 8 represents the northern coast, northeast, eastern coast, middle Yellow River, southern coast, northwest, southwest,
and middle Yangtze River.

In terms of the Gini coefficient of EWP within the eight regions of China, the southern
coast (0.147) has the highest, followed by the eastern coast (0.089), the northwest (0.088),
the northern coast (0.073), the middle Yangtze River (0.067), the southwest (0.052), the
northeast (0.021), and the middle Yellow River (0.015), with average annual growth rates
of −0.80%, −0.17%, −0.07%, 1.61%, −3.83%, −6.98%, 0.02%, and 3.99%, respectively. In
terms of change trends, although the average annual growth rate of the Gini coefficient of
the southern coast is only −0.80%, the intra-regional differences have shown a continuous
decreasing trend since 2007, indicating that the intra-regional differences in EWP have
decreased. The Gini coefficient of the eastern coast fluctuated more from 1997 to 2018.
The Gini coefficient of the northwest region decreased significantly until 2008. After that,
it showed an alternating “up–down” trend and no convergence in EWP. Although the
Gini coefficient of the northern coast has a decreasing trend in recent years, it is generally
increasing from 1997 to 2018, and the problem of spatial imbalance has not improved. The
Gini coefficients of the middle Yangtze River and the southwest region show a fluctuating
downward trend from 1997 to 2018, and the EWP in the region converges significantly. The
Gini coefficient of the northeast region in 2018 did not increase significantly compared with
that of 1997, and the overall regional differences were minor. The Gini coefficient of the
middle Yellow River was at the back of the eight regions in 1997–2018, with coordinated
EWP within the region.

In 1997–2018, the overall spatial differences in China’s EWP narrowed, and the regional
unbalance improved. The widening of inter-regional differences is the main reason for
the overall differences among the four major regions and the eight regions. From the four
major regions, inter-provincial differences in EWP are the largest in the eastern region, and
the three northeastern provinces are relatively balanced. From the eight regions, the spatial
unbalance of EWP is more significant in the southern coastal region. The convergence of
the southwest region’s EWP is the fastest.
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4.3. Analysis of the Actors Influencing EWP in China

We applied the GTWR model to examine the effect of each explanatory variable on
EWP. We can examine the changes in the magnitude of the effect of each variable on EWP
over time. Thus, we can provide a reference for the targeted development of strategies to
enhance EWP. We used the GTWR model to examine the direction and magnitude of the
effects of UR, IS, ER, FDI, MI, and WR on EWP.

Table 8 shows the parameters associated with GTWR. The value of AICc is −2196.1,
which indicates that this GTWR model is effective. Regarding the goodness of fit, R2 is
close to 0.65 with the adjusted R2, indicating that GTWR can measure the effect of the
explanatory variables on the dependent variable better. Table 9 shows the results of GTWR
model in 1997 and 2018.

Table 8. Parameters associated with GTWR.

Order Parameter Name Value

1 Neighbor 26
2 Residual Squares 1.3825
3 Sigma 0.0458
4 AICc −2196.1
5 R2 0.6422
6 Adjusted R2 0.6389
7 Spatio-temporal Distance Ratio 0.1000

4.3.1. Impact of Urbanization Level on EWP

The contribution of urbanization to EWP rises and then falls. The average impact
coefficient for the 30 provinces was 0.0947 in 1997 and began to fall after rising to 0.1054 in
2013, and this value fell to 0.0994 in 2018. This overall change suggests that the contribution
of urbanization to EWP has begun to weaken.

The high impact of urbanization on EWP is concentrated in the eastern coast, especially
in the middle Yangtze River, with Shanghai as the core. Furthermore, urbanization also has
a significant positive impact on Qinghai, Gansu, and Hainan provinces. Most of the low-
impact regions are located in the northeast and southwest regions. This result reflects that
the contribution of urbanization to EWP is more evident in the east coast region, whereas
the contribution of urbanization to EWP is weaker in the northeast and southwest regions.

4.3.2. Impact of Industrial Structure on EWP

Industrial structure has a significant negative impact on EWP. Although the average
impact coefficient of industrial structure on EWP increased from −0.1062 in 1997 to −0.089
in 2018, it still negatively impacted EWP. In recent years, with the increase of income,
people have had higher demands on environmental quality. The industrial structure affects
the improvement of EWP because of the contradiction between the rough development
characteristics of the secondary industry and people’s high demand for environmental
quality.

The impact of industrial structure on EWP has a significant spatial correlation. Table 9
shows that the regions where the hindering effect of industrial structure on EWP is signifi-
cant are distributed south of the Yangtze River, especially in Guangdong, Guangxi, and
Yunnan. The degree of hindrance gradually decreases as it extends northward.
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Table 9. GTWR results for 30 Chinese provinces in 1997 and 2018.

Region UR IS ER FDI MI WR Intercept

1997 2018 1997 2018 1997 2018 1997 2018 1997 2018 1997 2018 1997 2018

Anhui 0.028 0.103 −0.200 −0.132 0.202 0.151 −0.459 −0.470 0.129 0.012 −0.094 −0.032 0.389 0.375
Beijing −0.013 0.021 −0.049 −0.049 0.053 0.059 −0.084 −0.077 0.195 0.166 −0.153 −0.154 0.068 0.059
Fujian 0.121 0.130 −0.197 −0.166 0.014 −0.009 −0.281 −0.309 0.038 0.011 0.052 0.060 0.247 0.262
Gansu 0.335 0.320 0.089 0.162 0.064 −0.027 0.090 0.045 −0.238 −0.152 0.062 0.020 −0.155 −0.173

Guangdong 0.160 0.150 −0.395 −0.389 0.048 0.039 −0.066 −0.037 −0.040 −0.082 −0.115 −0.106 0.380 0.383
Guangxi 0.267 0.228 −0.228 −0.248 −0.089 −0.066 −0.119 −0.070 −0.196 −0.192 −0.444 −0.419 0.699 0.661
Guizhou 0.111 0.054 −0.155 −0.161 −0.161 −0.151 −0.177 −0.099 −0.111 −0.127 −0.215 −0.212 0.501 0.483
Hainan 0.295 0.274 −0.178 −0.195 −0.008 0.004 −0.072 −0.026 −0.254 −0.271 −0.572 −0.547 0.770 0.742
Hebei 0.036 0.053 −0.044 −0.051 −0.002 −0.010 −0.116 −0.108 0.098 0.081 −0.129 −0.132 0.140 0.146
Henan −0.027 −0.019 −0.073 −0.073 −0.002 −0.016 −0.137 −0.093 0.102 0.039 −0.156 −0.159 0.208 0.223

Heilongjiang −0.202 −0.196 −0.053 −0.067 −0.024 −0.009 0.184 0.225 −0.077 −0.126 0.018 −0.028 0.064 0.100
Hubei −0.100 −0.065 −0.229 −0.157 0.229 0.150 −0.324 −0.248 0.255 0.168 −0.051 −0.015 0.238 0.172
Hunan 0.039 0.056 −0.252 −0.178 0.148 0.080 −0.249 −0.212 0.177 0.097 0.070 0.089 0.130 0.101

Jilin −0.066 −0.071 −0.108 −0.118 0.035 0.041 0.125 0.148 −0.146 −0.179 −0.086 −0.115 0.171 0.203
Jiangsu 0.138 0.220 −0.111 −0.089 0.166 0.146 −0.556 −0.643 0.019 −0.047 −0.063 0.001 0.424 0.457
Jiangxi 0.080 0.121 −0.242 −0.144 0.144 0.071 −0.369 −0.397 0.187 0.100 0.092 0.135 0.177 0.161

Liaoning −0.012 −0.012 −0.098 −0.113 0.038 0.053 0.068 0.086 −0.111 −0.130 −0.171 −0.185 0.208 0.221
Inner Mongolia 0.095 0.104 −0.038 −0.047 −0.062 −0.065 −0.003 0.004 −0.006 −0.014 −0.072 −0.071 0.089 0.091

Ningxia 0.188 0.180 0.064 0.077 0.001 −0.022 0.142 0.121 −0.211 −0.192 −0.013 −0.026 −0.052 −0.044
Qinghai 0.397 0.355 0.030 0.136 0.000 −0.129 0.057 0.015 −0.251 −0.177 0.042 −0.012 −0.088 −0.090

Shandong −0.059 −0.059 −0.070 −0.084 0.022 0.016 −0.166 −0.123 0.149 0.084 −0.219 −0.234 0.236 0.272
Shanxi 0.082 0.092 −0.025 −0.032 −0.047 −0.055 −0.084 −0.083 0.046 0.042 −0.080 −0.084 0.110 0.116

Shaanxi 0.066 0.068 −0.060 −0.054 −0.028 −0.040 0.006 0.013 −0.050 −0.061 −0.032 −0.037 0.094 0.098
Shanghai 0.262 0.298 −0.015 −0.030 −0.007 0.019 −0.579 −0.757 −0.013 0.001 0.046 0.066 0.328 0.435
Sichuan 0.116 0.089 −0.059 −0.009 −0.009 −0.069 −0.064 −0.048 −0.103 −0.073 0.083 0.054 0.064 0.051
Tianjin −0.030 0.013 −0.047 −0.050 0.042 0.056 −0.035 −0.054 0.174 0.131 −0.182 −0.176 0.067 0.082

Xinjiang 0.047 0.047 −0.104 −0.102 −0.203 −0.205 −0.042 −0.043 0.056 0.056 −0.109 −0.109 0.192 0.192
Yunnan 0.101 0.066 −0.261 −0.254 −0.135 −0.136 −0.076 −0.035 −0.095 −0.098 −0.159 −0.172 0.439 0.434
Zhejiang 0.277 0.311 −0.036 −0.026 −0.017 0.008 −0.542 −0.724 −0.023 0.004 0.079 0.094 0.295 0.379

Chongqing 0.109 0.051 −0.042 −0.027 −0.076 −0.096 −0.215 −0.141 −0.088 −0.075 0.019 −0.002 0.224 0.204
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4.3.3. Impact of Environmental Regulation on EWP

Environmental regulation on EWP shifted from a positive facilitative effect to a nega-
tive hindering effect. The average coefficient of the impact of environmental regulation
on EWP decreases from 0.0112 in 1997 to −0.0071 in 2018. The most significant decrease
in the impact coefficient from 1997 to 2018 is mainly in the less economically developed
western regions, such as Qinghai, Gansu, and Sichuan provinces. The hindering effect of
environmental regulations on EWP in these areas may be that overly stringent environ-
mental regulations hinder the already underdeveloped local economies and impede the
enhancement of economic well-being, which in turn has a hindering effect on EWP [52].

4.3.4. Impact of the Degree of Openness on EWP

The degree of openness has a suppressive effect on EWP in the eastern and central
regions. In contrast, it has a facilitating effect on the western and northeastern regions, and
the effect of degree of openness on EWP shows apparent heterogeneity. The coefficient
of the impact of the degree of openness on EWP in the eastern region is negative. The
coefficient of the impact in the central region is also negative but less than that in the eastern
region. The coefficient of the impact in the western region is positive, which indicates that
the “pollution paradise” hypothesis is not established in the western region.

4.3.5. Impact of the Level of Marketization on EWP

The effect of marketization level on EWP is closely related to urban agglomerations or
economic zones. The level of marketization in the middle Yangtze River city cluster and
Beijing-Tianjin-Hebei city cluster significantly and positively affects EWP. The development
and improvement of urban agglomerations enable inter-city resources to complement each
other’s strengths, break down local administrative barriers, and promote economic and
social development [53]. Except for the middle Yangtze River urban agglomeration and
Beijing-Tianjin-Hebei urban agglomeration, the level of marketization in other regions still
has a suppressive effect on EWP.

4.3.6. Impact of Water Resources on EWP

The high-impact areas of water resources on EWP are concentrated in the middle
Yangtze River and the east coast regions, such as Shanghai, Zhejiang, and Fujian provinces.
These regions have high technological innovation capacity and high efficiency in the use of
water resources. In contrast, although water resources are abundant in the southwest of
China, the contradiction between supply and demand and the pollution of water resources
make water resources in these regions harm EWP [54].

5. Discussion

The GDP measure of economic development is a standard and valid indicator, but
it has been used unilaterally as a more general measure of well-being [55,56]. The single-
minded pursuit of GDP growth does not lead to sustained improvements in human well-
being, and the rate of improvement in human well-being begins to stagnate or decrease
when economic growth reaches a certain point [57,58]. Academics have been searching
for indicators that can accurately and comprehensively measure human well-being, and
the HDI, the Real Progress Index, and the Happy Planet Index have been proposed one
after another. However, researchers’ perspectives and purposes differ, and the specific
indicators proposed have different focuses. Economic, social, and environmental factors
significantly affect people’s well-being, and constructing a well-being indicator evaluation
system that covers economic, social, and environmental dimensions to measure a country or
region’s well-being development level is more comprehensive. EWP is a multidimensional
concept involving economic, social, and environmental factors consistent with sustainable
development. This study constructed a performance evaluation index system that can
characterize economic, social, and environmental well-being. EWP measures the efficiency
of well-being transformation in a country or region.
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The measurement of EWP in 30 provinces by the Super-SBM model revealed that the
level of economic development is not a decisive factor in determining the level of ecological
well-being. Bian et al.’s article verified the same conclusion, justifying the inclusion of
social and environmental well-being in the EWP evaluation system in this study [32].
The existence of a “welfare threshold” proves that increasing inputs does not promote
sustainable growth in well-being. For example, the excessive demand for nature is causing
the United States to suffer an ecological deficit, which inevitably impacts the improvement
of people’s well-being [27].

EWP is characterized by significant regional unbalance, and studies have found that
inter-regional differences are the primary source of overall differences [34] and reducing
inter-regional differences has become a key consideration for current policy formulation.
Breaking through the administrative barriers between regions and building inter-regional
cooperation mechanisms are worthy of crucial exploration. Differences in resource en-
dowments are the main reason for the inconsistent direction of industrial development
in each region. Making full use of the region’s resource endowments, strengthening the
interaction between institutions, such as industry, university, and other institutes [59],
forming comparative advantages related to the region’s characteristic resources by taking
advantage of the situation, and putting the concept of regional innovation system into
practice are important ways to reduce inter-regional differences in EWP.

The purpose of high-quality economic development is to meet the growing needs of
the people for a better life [5] in terms of income, education, health care, the environment,
poverty, and other aspects [60]. High-quality economic development meets the require-
ments of sustainable development and the requirement to improve people’s well-being.
High-quality economic development is indeed a viable path to achieve improved EWP.
On the one hand, it takes advantage of innovation-driven economic growth to promote
the efficient conversion of resources and low entropy emissions. On the other hand, it
takes full advantage of big data to explore the needs that can improve people’s quality
of life. Furthermore, differentiated strategies to improve EWP need to be developed for
different regions. For the northern coastal regions, Beijing, Tianjin, and Hebei’s integrated
development should continue to be strengthened, with emphasis on increasing environ-
mental management. Attention should be paid to the environmental problems brought
by urbanization for the northeastern region while attracting foreign investment. For the
eastern coastal regions, controlling the scale of foreign direct investment is the key to
improving regional EWP. For the middle Yellow River, the middle Yangtze River, and the
southern coast, the key to improving EWP lies in adjusting the industrial structure, promot-
ing the modernization of manufacturing industries and services, breaking down regional
administrative barriers, and promoting coordinated development linkages among cities.
For the northwest region, attracting foreign investment, playing the secondary industry’s
role in promoting EWP, raising the level of urbanization, and improving people’s overall
well-being are urgently needed. For the southwest region, improving the efficiency of
water resources utilization is necessary.

6. Conclusions

This study used the Super-SBM model, Dagum Gini coefficient decomposition, and
GTWR methods to investigate EWP, regional differences, and influencing factors in China.
The EWP evaluation system constructed in this study is comprehensive and objective and
involves various economic and social development aspects. The measurement of EWP in
China can provide theoretical support for policy formulation, accurately grasp the current
situation of EWP in China, and lay the foundation for formulating differentiated strategies
to improve EWP. We analyzed the regional differences in EWP in China and discussed how
to promote coordinated regional development. In this research, the factors influencing
EWP were analyzed, and possible suggestions for improving regional EWP were provided.
However, the study has some limitations, as the well-being indicators selected are all
objective. At the same time, subjective well-being indicators are also important factors
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influencing well-being. Therefore, the integration of objective and subjective well-being
indicators and the inclusion of inequality and poverty into the EWP evaluation index
system are two of the directions for future research on EWP. Another research direction is
the use of system dynamics to explore EWP in depth. The findings are as follows.

First, the EWP of 30 provinces declined slightly from 1997 to 2018. However, the over-
all degree of difference in EWP has also decreased, and the problem of regional unbalance
has improved. China’s EWP shows prominent spatially unbalanced characteristics, with
the highest EWP in the east, the lowest in the northeast, and intermediate in the central
and western regions. Among the eight regions, the southern coast is far ahead of other
regions, whereas the EWP of the northwest region is at the bottom of the eight regions.

Second, inter-regional differences are the primary source of regional differences in
EWP in China. The internal differences in EWP of the four regions and the eight regions in
China have been decreasing from 1997 to 2018, and the contribution of inter-regional
differences to the overall differences has been increasing. The key to narrowing the
development gap of EWP in China and promoting coordinated regional development
in the future lies in controlling and narrowing inter-regional differences.

Third, urbanization has a significant positive effect on improving EWP in China,
with significant heterogeneity in the effects of the degree of openness, industrial structure,
environmental regulation, market level, and water endowment on EWP in different regions.
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