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Understanding the Role of Mesenchymal Stromal Cells in Treating
COVID-19 Acute Respiratory Distress Syndrome

Considerable experimental evidence has indicated that allogeneic
mesenchymal stromal cells (MSCs) isolated from bone marrow or
umbilical cord might be effective for treating acute respiratory distress
syndrome (ARDS). The preclinical studies have been done in mice,
rats, sheep, and in an ex vivo perfused human lung model and
reported that MSCs reduced lung endothelial and epithelial
permeability to protein, increased the rate of alveolar fluid clearance,
augmented bacterial killing, and also enhanced repair by favoring
transition of monocytes andmacrophages to anM2 resolution
phenotype (1). In addition, much of the beneficial effects of MSCs
appear to be mediated by the release of extracellular vesicles that carry
biological cargo (mitochondria, microRNAs, and proteins) (2, 3)
(Figure 1). The biological effects of MSC therapy in patients with
ARDS are limited, although one recent study reported a significant
decrease in the BAL concentration of total protein, a marker of
pulmonary permeability, as well as a reduction in IL-6, angiopoietin-2,
and soluble tumor necrosis factor receptor-1 in theMSC- versus
placebo-treated patients (4).

Most preclinical studies to date have been done in models of
lung injury caused by endotoxin or bacteria. There is less information
on the efficacy of MSCs in viral infection, although, in other diseases,
they suppress T-cell proliferation and expand populations of
regulatory B and T cells (5), which may reduce an overzealous
inflammatory response, a feature of ARDS secondary to severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.
HumanMSCs do not express ACE2 receptors and resist infection (6).
MSCs (7), or their extracellular vesicle-delivered microRNAs (8),
reduce (SARS-CoV-2) proliferation in renal epithelial cell lines, but
experimental studies of MSCs in COVID-19 pneumonia or ARDS are
lacking. Experimental studies have tested the effects of MSCs on other
viral pneumonia. Investigators showed no beneficial effect of MSCs
on the degree of lung injury with H1N1 influenza in mice (9), but
other studies reported beneficial effects of MSCs in cultured human
alveolar type 2 cells exposed to more inflammatory influenza strains
(H5N1 and H7N1) (10, 11) and reduced lung injury in H9N2
infection (12) and increased survival in older mice on H5N1 infection
(10). On balance, the MSC data indicate potential biological benefits
for ARDS, including the data from the MSC trial of ARDS (4),
but as always, the challenge is how to translate biological signals
to clinical benefit.

In this issue of the Journal, Bowdish and colleagues
(pp. 261–270) report the results of a randomized, double-blind trial
of bone marrow-derivedMSCs for the treatment of moderate to
severe COVID-19 ARDS with the primary endpoint of 30-day
mortality. Patients were treated with two infusions of 2 million
MSCs/kg at study entry and again 4 days later (13). The trial was
stopped by data safety monitoring after 222 patients of the planned
300 patients had been enrolled because the prespecified mortality
reduction from 40% to 23% was not likely to be achieved. The 30-day
mortality numerically favoredMSC therapy (37.5%) versus placebo
(42.7%), but the P value was not significant (P=0.43). There was a
trend for MSC benefit in prespecified group analyses for 90-day
mortality if the patients were younger than 65 years old.

At least six randomized controlled trials (RCTs) of MSCs
have now been reported in COVID-19, together with multiple
nonrandomized trials and case series. A recent systematic review
andmeta-analysis (14), including five RCTs and six nonrandomized
trials of patients treated withMSCs for COVID-19 pneumonia
until November 2021 (total of 403 patients: 207 receivingMSCs,
196 control subjects) reported a reduced relative risk of death
(0.19; 95% confidence interval, 0.05–0.78) at Day 28 after MSCs.
However, the studies were all small, recruited patients with differing
severities of COVID-19 (not all had ARDS), and used different
cell products with different doses at different times of illness.
Furthermore, the studies were performed during different stages of
the pandemic, and standard care has evolved. Therefore, it is difficult
to draw any definite conclusions. A further small multicenter RCT in
France published since the Kirkhammeta-analysis (14) recruited only
patients with mild to severe ARDS within 96 hours of onset (15).
As with the trial by Bowdish and colleagues (13), there was no benefit
in the MSC-treated cohort, but importantly, this study did include
cytokine measurements with differential patterns emerging by
Day 4 between the two groups (15).

The trial by Bowdish and colleagues (13) is an important
contribution to testing cell-based therapies in ARDS, but there are
some limitations. First, the trial was powered for an absolute 17%
reduction in mortality, which was unrealistic; even the ARMA trial
reported only a 9% absolute reduction in mortality in ARDS (16).
In effect, the current study is really a phase II trial with a modest
number of patients. Since there were no safety issues, it would have
been preferable if the data safety monitoring board had allowed the
trial to enroll the full 300 patients, so it would have maximized the
information from this therapy, but the data safety monitoring board
was constrained by the 30-day mortality endpoint. Second, whereas
theMSC therapy was given at two time points, it is possible that the
dose of 2 millionMSCs/kg given at two time points is a submaximal
dose for achieving an optimal therapeutic effect. Other MSC trials
for ARDS have or are testing higher doses of MSCs (17), although

This article is open access and distributed under the terms of the
Creative Commons Attribution Non-Commercial No Derivatives
License 4.0. For commercial usage and reprints, please e-mail
Diane Gern (dgern@thoracic.org).

Originally Published in Press as DOI: 10.1164/rccm.202209-1838ED
on October 4, 2022

Am J Respir Crit Care Med Vol 207, Iss 3, pp 231–243, Feb 1, 2023
Internet address: www:atsjournals:org

Editorials 231

https://doi.org/10.1164/rccm.202201-0157OC
http://crossmark.crossref.org/dialog/?doi=10.1164/rccm.202209-1838ED&domain=pdf&date_stamp=2023-01-19
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:dgern@thoracic.org
https://doi.org/10.1164/rccm.202209-1838ED
http://www.atsjournals.org


there is no certainty about higher doses. The authors themselves
speculate that higher doses might be needed for patients over the
age of 65 years old. Third is the potential for an inhibitory interaction
of corticosteroids onMSCs. Corticosteroids became part of standard
care in moderate to severe COVID-19 during the course of this
trial and were used in more than 80% of the recruited patients.
Corticosteroids have been shown to reduceMSC viability and inhibit
the effects of MSCs on T-cell proliferation in vitro, and inhibit the
antiinflammatory and antifibrotic effects of MSCs in vivo (18).
Finally, except for baseline concentrations of plasma IL-6 and IL-8
(not different between placebo andMSC-treated patients), we do not
yet have the biology results from this trial, which is important to
determine if there is a subgroup of patients with COVID-19 ARDS
that might respond toMSC therapy, as was suggested in patients with
COVID-19 treated with corticosteroids (19).

As the largest study to date of MSCs in ARDS secondary to
COVID-19, the study by Bowdish and colleagues (13) adds to a
growing body of evidence that MSCs are safe in critical illness, but
many important questions about patient selection, MSC dose and
timing, and their biological effects, including their interaction with
other immunosuppressive therapies, remain unanswered.�
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Figure 1. Cell interactions by which mesenchymal stem/stromal cells (MSCs) may reduce inflammation and lung injury in coronavirus
disease (COVID-19)-related acute respiratory distress syndrome. MSC-derived keratinocyte growth factor (KGF) and mitochondria (delivered
via extracellular vesicles [EVs]) drive ATII cell proliferation and ENaC-mediated fluid clearance, whereas Ang1 (angiopoietin-1) release by
MSCs promotes pulmonary microvascular endothelial repair. SOD from MSCs inhibits neutrophil ROS, whereas TSG-6 inhibits neutrophil
transepithelial migration and release of MPO. PG (prostaglandin) E2 and IDO–expressing MSCs drive a macrophage phenotype that is
characterized by reduced inflammatory TNFa but increased antiinflammatory (IL-10) cytokine production, whereas KGF, GM-CSF, and EVs
containing mitochondria and microRNA derived from MSCs, enhance macrophage phagocytosis and efferocytosis, leading to the resolution of
infection and inflammation. MSC membrane-bound CD73 converts ATP into adenosine, which binds to lymphocyte A2a receptors suppressing
T-cell proliferation and inflammation. IFN-g, produced in response to viral infection, increases PD-L1 (programmed death ligand 1) expression
on MSCs. PD-L1 interacts with its receptor (PD1) to inhibit T-cell activation. MSC-derived TGF-b (transforming growth factor), PGE2, and IL-10
further inhibit T-cell proliferation and inflammatory response, whereas IDO and PGE2 promote regulatory T-cell (Treg) expansion. In turn,
MSC-derived IFNg acts on Tregs to suppress effector B cells and antibody production. MSC-derived PGE2, together with IL-35, drive the
production of IL-10–producing (antiinflammatory) Bregs. Breg= regulatory B cell; GM-CSF=granulocyte macrophage colony stimulating factor;
IDO= indolamine-2,3-dioxygenase; MPO=myeloperoxidase; ROS= reactive oxygen species; SOD=superoxide dismutase; TSG-6=TNF tumour
necrosis factor stimulated gene 6 protein.
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To Intubate or Not Intubate, That Is the Question

The coronavirus disease (COVID-19) pandemic amplified important
controversies in the management of acute hypoxemic respiratory
failure. First and foremost, the role of noninvasive oxygenation
strategies, such as standard oxygen, noninvasive ventilation (NIV),
and high-flow nasal cannula (HFNC), has been greatly debated.
Some have warned that spontaneous breathing in the setting of
high respiratory drive can worsen lung injury, and thus intubation
should be considered prophylactic rather than supportive care (1).
In contrast, others have reasoned that the inherent complications of
mechanical ventilation, namely immobility, infection, and cognitive
impairment, should be avoided with the use of noninvasive
oxygenation strategies. They reasoned that these approaches can
reduce respiratory effort (2) and render spontaneous breathing
noninjurious (3).

Furthermore, if noninvasive oxygenation strategies are used,
it remains unclear what approach (NIV, HFNC, or standard
oxygen), and in whom, is best. Clinical trials attempting to address
this question rely on outcomes such as rates of endotracheal
intubation (4–6). In an effort to reduce potential bias, the criteria
for intubation are often prespecified, given that the nature of the
intervention makes blinding impossible. These criteria are largely
based on precedent (5) and tend to have face validity to reflect
what a reasonable clinician would agree are clinically relevant
thresholds to avoid unnecessary delays of life-saving invasive
mechanical ventilation.

In this issue of the Journal, Yarnell and colleagues
(pp. 271–282) suggest that these intubation thresholds do not
reflect everyday clinical practice (7). Using two retrospective
cohorts of ICU admissions to academic centers in Boston and
Amsterdam, the rate of endotracheal intubation within 3 hours of
meeting criteria set forth by a clinical trial (4) ranged from 9% to
13%. Although worsening hypoxia was associated with increased
rates of endotracheal intubation, only 17% to 19% of the cohort
were intubated within 3 hours of a PaO2

:FIO2
of ,80 in the Boston

and Amsterdam cohorts, respectively. Interestingly, the rates of
intubation within 3 hours did not seem to vary substantially based
on the oxygenation strategy used (NIV, HFNC, or nonrebreather)
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