
RESEARCH ARTICLE

Non-sequential protein structure alignment

by conformational space annealing and local

refinement

InSuk Joung1, Jong Yun Kim1, Keehyoung Joo2,3, Jooyoung LeeID
1,2,3*

1 Center for In Silico Protein Science, Korea Institute for Advanced Study, Seoul, Korea, 2 School of

Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea, 3 Center for Advanced

Computation, Korea Institute for Advanced Study, Seoul, Korea

* jlee@kias.re.kr

Abstract

Protein structure alignment is an important tool for studying evolutionary biology and protein

modeling. A tool which intensively searches for the globally optimal non-sequential align-

ments is rarely found. We propose ALIGN-CSA which shows improvement in scores, such

as DALI-score, SP-score, SO-score and TM-score over the benchmark set including 286

cases. We performed benchmarking of existing popular alignment scoring functions, where

the dependence of the search algorithm was effectively eliminated by using ALIGN-CSA.

For the benchmarking, we set the minimum block size to 4 to prevent much fragmented

alignments where the biological relevance of small alignment blocks is hard to interpret.

With this condition, globally optimal alignments were searched by ALIGN-CSA using the

four scoring functions listed above, and TM-score is found to be the most effective in gener-

ating alignments with longer match lengths and smaller RMSD values. However, DALI-

score is the most effective in generating alignments similar to the manually curated refer-

ence alignments, which implies that DALI-score is more biologically relevant score. Due to

the high demand on computational resources of ALIGN-CSA, we also propose a relatively

fast local refinement method, which can control the minimum block size and whether to

allow the reverse alignment. ALIGN-CSA can be used to obtain much improved alignment

at the cost of relatively more extensive computation. For faster alignment, we propose a

refinement protocol that improves the score of a given alignment obtained by various exter-

nal tools. All programs are available from http://lee.kias.re.kr.

Introduction

Because protein three-dimensional (3D) structures are closely related to their functions, pro-

tein structure alignment is an indispensable tool in investigating structural similarities of

related proteins and classifying them in the evolution tree. The philosophy of the template-

based modeling of protein 3D structures is based on the observation that proteins of similar

amino acid sequences are of similar 3D structures. For this reason, protein structure alignment
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is frequently used not only for the 3D modeling of proteins when dealing with multiple tem-

plates but also for similarity evaluations of given structures.

A structure alignment of two given protein structures generally provides two types of infor-

mation: the alignment score quantifying the similarity of the two structures and the alignment

itself indicating the equivalence between aligned parts in terms of their Cα atom positions. In

general, alignments are carried out on the residue basis, and aligned residues are not necessar-

ily of identical side chains.

Over the past two decades, various protein structure alignment schemes have been pro-

posed. Popular methods include DALI [1, 2], CE [3], ProSup [4], LGA [5], TMalign [6], and

TopMatch [7]. In general, in the structure alignment of two given proteins, any Cα atom of

one protein can be aligned to any Cα atom of the other protein. However, most of the align-

ment methods listed above allow only sequential alignment. That is, for any two aligned resi-

due pairs, (i, j) and (k, l) with i< k, the condition of j< l is applied. This restriction reduces

the number of possible alignments drastically, which in turn speeds up the processing time for

dynamic programming [8] or combinatorial extension [3] algorithms during the sequential

alignment. However, the topological orders of residues of two given proteins can be different

from each other even when they share similar local structures. Therefore, topologically

swapped local structures cannot be properly aligned within the sequential alignment scheme.

Indeed, non-sequential alignments are found in not a few biological proteins [9]. Among the

alignment methods listed above, only DALI allows non-sequential alignment. However, unfor-

tunately, the non-sequential DALI alignment is not publicly available while only the sequential

alignment version, DaliLite [10] is currently available.

Recently, many non-sequential alignments have been proposed including GANGSTA+

[11], FlexSnap [12], MICAN [13], CLICK [14] and SPalignNS [15]. Before we discuss the

nature of the non-sequential alignment, we discuss an issue related to the alignment block size.

An alignment block is defined as a part of the pairwise alignment between two proteins where

all residues of the block are topologically consecutive in both proteins. Generally speaking,

there is no restriction on the size of the alignment block. However, allowing small-sized align-

ment blocks tend to create much fragmented alignments, sometimes leading to complicated

results with biologically questionable alignments. Concerns on this issue was discussed in an

earlier publication [13]. To alleviate this problem, in DALI [2], the minimum block was set to

to 4.

When the block size is greater than 1, whether the reverse alignment is allowed becomes

another issue. Reverse alignments at first seem rather counter-intuitive in terms of the phy-

sico-chemical properties of the protein backbone chain that is known to contain a well-defined

electric dipole moment. On the other hand, from the viewpoint of side-chains, it can be argued

that the effect of protein backbone is less critical (e.g. when considering contacts of side-chain

atoms with a ligand molecule). Because of this, the reverse alignment can be considered as a

viable option.

The goal of the structure alignment is to obtain an optimal superposition between two

given protein structures, where the match length (number of matched Cα atoms) is long and

the root-mean-square deviation (RMSD) between the aligned residues is small. This is gener-

ally achieved by optimizing a scoring function which determines the quality of an alignment.

Generally speaking, it is not straightforward to evaluate the efficiency of a score function F1

against another one F2, since often, F1 may produce a longer alignment with a poorer RMSD

value while F2 generates a shorter alignment with a better RMSD value. However, if the align-

ment of F1 Pareto dominates that of F2, i.e., the alignment of F1 is superior in both the align-

ment length and the RMSD value to that of F2, one can argue that F1 is better than F2.

ALIGN-CSA
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In spite of the conceptual simplicity, comparing scoring functions remains as a difficult

task. This is because generating the globally optimal non-sequential alignment using a given

score function is non-trivial and remains as a very difficult combinatorial optimization prob-

lem. Most alignment methods typically generate a few initial alignments in a heuristic manner

and refine them to generate the best final alignment by optimizing a scoring function. There-

fore, the quality of the final alignment depends on complicated factors: the quality of the

initial alignments, the efficiency of the refinement algorithm, and the scoring function used.

Although the novelty of various scoring functions has been claimed by many previous studies,

the superiority of a scoring function independent from search algorithms has not been ana-

lyzed yet. In order to isolate the sole effect of the scoring function, the ability to perform effi-

cient global optimization is indispensable.

In this research, we propose ALIGN-CSA by applying the conformational space annealing

(CSA) [16] method to the non-sequential alignment problem. CSA has been successfully

applied to various hard global optimization problems [16–23]. In many cases, CSA found

more optimal solutions [20–22, 24–31] than found by conventional global optimization meth-

ods. CSA can be considered as a modified genetic algorithm. The key difference between CSA

and conventional genetic algorithms lies in the way the diversity of the solution pool is con-

trolled by employing a parameter called distance-cutoff, Dcut. Dcut in CSA plays the role of

temperature in simulated annealing and it controls the level of diversity in the solution pool.

In the early stage of CSA, Dcut is kept large, so that solutions in the pool are quite diverse. As

the value of Dcut decreases, the solutions begin to settle into various local minima, and their

chances to be updated by more optimized solutions increase because their information is

shared among them to perform crossover operations, which, in turn, can accelerate finding

more optimal solutions.

The global search is especially useful when a high quality alignment is required but not ade-

quate for aligning a protein to numerous proteins in a large database because of long runtime.

As an alternative, we propose a refinement algorithm which can refine a given alignment

using a chosen scoring function. The algorithm is inspired by the asymmetric greedy search

(AGS) algorithm [15] and deep greedy switching (DGS) algorithm [32]. The refinement pro-

cess may restrain the minimum alignment block size and control whether to allow the reverse

alignment while greatly improving the score of the chosen scoring function.

We note that the current implementation of CSA for global search and the refinement pro-

tocol can deal any scoring function for alignment. In this work, we considered DALI-score [2],

SP-score [33], SO-score [14], and TM-score [34] as defined below. For two given proteins A
and B to be aligned, DALI-score is defined as follows:

DALI ¼
Xn
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n is the number of aligned residue pairs and d0,DALI = 20 Å. The distance matrix dA
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the Cα − Cα distance of protein A between two corresponding residues from two aligned resi-

due pairs i and j. So is dB
ij for protein B.
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Core residues are defined as the residues where dij� 2d0,SP and neighboring residues are

non-core residues located within 3d0,SP of any core residue. L is defined as the sum of the fol-

lowing two numbers: the number of core residues and the average number of neighboring res-

idues of all the core residues. α = 0.3 and d0,SP = 4.0 Å.

SO-score, or the structure overlap score is defined as follows:

SO ¼
1

min ðLA; LBÞ

Xn

dij�d0;SO

1; ð3Þ

where LA and LB are the chain length of protein A and B, respectively and d0,SO = 3.5 Å. We

note that direct optimization of SO-score is technically problematic since the gradient of the

formula is zero. Discrete conformational space are typically optimized by Monte Carlo

quenching process. Without the gradient of the scoring function, local optimization cannot be

performed efficiently. For this reason, we used a modified SO-score using the logistic function

as follows:

SOL ¼
1

min ðLA; LBÞ

Xn

ij

1 �
1

1þ exp ð� kðdij � d0;SOÞÞ

" #

; ð4Þ

where k = 10 Å−1. For both global and local alignments, we used SOL-score throughout the cal-

culation, but the final scores were re-evaluated using the original definition of Eq 3. Actually,

the values of the modified and original SO score make little difference.

TM-score is defined as follows:

TM ¼
1

LN

Xn

ij

1

1þ ðdij=d0;TMÞ
2

 !

; ð5Þ

where LN is either LA or LB and d0;TM ¼ 1:24
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LN � 153

p
� 1:8. TM-score always has two values

which are normalized by either LA or LB. In this research, we used the average value of the two

as the objective scoring function for optimization.

Methods

Global alignment

To search globally optimal alignments, we used the CSA algorithm and it was implemented

using pycsa [35]. Details of CSA are available elsewhere [16, 18], and, here, we provide a brief

description of CSA and its implementation details applied for the study of protein structure

alignment.

To apply CSA to an optimization problem, three ingredients should be provided: (1) a dis-

tance metric to measure the difference between two given solutions, (2) a local optimizer to

improve a given solution, and (3) ways to generate daughter solutions from two parent solu-

tions. The three prerequisites and details about the procedure are explained in S1 File.

Refining alignments

We have devised a refinement algorithm to further improve the score of the final alignment of

ALIGN-CSA. The refinement algorithm is a modified version of the AGS (Asymmetric Greedy

Search) algorithm [15, 32] that was applied to the protein alignment problem in SPalignNS.

The original version of AGS does not include any constraints on the requirement of minimum

block size or whether to allow the reverse alignment. Another key difference between the

ALIGN-CSA
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current refinement algorithm and AGS is that in AGS only swapping moves were considered

while we considered all possible deletion and addition of an alignment pair. This difference led

to about 10–100 fold increase of accepted move operations in the current refinement proce-

dure compared to AGS. It should be noted that for each move considered in this study, RMS

fitting was performed to calculate the score of the move for SP, SO and TM.

In the current refinement procedure, by examining a given alignment to refine, we consid-

ered all possible local deletion and addition moves as described above, and all score-improving

moves were stored in a move list together with their involved residue indices and the score dif-

ferences. Then, the best score-improving move was taken, and this could invalidate some of

the score-improving moves in the list because they were involved with the same residue.

Therefore, they were removed from the list. From the beginning of the second iteration,

among all the possible moves, only the moves involved with any residue affected by the previ-

ously accepted move were considered. If they improved the score, they were added into the

list. The best-score improving move in the list was taken and the score improvement was re-

calculated. If the move still improved the score, it was accepted. Otherwise, the move was dis-

carded and the next best move was tried in the same way. As far as a move in the list was

accepted, it proceeded to the next iteration to add moves in the list. This procedure was

repeated until the the move list became empty.

When constraints on the requirement of minimum block size or whether to allow the

reverse alignment were applied, we performed the following preprocessing on the given input

alignment. When reverse alignment was forbidden, all violated blocks were removed. This

may leave the input alignment as a null set, and if this happened, we kept only one aligned pair

per each block positioned at the center. When the minimum block size was violated, the vio-

lated block was removed. If this led to a null set, we extended all the largest-block-size blocks

of the input alignemnt to minimum-block-size blocks.

Alignment datasets

In order to benchmark the efficiency of the methods proposed in this work, we used four

alignment datasets. The first set, DALISET [2] contains 5 pairs of protein structures: 1lyzA/

2lzmA, 1colA/1sdhA, 1acxA/1cobB, 1acxA/1tnfA, and 1acxA/1madH. DALISET is the refer-

ence set used for DALI-score in this study, and this set is the only set where the results of the

original DALI method are available. The other three sets are taken from the benchmark sets

used in SPalignNS [15] and CLICK [14]: a subset of HOMSTRAD [36] containing 64 pairs of

difficult cases, the so-called “similar structure but different topology” (SSDT) set containing

199 pairs that includes many swapped domains and different topologies, and a subset of the

RIPC [37] set containing 23 pairs.

Results and discussion

Performance comparison of global alignment between DALI-CSA and

DALI

We applied CSA with DALI-score to DALISET. Because neither web-based service nor the

source code of the original DALI method is currently available, direct comparison between

ALIGN-CSA with DALI-score (DALI-CSA) and the original DALI method is possible only for

these five pairs. It should be noted that DaliLite [10] and DALIX [38] perform only sequential

alignments although they include ‘DALI’ in their method names. Therefore, our method is not

compared with them in this research.

ALIGN-CSA
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For each of five protein pairs of DALISET, ten independent ALIGN-CSA runs were carried

out and each run produced 100 final alignments. For each of the fifty ALIGN-CSA runs of the

five protein pairs, the solution by ALIGN-CSA was more optimal than the one in the reference

[1] in terms of its DALI-score. Except 1acxA/1madH, all 10 runs of each pair produced identi-

cal optimal solutions suggesting that the obtained highest DALI-score alignment could be the

globally optimal solution. For 1acxA/1madH, 6 out of 10 runs produced the identical highest

DALI-score alignment, while the other 4 runs produced sub-optimal solutions (but still more

optimal than the original DALI alignment). The results of ALIGN-CSA are summarised in

Table 1 and the alignments are in Table A in S1 File.

In CSA, the Dcut reduction speed determines the annealing speed. Fast reduction of Dcut

generally accelerates the convergence of solutions but with the increased possibility of failure

to search an important part of the solution space. The current setting for the Dcut reduction

(see CSA Procedure) was chosen to balance the computational cost of CSA and the robustness

of the solution. It should be noted that no higher DALI-score solutions than shown in Table 1

were obtained even when using slower annealing schedules than the current setting, which

strongly implies that the DALI-CSA solutions correspond to the globally optimal DALI align-

ment solutions.

DALI-CSA found not only tentative global optimal alignments but also many additional

sub-optimal alignments whose DALI-scores were still higher than the reference scores. The

numbers of the alignments with higher DALI-scores were 2 (1lyzA/2lzmA), 3 (1colA/1sdhA),

19 (1acxA/1cobB), 39 (1acxA/1tnfA) and 279 (1acxA/1madH). These numbers were counted

at the end of DALI-CSA runs, hence the actual number of alignments with higher DALI-scores

than the reference value can be even greater than the number listed here. We observe that, on

average, the DALI-CSA alignment is of longer match length and of smaller Cα-RMSD.

Effects of minimum block size and reverse/non-reverse alignment of

DALI-CSA

In the original DALI method, all alignment blocks were constrained to be at least 4 residues

long and reverse alignment was allowed. To understand the effect of these constraints and

reverse alignment, we performed DALI-CSA using various minimum block sizes ranging

from 2 to 8, and allowing and disallowing reverse alignments. In addition, alignment without

any constraints, i.e., general non-sequential alignment was also investigated.

The effects of the constraint conditions of the DALI-CSA alignment are summarized in

Tables 2–4. As the constraint condition becomes less strict, we observe that the DALI-score

improves, the number of aligned residues tends to increase, and the RMSD value tend to

decrease. That is, both the coverage and the accuracy of alignment increase as the constraint

Table 1. Comparison between the DALI-CSA alignment and the original DALI alignment is shown.

PDB IDs DALI-score Match Length RMSD (Å)

DALI-CSA Ref DALI-CSA Ref DALI-CSA Ref

1lyzA/2lzmA 258.69 256.32 86 86 4.59 4.37

1colA/1sdhA 474.77 471.73 118 118 3.49 3.48

1acxA/1cobB 397.80 376.51 95 90 2.97 2.94

1acxA/1tnfA 279.42 269.05 82 80 3.56 3.57

1acxA/1madH 322.99 246.79 84 74 2.75 3.71

Average 346.73 324.08 93.0 89.6 3.47 3.61

https://doi.org/10.1371/journal.pone.0210177.t001

ALIGN-CSA
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Table 2. Match lengthes of various constraint conditions.

Block Size 8 7 6 5 4 3 2 1

PDB IDs reverse allowed

1lyzA/2lzmA 86 86 84 89 86 94 101 104

1colA/1sdhA 118 119 118 118 118 118 125 127

1acxA/1cobB 80 84 93 95 95 95 96 97

1acxA/1tnfA 78 78 76 82 82 87 89 88

1acxA/1madH 82 81 85 81 84 88 93 96

PDB IDs reverse not allowed

1lyzA/2lzmA 73 80 84 89 83 84 81 104

1colA/1sdhA 118 119 118 118 118 118 122 127

1acxA/1cobB 80 84 82 87 90 90 94 97

1acxA/1tnfA 79 78 76 76 77 80 85 88

1acxA/1madH 71 75 73 75 75 86 84 96

https://doi.org/10.1371/journal.pone.0210177.t002

Table 3. RMSD (Å) of various constraint conditions.

Block Size 8 7 6 5 4 3 2 1

PDB IDs reverse allowed

1lyzA/2lzmA 5.03 4.75 4.61 4.21 4.59 4.64 12.08(3.32) 12.16(3.19)

1colA/1sdhA 3.58 3.60 3.56 3.48 3.49 3.46 3.17 2.69

1acxA/1cobB 2.99 3.03 3.25 3.16 2.97 2.81 2.65 2.56

1acxA/1tnfA 4.21 3.94 3.75 3.50 3.56 3.78 3.21 3.15

1acxA/1madH 3.42 3.29 3.38 3.01 2.75 3.35 2.79 2.65

PDB IDs reverse not allowed

1lyzA/2lzmA 4.64 4.39 4.65 4.75 4.06 3.85 3.17 12.16(3.19)

1colA/1sdhA 3.58 3.60 3.56 3.48 3.49 3.46 3.37 2.69

1acxA/1cobB 3.16 3.47 3.41 3.55 3.44 3.26 2.88 2.56

1acxA/1tnfA 4.35 4.05 3.75 3.75 4.01 3.77 3.88 3.15

1acxA/1madH 3.91 3.32 2.96 3.01 3.06 3.41 3.56 2.65

https://doi.org/10.1371/journal.pone.0210177.t003

Table 4. DALI-score of various constraint conditions.

Block Size 8 7 6 5 4 3 2 1

PDB IDs reverse allowed

1lyzA/2lzmA 204.69 226.31 237.30 246.60 258.69 274.08 324.37 362.78

1colA/1sdhA 465.87 465.99 468.44 472.12 474.77 481.24 527.32 598.93

1acxA/1cobB 332.09 345.73 360.98 386.12 397.80 411.86 440.34 458.41

1acxA/1tnfA 227.90 248.36 255.53 259.75 279.42 300.88 318.34 336.31

1acxA/1madH 269.16 278.63 291.98 303.67 322.99 335.38 375.34 402.68

PDB IDs reverse not allowed

1lyzA/2lzmA 177.67 200.56 214.12 229.45 236.49 250.52 272.69 362.78

1colA/1sdhA 465.87 465.99 468.44 472.12 474.77 481.24 496.12 598.93

1acxA/1cobB 316.42 328.45 335.29 341.63 353.94 361.26 394.94 458.41

1acxA/1tnfA 220.19 241.52 255.53 255.53 259.76 273.07 291.56 336.31

1acxA/1madH 238.59 251.69 269.27 272.96 277.70 294.27 317.67 402.68

https://doi.org/10.1371/journal.pone.0210177.t004

ALIGN-CSA
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condition becomes less strict. The general non-sequential alignment result is summarised

under the column of minimum block size 1.

Another thing we noticed is that, as the constraint condition became less strict, the

DALI-CSA result became less robust. For example, for the general non-sequential alignment

with no minimum block size constraint, except 1acxA/1cobB, the best score alignment was

reproduced with less frequency (see Table 5). Interestingly, the reproducibility also drops

sometimes when the minimum block size gets higher. Although there is an exception such as

1acxA/1madH, generally the reproducibility looks rather high when the minimum block size

is 4. It implies that the number of competing alignments is least with the minimum block size.

To measure the quantitative difference among various best alignments separately obtained

from individual runs, for each protein pair, the structure of the second protein was fit to that

of the first protein using the given DALI alignment and then the relative Cα-RMSD between

two structures of the second protein was measured. In two cases, thus-measured largest RMSD

value among the best alignments for general non-sequential alignment were fairly small (0.37

Å for 1atzA/1auoA and 0.22 Å for 1colA/1sdhA), suggesting that the variation among best

alignments is rather small. But in the other two cases, the largest RMSD values were rather

large (32.2 Å for 1lyzA/2lzmA and 38.4 Å for 1acxA/1madH), demonstrating that the variation

among best alignments is significantly large. For these two cases, the generated DALI-CSA

solutions with the general non-sequential alignment condition are quite different from each

other and the results shown in Tables 2–4 might not correspond to the globally optimal solu-

tion, for which much more extensive computational resources will be required to obtain more

robust results.

It is interesting to observe the large RMSD values of 1lyzA/2lzmA in Table 3 for minimum

block size of 1 and 2 with the allowed reverse alignment. By visual inspection of the alignment

of 1lyzA/2lzmA, we found that one protein is aligned to the mirror image of the other protein

resulting in the large RMSD values. The RMSD values measured with the corresponding mir-

ror images are much reduced to 3.32 and 3.19 Å as shown in parentheses in Table 3. This prob-

lem originates from the fact that DALI is based on the distance matrix, for which the chirality

of the protein chain molecule is missing. In addition to this problem, much fragmented align-

ment blocks are observed when using small minimum block sizes (see Fig 1). The biological

relevance to these fragmented alignments is not clear and it makes hard to draw meaningful

Table 5. Reproducibility of the best results. The number of DALI-CSA runs producing the same highest value and

the total number of runs are shown. Each run collected 200 alignments.

Block Size 8 7 6 5 4 3 2 1

PDB IDs reverse allowed

1lyzA/2lzmA 1/20 5/5 5/5 5/5 5/5 9/10 1/40 1/40

1colA/1sdhA 5/5 2/5 5/5 5/5 5/5 4/10 1/40 3/30

1acxA/1cobB 5/5 5/5 5/5 5/5 5/5 10/10 20/20 20/20

1acxA/1tnfA 5/5 5/5 2/5 5/5 5/5 8/10 17/20 19/20

1acxA/1madH 4/10 4/10 2/20 4/5 2/5 6/10 9/20 4/20

PDB IDs reverse not allowed

1lyzA/2lzmA 5/5 2/5 5/5 5/5 5/5 5/5 16/20 -

1colA/1sdhA 5/5 4/5 5/5 5/5 5/5 5/5 9/20 -

1acxA/1cobB 5/5 5/5 5/5 5/5 5/5 5/5 19/20 -

1acxA/1tnfA 5/5 5/5 3/5 5/5 5/5 5/5 20/20 -

1acxA/1madH 5/5 2/5 4/5 2/10 5/5 5/5 5/20 -

https://doi.org/10.1371/journal.pone.0210177.t005
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implication of non-sequential alignments in this case. The block size issue will be discussed

again later.

Comparison between ALIGN-CSA and external tools

All the scoring functions were optimized using the ALIGN-CSA algorithm for HOMSTRAD,

SSDT, and RIPC sets. We used the four scoring functions, DALI, SO, SP, and TM for optimi-

zation. A single CSA run was carried out for each pair of proteins and collected 400 align-

ments. The minimum block size was restricted to 4 and reverse alignment was allowed. Three

external tools were tested: CLICK, SPalignNS, and MICAN. When running the external tools,

we used the default parameters of the tools but reverse alignment was allowed in running

MICAN. Other tools allow reverse alignment by default. Essentially, it can be presumed that

there is no minimum block size restriction on those tools. Table 6 shows the average alignment

score, match length and RMSD. The table shows only the best average score for each score

function. The highest DALI-score was obtained by MICAN and the highest SO-score was

obtained by SPalignNS consistently. The alignment scores of CSA runs were always higher

than those of the external tools. Since the external tools are not designed as global optimization

tools, the results are not surprising. However, it is interesting that more optimized score

obtained by CSA resulted in longer match lengths and larger RMSD values. This tendency was

observed for all the test sets and score functions consistently.

If a scoring function is absolutely superior to the others, it is desirable to optimize align-

ments more by applying a global optimization method. However, showing the superiority of a

scoring function is complicated. The alignments produced by the external tools are the results

of the alignment algorithm as well as the scoring function they use. By using a global alignment

Fig 1. The effect of minimum block size is examined for 1colA/1sdhA using DALI-CSA. The best alignments using

minimum block sizes of 1, 2, 3, and 4 are shown (1: red diamond, 2: cyan triangle, 3: orange circle, 4: blue dot). Reverse

alignment is allowed in all cases.

https://doi.org/10.1371/journal.pone.0210177.g001
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tool like ALIGN-CSA, one can compare the effect of the scoring function on the alignments

without the alignment algorithm being affected. The mathematical improvement of the score

itself by ALIGN-CSA is obvious as shown in Table 6. Nonetheless, with the score functions

tested in this article, unfortunately we could not find much merit in using the global alignment

method if the purpose of the alignment is obtaining more biologically relevant alignment.

Instead, one can use refinement algorithm for such a purpose, which will be discussed below.

However, we still see a possibility that global alignment can be used in improving alignments if

the scoring function is designed well (Fig C and Table B in S1 File).

Performance of refinement process

The outputs of SPalignNS, CLICK and MICAN from the three benchmark sets, HOMSTRAD,

SSDT and RIPC were further refined by the refinement algorithm proposed in this work. SPa-

lignNS is clearly designed to maximize SP-score. However, the objective scoring functions for

CLICK and MICAN are not clear. Nevertheless, CLICK is intended to maximize SO-score and

MICAN is intended to maximize modified TM-score according to the references [13, 39].

Note that modified TM-score is slightly different from the original TM-score. We refined out-

puts of SPalignNS, CLICK and MICAN using the four score functions. In the refinement,

reverse alignment was allowed and the block size was restrained to either 1 or 4. With the

block size of 1, Fig 2 shows parts of refinement results, where CLICK is refined with SO-score,

Fig 2. Scores of refined alignments. The alignments of CLICK, SPalignNS, and MICAN were refined by optimizing SO-score, SP-score and TM-score respectively. The

block size were restricted to either 1 (BS = 1) or 4 (BS = 4). The bars show the average scores of the alignments measured from the three test sets.

https://doi.org/10.1371/journal.pone.0210177.g002

Table 6. Comparisons of the average scores by ALIGN-CSA with the average scores by the best external tools out of SPalignNS, CLICK, and MICAN. In each CSA

run, the minimum block size was 4 and the CSA run continued until a total of 400 alignments were generated.

Test set Score Best tool Score Match length RMSD

Tool CSA p-value Tool CSA Tool CSA

HOMSTRAD DALI MICAN 433.3 488.5 <0.01 82.47 86.78 2.905 3.377

SO SPalignNS 0.7139 0.7319 0.05 72.28 86.45 1.999 3.764

SP SPalignNS 0.5628 0.5757 0.08 72.28 83.44 1.999 2.624

TM SPalignNS 0.5083 0.5387 <0.01 72.28 89.02 1.999 3.515

SSDT DALI MICAN 343.4 404.8 <0.01 79.57 85.37 2.975 3.417

SO SPalignNS 0.7160 0.7598 <0.01 71.33 88.62 1.917 3.906

SP CLICK 0.5194 0.5511 <0.01 77.21 83.63 2.251 2.751

TM CLICK 0.4954 0.5360 <0.01 77.21 92.84 2.251 3.642

RIPC DALI MICAN 910.7 1104.1 <0.01 141.48 158.78 2.93 4.422

SO SPalignNS 0.6538 0.6605 0.37 124.74 158.35 1.805 5.645

SP SPalignNS 0.6451 0.6771 0.01 124.74 136.35 1.805 2.491

TM MICAN 0.5405 0.5947 <0.01 141.48 174.22 2.93 4.478

https://doi.org/10.1371/journal.pone.0210177.t006
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SPalignNS is refined with SP-score, and MICAN is refined with TM-score. We chose the spe-

cific combination because the pair of the alignment program and the scoring function is rele-

vant. In other combinations of the program and the scoring function, the tendency is not

different. All the other results are provided in Fig D in S1 File. The refinement algorithm

clearly improves the score on average (several in the second significant digit, p-value< 0.01),

which demonstrates the performance of the refinement process. The external tools arguably

does not restrain the minimum block size. If the minimum block size greater than one is cho-

sen in the refinement process, the decrement of the score is inevitable due to the more restric-

tive alignment condition. However, even with the minimum block size of 4, the scores of the

refined alignments are similar to those of inputs. The result implies that the refined alignments

are less fragmentary while the alignment score is more or less similar.

Quality of input alignments for refinement

Table 7 summarizes all the refinement results. Here, the minimum block size was set to 4 in all

cases. The input alignment to refine was taken from the method indicated by the first column.

Unlike other alignment tools, TMalign is a sequential alignment tool. For each benchmark set,

the results were generated using the outputs of the external tools as the input alignments.

The result shows the qualities of the alignments after refinement. Initial alignments were

generated by the external tools shown in the table. If the refined result of one method is better

than that of the other, it can be assessed that the quality of the former initial alignment is better

than the latter in terms of the scoring function used. The quality of the refined MICAN align-

ments consistently outperforms the others (SPalignNS, CLICK, and TMalign) except the

HOMSTRAD set. Even in the HOMSTRAD set, the overall quality of the refined MICAN

alignment is the second best with only small difference compared to the best result. Probably,

the best alignments from HOMSTRAD set are largely in the form of sequential alignment and

TMalign might have a strength on the sequential alignment. In any case, the success of the

MICAN alignments in the refinement process does not mean that MICAN alignments them-

selves are high in terms of the scoring functions tested. Previous reports have shown that the

Table 7. The average scores measured after refinement. The output alignments of the method indicated in the first

column were refined using the four scoring functions indicated in the first row of the table as the objective function.

The minimum block size was set to 4 and three benchmark sets (HOMSTRAD, SSDT, and RIPC) were tested. For each

refined score function, the highest values are shown in bold face.

Score function DALI SP SO TM

HOMSTRAD

CLICK 468.1 0.5604 0.6890 0.5242

SPalignNS 476.3 0.5655 0.7016 0.5284

MICAN 481.4 0.5702 0.7040 0.5311

TMalign 479.7 0.5710 0.7130 0.5329

SSDT

CLICK 360.2 0.5117 0.6815 0.5092

SPalignNS 345.9 0.4979 0.6530 0.4933

MICAN 384.7 0.5304 0.7052 0.5207

TMalign 339.1 0.4957 0.6541 0.4900

RIPC

CLICK 951.2 0.6242 0.6039 0.5757

SPalignNS 945.0 0.6374 0.6119 0.5722

MICAN 1083.6 0.6709 0.6399 0.5816

TMalign 1050.1 0.6416 0.6114 0.5672

https://doi.org/10.1371/journal.pone.0210177.t007
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score of MICAN alignment itself is lower in terms of SO-score [15]. We presume that MICAN

alignments have lower SO-score because MICAN alignments disfavour much fragmented

alignment blocks. Notwithstanding, the output of the refinements turns out to be best with

MICAN alignments when minimum block size is set to 4. This implies that the MICAN align-

ment is more similar to the globally optimal alignment than the alignments generated by the

other external tools.

Comparison of scoring functions

The judgement for a better scoring function for alignment may depend on the purpose of the

alignment. As discussed earlier, there is a trade off between the match length of the alignment

and the RMSD value between the aligned part. However, if one alignment scoring function

consistently generates alignments with longer match lengths and smaller RMSD values over

another scoring function, it is reasonable to say that it is of better quality than the other. For

the performance comparison of the four alignment scoring functions studied in this work (i.e.,

DALI-score, SO-score, SP-score, and TM-score,) ALIGN-CSA was used to generate optimal

alignments for HOMSTRAD, SSDT, and RIPC sets. For each ALIGN-CSA run, we collected a

total of 400 alignments using the minimum block size constraint of 4. However, the run was

extended further if any locally refined alignments by external tools were of higher scores than

those found by ALIGN-CSA. The results are summarized in Table 8, where the head-to-head

comparison between two scoring functions is shown. The row-wise summations shown in the

last column correspond to the total number of wins, and the column-wise summations shown

in the bottom row correspond to the total number of losses. Therefore, a score function is con-

sidered to be better if the row-wise sum is large while the column-wise sum is small. We note

that the total number of alignments considered in the three data set is 286 (64 + 199 + 23).

Judging from the table, it is clear that the good scoring function are TM-score, SP-score,

DALI-score, and SO-score in the order from the best to the worst according to the criteria.

However, the difference between TM-score and SP-score is rather minor.

Although the longer match legnth and smaller RMSD can be a sure criterion for the better

alignment in mathematical viewpoint, the biological relevance of the alignment still remains as

a different issue. Both HOMSTRAD and RIPC set provide manually curated alignments and

the alignments obtained in this research were compared with those reference alignments.

Table 9 shows precision and recall of the alignments by ALIGN-CSA. Alignments with mini-

mum block size 1 is generated by refining the alignments of ALIGN-CSA with minimum

block size 4. Precision is TP/(TP + FP) and recall is TP/(TP + FN), where TP is true positive,

FP is false positive and FN is false negative. In both test sets, DALI-score is absolutely superior

in precision and recall for block size 4. When the minimum block size is 1, recall was the high-

est with TM-score in HOMSTRAD set. However, difference in recall between TM-score and

DALI-score is minor. In RIPC set, DALI-score is also superior in both metrics. In conclusion,

Table 8. The comparison of the efficiency of scoring functions. For each protein pairs of HOMSTRAD, SSDT, and

RIPC sets, the best CSA solutions were compared. The numbers of better quality alignments of the row scoring func-

tion than the column scoring function are counted.

DALI SO SP TM total wins

DALI - 48 14 3 65

SO 11 - 0 7 18

SP 62 73 - 8 142

TM 22 117 4 - 143

total losses 95 238 18 17

https://doi.org/10.1371/journal.pone.0210177.t008
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DALI-score function is good at reproducing the reference alignments. Generally, precision

and recall are similar or lower with smaller block size. However, with TM-score, precision

decrease and recall increases with the smaller block size. Out of all the combinations, DALI-

score with block size 4 is selected as the best choice to obtain the best precision and recall.

Global alignment is useful in investigating scoring function and in the need of more opti-

mized alignment. However, because of its longer running time (typically a few days of CPU

time), it might be difficult to use the algorithm in some routine processes scanning database.

Since the refinement process takes a few seconds to minutes, it can be a relatively quicker way

to improve alignment score in such cases. Fig 3 shows whether the refinement is useful in

obtaining better quality alignment. Alignments obtained by external alignment tools were

refined with DALI-score and minimum block size restrictions were either 1 or 4. It shows the

change of the precision and recall after refinement. When minimum block sizes 1 and 4 are

compared, in most cases, alignments with minimum block size 4 are superior in terms of both

precision and recall. In some cases, however, a minor gain in recall with minimum block size 1

is observed. Precision of alignments by SPalignNS and MICAN decrease after refinement in

HOMSTRAD set. Even in these cases, DALI-score refinement with block size 4 enhances

alignment quality by improving recall by large amount at little loss of precision. Some success-

ful examples show that refined alignments cover more of the referential alignments (Fig 4).

Therefore, refinement with DALI-score function with minimum block size 4 can be useful in

improving the quality of a given alignment. However, we see that it will be necessary to investi-

gate on a new scoring function to improve both the precision and recall consistently in the

future.

Conclusion

Topology-independent similarity between two protein structures can be detected only by non-

sequential structure alignment. The structure alignment is usually carried out by optimizing a

scoring function but obtaining the globally optimal solution is not trivial. Obviously, for

proper evaluation of various scoring functions, a reasonably-efficient global search method is

required. In this study, we proposed the ALIGN-CSA method capable of finding the global or

near global alignment. Depending on the minimum block size and whether to allow the

reverse alignment, the difficulty in finding the globally optimal alignment solutions varies.

When the minimum block size is set to 4, the method shows quite robust results in spite of the

Table 9. Average precision and recall of alignments by CSA-ALIGN. Global alignment was performed with mini-

mum block size 4 (Block 4). Block 1 is the results of refinement of the alignments by CSA-ALIGN. At this refinement,

block size restriction was released.

Block 4 Block 1

Precision Recall Precision Recall

HOMSTRAD

DALI 0.909 0.845 0.902 0.845

SO 0.883 0.806 0.873 0.805

SP 0.893 0.777 0.876 0.774

TM 0.876 0.834 0.857 0.855

RIPC

DALI 0.195 0.969 0.191 0.966

SO 0.115 0.733 0.116 0.725

SP 0.136 0.634 0.133 0.637

TM 0.106 0.774 0.103 0.789

https://doi.org/10.1371/journal.pone.0210177.t009
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Fig 3. Effect of refinement on precision and recall. The plot shows the average precision and recall of the initial and

refined alignments in two test sets (up: HOMSTRAD, down: RIPC). Two refinements with different minimum block sizes

(1 and 4) were carried out.

https://doi.org/10.1371/journal.pone.0210177.g003
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stochastic nature of the method. The alignment found by ALIGN-CSA is expected to be

(or close to) its global solution, and it can be used to benchmark the efficiency of various objec-

tive scoring functions. The qualities defined by match length and RMSD of the alignments

obtained by four scoring functions showed that TM-score are the most effective followed by

SP-score, DALI-score and SO-score, while the difference between the first two is marginal.

The qualities defined by biological relevance of the alignments showed that DALI-score is

apparently superior to the other score functions.

We proposed a refinement protocol based on a modified DGS algorithm to improve a

given alignment in terms of any scoring function. Not only it improves the objective scoring

function, but also it is possible to adjust the minimum block size or whether to allow the

reverse alignment. Therefore, the protocol can be useful in removing unwanted much frag-

mented and/or reverse alignments blocks. The quality of the input alignment for the refine-

ment protocol is critical since the refinement protocol performs only the local search. We

compared the alignments obtained by SPalignNS, CLICK, TMalign, and MICAN and identi-

fied the alignment method that produces the best results after refinement. MICAN alignments

improved the most by refinement. When the alignment is refined with DALI-score, Generally,

the refined alignments showed higher precision and recall. In the refinement, minimum block

size 4 showed higher quality than minimum block size 1.

Till now, many structure alignment studies have been reported, but due to the notorious dif-

ficulty to obtain globally optimal alignment solutions, all the existing methods were focused on

generating “fast” and reasonably good alignment solutions. The current study distinguish itself

as the first attempt to generate rigorous alignment solutions by investing significantly more

computational resources compared to existing methods. Due to the slow running time, the pro-

posed global search method, ALIGN-CSA, may not be suitable for all-to-all alignment of a

large database. However, ALIGN-CSA can be useful to evaluate alignment scoring functions as

performed in this work. In addition, ALIGN-CSA can be a viable option when more accurate

alignments are required as in the study of protein structure prediction. As demonstrated on the

286 alignment problems of difficult cases (from HOMSTRAD, SSDT and RIPC), ALIGN-CSA

generated significantly improved alignment results using various scoring functions. As an alter-

native means, a rather quick refinement method is proposed. The method can improve the

quality or the score of a given alignment typically generated by existing alignment tools. We

also note that it is straightforward to apply the methods proposed in this work to other macro-

molecules such as RNA, DNA and carbohydrates and any objective scoring functions not

Fig 4. Three successful examples of refinement. The referential alignment (ref), initial MICAN alignment, and the refined

alignment with the minimum block size 4 are shown. The refined alignments cover more of the referential alignments than the initial

alignments.

https://doi.org/10.1371/journal.pone.0210177.g004
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considered in this study. All programs are available from http://lee.kias.re.kr and minimal data

are in S2 File.
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