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Abstract
Advancement of gene expression measurements in longitudinal studies enables
the identification of genes associated with disease severity over time. However,
problems arise when the technology used to measure gene expression differs
between time points. Observed differences between the results obtained at dif-
ferent time points can be caused by technical differences. Modeling the twomea-
surements jointly over time might provide insight into the causes of these differ-
ent results. Our work is motivated by a study of gene expression data of blood
samples from Huntington disease patients, which were obtained using two dif-
ferent sequencing technologies. At time point 1, DeepSAGE technology was used
tomeasure the gene expression, with a subsample alsomeasured using RNA-Seq
technology. At time point 2, all samples were measured using RNA-Seq technol-
ogy. Significant associations between gene expression measured by DeepSAGE
and disease severity using data from the first time point could not be replicated
by the RNA-Seq data from the second time point. We modeled the relationship
between the two sequencing technologies using the data from the overlapping
samples. We used linear mixed models with either DeepSAGE or RNA-Seq mea-
surements as the dependent variable and disease severity as the independent
variable. In conclusion, (1) for one out of 14 genes, the initial significant result
could be replicated with both technologies using data from both time points; (2)
statistical efficiency is lost due to disagreement between the two technologies,
measurement error when predicting gene expressions, and the need to include
additional parameters to account for possible differences.
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1 INTRODUCTION

A longitudinal study design comprises multiple observations from each patient over time. This design offers efficiency
gain by using multiple observations instead of one per patient. When recruiting more patients is not feasible, this might
be the only way to obtain sufficient statistical power to assess the relationship between response and covariables. Rapid
advances in sequencing technology may bring a researcher into a situation where the type of technology to measure
the response variable has changed over time. For example, in recent years, sequence-based approaches to quantify gene
expression levels became available and affordable for large studies. Compared to hybridization-based approaches, the
newer technologies enable us to detect novel transcripts, have lower background noise, provide a broad dynamic range,
and have high technical reproducibility (’t Hoen et al., 2008; Wang, Gerstein, & Snyder, 2009). Gene expression levels
can be quantified by sequencing and counting mRNA fragments (RNA-Seq) or tags (DeepSAGE) (Ozsolak & Milos, 2011;
Zhernakova et al., 2013). Although the two techniques provide information on the number of transcripts in each sample,
in RNA-Seq, the reads will typically be aligned across the entire transcript, while with DeepSAGE all tags will be aligned
with the 3′ ends of the transcript.
Our motivating example is a study of the association between gene expression measured from blood samples and a

disease severity indicator for Huntington disease (HD). HD is an autosomal dominant neurodegenerative disorder char-
acterized by progressive motor symptoms (Jones & Hughes, 2011; Kent, 2004; Mastrokolias et al., 2015; van der Burg,
Björkqvist, & Brundin, 2009; Walker, 2007). In a cross-sectional study, Mastrokolias et al. (2015) assessed the association
between gene expression and the motor score representing disease severity, while adjusting for age, gender, and relative
cell counts represented by the proportion of hemoglobin tags to the total tags per samples. They used linear regressionwith
DeepSAGE as a dependent variable. They identified 167 genes for which gene expression was associated with the motor
score. Of these genes, 20 genes were confirmed by RT-qPCR. To further replicate these findings, 3 years later, follow-up
samples were obtained andmeasured with RNA-Seq technology. In addition, a subset of the samples at the first time point
was measured by RNA-Seq, that is, for these samples, measurements of both techniques are available. Unfortunately, the
analysis of the RNA-Seq measurements at the second time point did not confirm the first findings. Reasons for this lack
of replication might be the difference in technologies used or false positiveness or negativeness of the first or the second
findings. Hence, a joint longitudinal model for both measurements might provide a better understanding of the associa-
tions between gene expressions measured with the two platforms and the motor score (disease indicator) over time. For
the genes identified by Mastrokolias et al. (2015), the association between DeepSAGE-measured gene expression and the
severity of HD using the data at both time points was modeled. Moreover, we performed all gene analysis using the RNA-
Seq measurement as an outcome at both time points. To deal with unobserved measurements, we used measurement
error models.
Much research in the field of measurement error model has been performed. However, most work has been done on

the error-in-covariates problem (Buonaccorsi, 2010; Carroll, Ruppert, Stefanski, &Crainiceanu, 2006; Gustafson, 2004). In
general, measurement error in the response variable might increase the variability of the fitted value; hence the statistical
power to detect the true effects is decreased (Abrevaya & Hausman, 2004; Carroll et al., 2006). In linear regression, the
additional variability induced by the measurement error will be absorbed by the residual variance. Measurement error in
response variables, therefore, is often ignored. However, incorporating measurement error variance in the model might
yield an efficiency gain.
When a calibration set is available for a subset of the samples, in which both the response variable subject to measure-

ment error and the true response variable are measured, estimates of the true relationship can be obtained. Buonaccorsi
(1991) proposed a moment estimator to combine these two sources of information. They assume that the observed and the
true response are related via a simple linear regression model. The method of moments was used for estimation and pro-
vided unbiased parameter estimates. Alternatively, one can consider the maximum likelihood estimation. For nonlinear
relationships, the pseudo maximum likelihood approach was used to estimate the parameter. Here the estimated error
variance was obtained from a calibration set and plugged into the final likelihood function (Buonaccorsi, 1996; Buonac-
corsi & Tosteson, 1993). Keogh, Carroll, Tooze, Kirkpatrick, and Freedman (2016) considered both the maximum likeli-
hood method and the method of moments to estimate the relationship between food intake and an intervention. Here the
measurement error of the response variable, namely food intake based on the questionnaire, might depend on the inter-
vention, and no valid statistical inference can be performed by using only the questionnaire data. Also, the authors have
biomarker information, representing the outcome variable of interest in a small subset. This subset provides information
about the relationship between the true response and the questionnaire, which can be used to adjust the responses with
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TABLE 1 Characteristics of the study participants at both time points

Characteristics Baseline Follow-up
(N = 124) (N = 73)

Age, mean (SD) 47.98 (12.09) 52.53 (11.28)
Gender, n (%)
Female 67 (54.03) 40 (54.79)
Male 57 (45.97) 33 (45.21)
Motor score, mean (SD) 20.36 (24.92) 32.50 (30.81)

Carrier status, n (%)
Symptomatic 64 (51.61) 55 (75.34)
Presymptomatic 29 (23.39) 18 (24.66)
Control 31 (25) 0 (0)

regard to the questionnaire in the larger set. For this situation, they showed that the gain in efficiency by using themethod
of moments and maximum likelihood method was similar.
In this paper, we propose a pseudo-likelihood approach which is a combination of the method of moments and the

maximum likelihood approach. Like Keogh et al. (2016), we use a linear model to assess the relationship between the
two gene expression measurements. Prior to applying the linear model, we select genes for which their expressions are
similar by both technologies using a mixture model (De Veaux, 1989; McLachlan & Peel, 2000). Here, two latent classes
represent samples with correlated and uncorrelated measurements of the two platforms. The obtained estimates from the
linear model are plugged into a linear mixed model (McCulloch and Searle, 2000; Verbeke & Molenberghs, 2000), fitted
by maximizing the log-likelihood function over the remaining parameters. The combination of methods of moments and
maximum likelihood enables us to process a large number of genes (methods of moments) and modeling the relationship
over time (maximum likelihood estimation).
The remainder of the paper is organized as follows. In Section 2, the motivating dataset is described in detail. Notations

and statistical methods are formulated in Section 3. In Section 4, a small simulation study is performed. The results of the
data application are presented in Section 5. We offer some conclusion and discussion in Section 6.

2 DATA

Gene expressions of HD patients from two different sequencing technologies are available, namely DeepSAGE and
RNA-Seq, at two time points. At the first time point, 124 samples were measured by DeepSAGE technology. Additionally,
22 samples from the first time point were measured by RNA-Seq technology. At the second time point, 73 samples were
measured by RNA-Seq. For each sample at each time point, the motor section of the Unified Huntington’s Disease Rate
Scale was used to obtain a severity indicator of HD, namely the motor score. For both platforms at both time points,
19,711 genes were identified. For the 22 overlapping samples from the first time point, 16,798 genes were available.
The characteristics of the study participants for both time points are shown in Table 1. Note that the controls are only
measured once. At the second time point, there are more symptomatic cases compared to presymptomatic cases.
Prior to performing the analysis, preprocessing steps are needed: removing samples with low detected genes, removing

genes having a low- or high-abundance count, and normalizing the count data. From the 22 overlapping samples, we
removed three samples because of a small number of detected genes. The corresponding RNA-Seq samples at time point 2
for these genes were also removed. In the DeepSAGE dataset, these three deleted samples have less than 5,000 reads
detected, while other samples have a minimum of 5 million reads. Note that in contrast to this paper, these samples were
included in the previous study. Thus, we ended up analyzing 121 samples at time point 1 and 70 samples at time point
2. Following the approach of the initial analysis (Mastrokolias et al., 2015), the top three overabundant genes were also
removed, that is, HBA1, HBA2, and HBB. Genes having less than one count per million reads in at least three samples
in RNA-Seq measurement were removed, while in DeepSAGE, genes with a minimum of 10 counts per million in at
least three samples were selected. After quality control, we have the expressions of 5,079 genes. For these genes, Figure 1
shows the heatmap correlation plot of DeepSAGE and RNA-Seq using the data from the overlapping samples. The two
measurements appeared to be highly correlated for most of the genes.
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F IGURE 1 Heatmap correlation of DeepSAGE and RNA-Seq measurements based on data from the overlapping samples at time point 1.
Plot is based on 5,079 genes selected after the preprocessing step

DeepSAGE produces one read per gene transcript, whereas RNA-Seq generates multiple reads per gene transcript pro-
portionally to transcript length. To create a comparable scale, we divided the reads in RNA-Seq by transcript length. The
transcript length is defined as the sum of gene exon lengths. For each sample in each technology, the total number of reads
is different. The trimmedmean of M-values (TMM) provides normalization for the total number of reads, which is imple-
mented in the R package edgeR (Robinson, McCarthy, & Smyth, 2010; Robinson & Oshlack, 2010). TMM with no length
correction is the count per million , while TMMwith a length correction is the reads per kilobase of transcript per million
mapped reads (Mortazavi, Williams, McCue, Schaeffer, & Wold, 2008). To estimate the overdispersion in the count data,
the function fitdistr in the R package MASS (Venables & Ripley, 2002) was used. For all analyses, we used log2 transfor-
mation of normalized counts. The estimated dispersion parameter for DeepSAGE data was ranging from 0.492 to 6.437,
with an average of 3.160.

3 METHODS

Let 𝐼 be the number of subjects. Let 𝑋𝑖𝑗 and 𝑍𝑖𝑗 be the log-transformed counts measured by DeepSAGE and RNA-Seq.
The first subscript denotes the subject 𝑖 = 1, … , 𝐼, while the second denotes the time point 𝑗 = 1, 2. Further, let ms𝑖𝑗 be
the motor score of subject 𝑖 at time point 𝑗.
To model the relationship between gene expression and the motor score in a similar way as the previous paper (Mas-

trokolias et al., 2015), we consider the following model:

𝑋𝑖1 = 𝛽0 + 𝛽2ms𝑖1 + 𝑢𝑖 + 𝜖𝑖1,

𝑋𝑖2 = (𝛽0 + 𝛽1) + (𝛽2 + 𝛽3)ms𝑖2 + 𝑢𝑖 + 𝜖𝑖2, (1)

where 𝑢𝑖 ∼  (0, 𝜎2𝑢) is the subject-specific random effect and 𝜖𝑖𝑗 ∼  (0, 𝜎2𝜖 ) the random error variable. Here, 𝛽2 and
𝛽2 + 𝛽3 represent the effect of the motor score on gene expression at time point 1 and at time point 2, respectively. Note,
we assume that given the information on the time point 2, the information available for time point 1 is independent of the
gene expression on the time point 2. For notational simplicity, if possible, we drop the subject index 𝑖.
We first introduce three subsamples of indices based on the availability of sequencing datasets for subject 𝑖. The first

subsample, 1, consists of the set of indices of the subjects measured by DeepSAGE at the first time point, that is, 𝑋𝑖1 is
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observed, and by RNA-Seq at the second time point, that is, 𝑍𝑖2 is observed. The second subsample, 2, denotes the set of
indices of subjects measured by DeepSAGE at the first time point only, that is, only 𝑋𝑖1 is observed. The third subsample,
3, indicates the set of indices of subjects measured by RNA-Seq at the second time point only, that is, only 𝑍𝑖2 is observed.
Finally, we define 𝑠

1 ⊂ 1 as the set of indices for which we also have RNA-Seq at the first time point. The sample size
for 1, 𝑠

1, 2, and 3 are 𝑛1 = 53, 𝑛𝑠1 = 19, 𝑛2 = 68, and 𝑛3 = 17, respectively.
Our challenge here is that𝑋𝑖2 is unobserved and𝑍𝑖1 is only observed for a small subset𝑠

1
.We propose therefore to obtain

an estimate for 𝑋𝑖2. We use the data from the subsample 𝑠
1
to relate the DeepSAGE to the RNA-Seq measurements. We

assume that for each gene there might be two groups of samples: the first group represents samples for which the gene
expressions of the two technologies are highly correlated, and the second group represents samples for which there seems
no relationship between the gene expressionsmeasured by the two technologies. Specifically, let 𝛼 be the proportion of the
samples for which gene expression is well-measured by both technologies, and 𝜌 be the correlation coefficient between
𝑋1 and 𝑍1. For 𝑖 ∈ 𝑠

1, the joint distribution of 𝑋1 and 𝑍1 is given as follows:

𝑚(𝒙1, 𝒛1) = 𝛼𝑔(𝒙1, 𝒛1) + (1 − 𝛼)𝑓(𝒙1)𝑓(𝒛1), (2)

where 𝑔(𝒙1, 𝒛1) is the bivariate normal distribution 𝐵𝑉𝑁(𝜇𝑥1 , 𝜇𝑧1 , 𝜎
2
𝑥1
, 𝜎2𝑧1 , 𝜌), and 𝑓(𝒙1) ∼  (𝜇𝑥1 , 𝜎

2
𝑥1
) and 𝑓(𝒛1) ∼

 (𝜇𝑧1 , 𝜎
2
𝑧1
) are two marginal distributions. Define Θ = (𝜇𝑥1 , 𝜇𝑧1 , 𝜎

2
𝑥1
, 𝜎2𝑧1 , 𝜌, 𝛼). The corresponding likelihood is given

by

(Θ|𝒙1, 𝒛1) = ∏
𝑖∈𝑠

1

[𝛼𝑔(𝒙1, 𝒛1) + (1 − 𝛼)𝑓(𝒙1)𝑓(𝒛1)]

=
∏
𝑖∈𝑠

𝑖

[𝛼(1∕2)𝜋−1|𝚺𝟏|−1∕2 exp{−(1∕2)(𝒉𝑖 − 𝝁)T𝚺𝟏
−1(𝒉𝑖 − 𝝁)}

+(1 − 𝛼)(1∕2)𝜋−1|𝚺𝟐|−1∕2 exp{−(1∕2)(𝒉𝑖 − 𝝁)T𝚺𝟐
−1(𝒉𝑖 − 𝝁)}],

where 𝒉𝑖 = (𝒙1, 𝒛1)
T, 𝝁 = (𝜇𝑥1 , 𝜇𝑧1)

T, 𝚺𝟏 =
[

𝜎2𝑥1 𝜌𝜎𝑥1𝜎𝑧1
𝜌𝜎𝑥1𝜎𝑧1 𝜎2𝑧1

]
, and 𝚺𝟐 =

[
𝜎2𝑥1 0

0 𝜎2𝑧1

]
. For each gene, the data are fitted

by the model.
We are interested in genes for which the measurements from both technologies are highly correlated and select genes

with 𝜌 ≥ .8 and 𝛼̂ ≥ .8. For these genes, we assume that two variables representing DeepSAGE and RNA-Seq follow a

bivariate normal distribution with mean 𝝁 = (𝜇𝑥1 , 𝜇𝑧1) and variance 𝚺 =

[
𝜎2𝑥1 𝜌𝜎𝑥1𝜎𝑧1

𝜌𝜎𝑥1𝜎𝑧1 𝜎2𝑧1

]
. Thus, we assume that 𝛼 =

1. Hence for the selected genes we use all samples. Finally, with regard to the correlation over time, we assume that
𝜌𝑡 = corr(𝑋1, 𝑋2) = corr(𝑍1, 𝑍2) and the correlation between two different technologies at two different time points is
modeled by corr(𝑋1, 𝑍2) = corr(𝑋2, 𝑍1) = 𝜌 × 𝜌𝑡. Thus the covariance matrix for (𝑋1, 𝑍1, 𝑋2, 𝑍2) can be written as

𝚺(𝑋1,𝑍1,𝑋2,𝑍2) =

⎡⎢⎢⎢⎢⎣
𝜎2𝑥1 𝜌𝜎𝑥1𝜎𝑧1 𝜌𝑡𝜎

2
𝑥2

𝜌𝑡𝜌𝜎𝑥2𝜎𝑧2
𝜌𝜎𝑥1𝜎𝑧1 𝜎2𝑧1 𝜌𝑡𝜌𝜎𝑥2𝜎𝑧2 𝜌𝑡𝜎

2
𝑧2

𝜌𝑡𝜎
2
𝑥1

𝜌𝑡𝜌𝜎𝑥1𝜎𝑧1 𝜎2𝑥2 𝜌𝜎𝑥2𝜎𝑧2
𝜌𝑡𝜌𝜎𝑥1𝜎𝑧1 𝜌𝑡𝜎

2
𝑧1

𝜌𝜎𝑥2𝜎𝑧2 𝜎2𝑧2

⎤⎥⎥⎥⎥⎦
. (3)

3.1 Modeling DeepSAGEmeasurements

Here, DeepSAGE measurement is considered as the dependent variable in the model. However, 𝑋2 is not available at
the second time point and need to be estimated. The overlapping samples which contain a pair of DeepSAGE and RNA-
Seq at time point 1 can be used to estimate the joint distribution of DeepSAGE and RNA-Seq. Then RNA-Seq is used
to predict DeepSAGE at time point 2. Note that we assume that the joint distribution of 𝑋2 and 𝑍2 equals the bivariate
normal distribution of 𝑋1 and 𝑍1 (see model (3)). Specifically, it is assumed that 𝜎2𝑧1 = 𝜎2𝑧2 = 𝜎2𝑧 and 𝜎2𝑥1 = 𝜎2𝑥2 = 𝜎2𝑥. The
conditional distribution of 𝑋2 given 𝑍2 is normal with mean 𝑐 + 𝜌

𝜎𝑥

𝜎𝑧
𝒛2 and variance 𝜎2𝜔 = (1 − 𝜌2)𝜎2𝑥. Estimates for 𝜎𝑧,

𝜎𝑥, and 𝜌 are obtained from the results of fitting model (2) using data from 𝑠
1 under the assumption of 𝛼 = 1. Further, we
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do not need to estimate the constant 𝑐, since it will be absorbed in the intercept of our final model. Thus, we can substitute
𝑋2 by 𝑋2 = 𝜌

𝜎𝑥

𝜎𝑧
𝑍2 in model (1) to assess the relationship between gene expression and motor score as follows:

𝑋𝑖1 = 𝛽0 + 𝛽2ms𝑖1 + 𝜸1𝑫𝑖1 + 𝑢𝑖 + 𝜖𝑖1,

𝑋𝑖2 = (𝛽0 + 𝛽1) + (𝛽2 + 𝛽3)ms𝑖2 + 𝜸2𝑫𝑖2 + 𝑢𝑖 + 𝜔𝑖 + 𝜖𝑖2, (4)

where 𝛽3 represents the combination of the change of the motor score effect between the two time points and of the
difference between the effect ofmotor score on the observedDeepSAGEmeasurement and the estimated one,𝜔 represents
the measurement error and 𝑫𝑖1 and 𝑫𝑖2 might be additional covariates included in the model with effect size 𝜸1 and 𝜸2,
respectively. Let Ψ = (𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝜸1, 𝜸2, 𝜎𝑢, 𝜎𝜖). For 𝑖 ∈ 1, the corresponding log-likelihood is given by

𝓵(Ψ|𝑌𝑖,ms) = −(1∕2) ln(|𝚺|) − (1∕2){(𝒚𝒊 − 𝝁)T𝚺−1(𝒚𝒊 − 𝝁)} + const,

where 𝑌𝑖 = [𝑋𝑖1, 𝑋𝑖2], 𝝁 = (𝛽0 + 𝛽2ms𝑖1 + 𝜸1𝑫𝑖1, (𝛽0 + 𝛽1) + (𝛽2 + 𝛽3)ms𝑖2 + 𝜸2𝑫𝑖2)
T, 𝚺 =

[
𝜎2𝑥𝑖1 𝜌𝜎𝑥𝑖1𝜎𝑥𝑖2

𝜌𝜎𝑥𝑖1𝜎𝑥𝑖2 𝜎2
𝑥𝑖2

]
with

𝜎2𝑥𝑖1 = 𝜎2𝑢 + 𝜎2𝜖 and 𝜎2
𝑥𝑖2

= 𝜎2𝑢 + 𝜎2𝜖 + 𝜎2𝜔. For the second and third subsamples, the log-likelihood reduces to univariate
normal distributions. Finally, the total log-likelihood for the full model is given by∑

𝑖∈1∪2∪3

𝓵(Ψ|𝑌𝑖,ms𝑖) =
∑
𝑖∈1

𝓵(Ψ|𝑌𝑖,ms𝑖) +
∑
𝑖∈2

𝓵(Ψ1|𝑋𝑖1,ms𝑖1)

+
∑
𝑖∈3

𝓵(Ψ|𝑋𝑖2,ms𝑖2), (5)

where Ψ1 = (𝛽0, 𝛽2, 𝜸1, 𝜎𝑢, 𝜎𝜖). Maximum likelihood estimates of the unknown parameters Ψ are obtained using
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm of optim function in R (R Core Team, 2013). This algo-
rithm is a quasi-Newton method that implements approximation of the Hessian matrix using a specified gradi-
ent evaluation. The ratio of the subject-specific effect variance to the total variance at the first time point repre-
sents the intraclass correlation between DeepSAGE measurements at the two time points if they would have been
observed (corr(𝑋1, 𝑋2)). The ratio of the measurement error variance to the total variance at the second time point
represents the dissimilarity between the two measurements, indicating how well DeepSAGE can be constructed
by RNA-Seq.
Finally, to assess the statistical significance of the relationship between the motor score and gene expression, the null

hypothesis of 0 ∶ 𝛽2 = 0 should be tested. The standard likelihood ratio test, which follows a 𝜒2 distribution with one
degree of freedom, is used.

3.2 Modeling RNA-Seq measurements

Considering RNA-Seq as a dependent variable allows us to use observed measurements for time point 1 (𝑍1) and time
point 2 (𝑍2). Based on the overlapping samples, we predict the RNA-Seq from 𝑋1 when 𝑍1 is missing.
We model the relationship between gene expression represented by RNA-Seq and the motor score as follows:

𝑍𝑖1 = 𝛽0 + 𝛽2ms𝑖1 + 𝑢𝑖 + 𝜖𝑖1,

𝑍̃𝑖1 = (𝛽0 + 𝛽5) + (𝛽2 + 𝛽4)ms𝑖1 + 𝑢𝑖 + 𝜔𝑖 + 𝜖𝑖1,

𝑍𝑖2 = (𝛽0 + 𝛽1) + (𝛽2 + 𝛽3)ms𝑖2 + 𝑢𝑖 + 𝜖𝑖2, (6)

where 𝑢𝑖 ∼  (0, 𝜎2𝑢) indicates the subject-specific random effect for RNA-Seq measurement at both time points, 𝜖𝑖𝑗 ∼
 (0, 𝜎2𝜖 ) represents the random error variable, and 𝜔𝑖 ∼  (0, 𝜎2𝜔) express the measurement error of predicting RNA-
Seq from DeepSAGE. Further, 𝛽2 represents the effect of the motor score on the observed measured RNA-Seq, 𝛽3 repre-
sents the change in the effect of the motor score on the RNA-Seq at the second time point with respect to the first time
point, and 𝛽4 represents the difference in the effect of the motor score on the predicted RNA-Seq with respect to the
observed RNA-Seq.
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Since RNA-Seq are partly available at two time points, we predict the unobserved RNA-Seq at the first time point using
the overlapping samples of DeepSAGE and RNA-Seq at the same time point. Subsamples 1 and 2 are divided into two
parts, namely a subset with observed measurement of RNA-seq (𝑍𝑖1 or 𝑍𝑖2) and predicted RNA-seq (𝑍̃𝑖1), respectively.
The sample size of the observed and predicted measurements of RNA-Seq in 1 is 17 and 36, respectively. For 2, the
sample size for true and predicted measurement of RNA-Seq is 2 and 66, respectively. Finally, the sample size of the true
measurement of RNA-Seq for 3 is 17.
Note that when using RNA-Seq as a dependent variable, the assumption that the joint distribution of 𝑋1 and 𝑍1 equals

the joint distribution of 𝑋2 and 𝑍2 is not needed because the prediction of RNA-Seq is performed at the same time point
as the overlapping samples. Another advantage of using RNA-Seq measurements as a dependent variable is that the dif-
ference between the motor score effect on observed RNA-Seq and predicted RNA-Seq could be investigated. Just as for
DeepSAGE,we test the null hypothesis of0 ∶ 𝛽2 = 0 to assess the relationship between themotor score and the RNA-Seq
by using the likelihood ratio test.

4 SIMULATION STUDY

4.1 Simulation setting

Two sets of simulations were conducted to evaluate the robustness of the proposed methods. We focus on the model for
DeepSAGE. The first simulation aims to investigate howwell ourmethod can predict DeepSAGE fromRNA-Seqmeasure-
ments, assuming a normal distribution for count data. The second simulation aims to study the impact of assuming nor-
mal distributions for counts on the size of the likelihood ratio statistic for testing the hypothesis of no association between
motor score and gene expression using the model (4). A small overdispersion parameter 𝜃 yields a dependency between
the mean and variance, and a large 𝜃 will result in skewed distributed data. Hence for both situations, the assumptions of
the test statistic may be violated resulting in too liberal or too conservative 𝑝-values.

4.2 Dataset generation

To study the performance of predicting DeepSAGE from RNA-Seq, we simulated a sample of correlated count data of
size 100. For the parameter values, we used the corresponding values of one of the genes in our dataset, namely CYSTM1.
Means 𝜇1 = 2.15 and 𝜇2 = 1.95 for the log-count data of DeepSAGE and RNA-Seq, respectively, were used, and the
dispersion parameter 𝜃 was assumed to be 3.5. To obtain correlated counts, we first sampled a vector of normally dis-
tributed random effects 𝑣 with zero mean and variance 𝜎2𝑣 = 0.9 of length 100. Then vectors of counts for both outcomes
were generated using the negative binomial distribution as follows: 𝑌𝑗 ∼ 𝑁𝐵(𝑟 = exp (𝜇𝑗 + 𝑣), 𝑝 =

1∕𝜃

1+1∕𝜃
) for 𝑗 = 1, 2,

where 𝑁𝐵(𝑟, 𝑝) represents the negative binomial distribution with the number of successful trial 𝑟 and probability 𝑝, 𝑌1

represents the DeepSAGE, and 𝑌2 represents the RNA-Seq measurements. The count data were then log-transformed
and divided into a training (20% of the whole dataset) and a test set (remaining 80%). In the training set, a linear model
with DeepSAGE as a dependent variable and RNA-Seq as independent was fitted. The obtained relationship between
DeepSAGE and RNA-Seq was used to predict the DeepSAGEmeasurements from the RNA-Seq measurements in the test
set (𝑌𝑝𝑟𝑒𝑑

1 ). The agreement between the distributions of the generated 𝑌1 and the predicted 𝑌
𝑝𝑟𝑒𝑑
1 will be depicted by a

QQ plot based on the data in the test set.
The second simulation aims to evaluate the null distribution of the test statistic for the hypothesis of no association

between gene expression and motor score. The sample sizes were 𝑛1 = 53, 𝑛2 = 68, and 𝑛3 = 17, which are the values for
our data example. For each sample, two motor score values were generated from a bivariate standard normal distribution
with a correlation of .9 between the two time points. The scenario is described in Table 2, which is based on the NMT2
gene. For the parameter 𝜃, we considered five values, namely 0.0001, 0.15, 3.5, 6.5, or 10.
Let 𝜎2𝐼 = 𝜎2𝑢 + 𝜎2𝜖 , and 𝜎2𝐼𝐼 = 𝜎2𝑢 + 𝜎2𝜖 + 𝜎2𝜔, random effects 𝑣 for subjects in each subsample of size (𝑛1, 𝑛2, 𝑛3) were gen-

erated as follows: for 𝑖 ∈ 1, Let 𝑣𝑖 ∼ 𝐵𝑉𝑁(0,

[
𝜎2𝐼 .8𝜎𝐼𝜎𝐼𝐼

.8𝜎𝐼𝜎𝐼𝐼 𝜎2𝐼𝐼

]
), 𝜇𝑖1 = exp (𝛽0 + 𝑣𝑖1), and 𝜇𝑖2 = exp ((𝛽0 + 𝛽1) + 𝑣𝑖2).

For 𝑖 ∈ 2, define 𝑣𝑖 ∼ 𝑁(0, 𝜎2𝐼 ) and 𝜇𝑖1 = exp (𝛽0 + 𝑣𝑖1). For 𝑖 ∈ 3, 𝑣𝑖2 ∼ 𝑁(0, 𝜎2𝐼𝐼) and 𝜇𝑖2 = exp ((𝛽0 + 𝛽1) + 𝑣𝑖2) were

considered. Finally, multivariate counts with mean 𝜇𝑖 and dispersion parameter 𝜃 were generated by 𝑁𝐵(𝜃−1𝜇𝑖,
𝜃−1

1+𝜃−1
).

For each 𝜃, the number of replicates was 10,000. For each replicate, the DeepSAGEmodel was fitted. Then, the likelihood
ratio statistic and corresponding 𝑝-values were obtained.



752 FUADY et al.

TABLE 2 Simulation results: nominal and actual significance levels for the likelihood ratio test for association between log-transformed
count data and a covariate. Different values of the dispersion parameter 𝜃 were considered

𝜽 Significance level
Nominal Actual (95% CI)a

{𝜷𝟎 = 2.459, 𝜷𝟏 = −0.4078 }
{ 𝝈𝒖 = 0.0044, 𝝈𝝐 = 0.3792, 𝝈𝝎 = 0.4123 }

0.0001 .0010 .0016 (.0008 , .0024)
.0050 .0054 (.0040 , .0068)
.0100 .0108 (.0088 , .0128)
.0500 .0527 (.0483 , .0571)

0.15 .0010 .0010 (.0004 , .0016)
.0050 .0045 (.0032 , .0058)
.0100 .0111 (.0090 , .0132)
.0500 .0501 (.0458 , .0544)

3.5 .0010 .0006 (.0001 , .0011)
.0050 .0054 (.0040 , .0068)
.0100 .0109 (.0089 , .0129)
.0500 .0497 (.0454, .0540)

6.5 .0010 .0004 (.0000 , .0008)
.0050 .0045 (.0032 , .0058)
.0100 .0097 (.0078 , .0116)
.0500 .0476 (.0434, .0518)

10 .0010 .0016 (.0008 , .0024)
.0050 .0056 (.0041 , .0071)
.0100 .0105 (.0085 , .0125)
.0500 .0512 (.0469 , .0555)

aBased on the NMT2 gene.

R implementations are available in GitHub (https://github.com/Fuady/DeepSAGE).

4.3 Simulation results

For the first set of simulations, Figure 2 shows the QQ plot of the observed and predicted DeepSAGE measurement for
sample size𝑁 = 100, that is, the size of the test set is 80 samples. It appears that the distribution of the predictedwas almost
similar to the distribution of the observed DeepSAGE. Hence we conclude that under a similar setting as the dataset, our
method can predict DeepSAGE well from RNA-Seq.
The results of the second set of simulations aimed to evaluate the size of the likelihood ratio statistic are presented

in Table 2. The actual significance levels for the nominal levels of .001, .005, .01, and .05 and dispersion parameters 𝜃
of 0.0001, 0.15, 3.5, 6.5, and 10 are given. For a 𝜃 of 0.0001 or 6.5, the actual size of the likelihood ratio statistic deviates
from the nominal size (for a level of .05, the actual levels are .053 and .048, respectively). For the other 𝜃s, the actual and
nominal significance levels are almost the same. Thus our proposed method performs well when the overdispersion 𝜃 is
between 0.15 and 6.5, which appears to be the range of values in our data. Hence we conclude that the likelihood ratio
statistic for testing 𝛽2 = 0 in model (4) has the correct size.

5 RESULTS

5.1 Selection of genes

To select genes from the set of 5,079 for which both technologies provide similar measurements, we apply the mixture
model (2) to the gene expressions from the 19 overlapping samples at the first time point. It appears that the gene
expressions of 811 genes satisfy the criteria of a high correlation between the two measurements in a large proportion of

https://github.com/Fuady/DeepSAGE
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F IGURE 2 QQ plot of 𝑌𝑝𝑟𝑒𝑑

1 versus 𝑌1 for the test set of 80 samples

F IGURE 3 The QQ plot of t-statistics under the null hypothesis of no motor score effect on the DeepSAGE and RNA-Seq measurements
in the overlapping samples

the overlapping samples (𝛼̂ ≥ .8 and 𝜌 ≥ .8). To further investigate the agreement between the two measurements, we
studied the distribution of the agreement between the t-statistics for testing the null hypothesis of no effect of the motor
score on the gene expression level measured by the two technologies at the first time point in the overlapping samples.
In Figure 3, the QQ plot of the t-statistics shows that the distributions agree for most of the genes.

5.2 Replication of the previous results

We focus on the genes that have been identified in the previous study by Mastrokolias et al. (2015) using the DeepSAGE
data at the first time point. They identified 167 genes for which gene expressionwas significantly associatedwith themotor
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score after adjusting for age, gender, and relative cell content. The last variable represents the ratio of hemoglobin reads to
the total reads per sample. False discovery rate (FDR) was applied to correct for multiple testing. Of these genes, 20 were
validated by RT-qPCR. Only 14 of these 167 genes passed our quality control, as described in the previous section. Table 3
shows the estimates of parameters of the mixture model and the linear mixed model for these genes. Also, the following
results are presented: the𝑝-values corresponding to the test for association between gene expression andmotor score using
only the data of the first time point, the 𝑝-values corresponding to the one degree of freedom test for the null hypothesis of
testing 𝛽2 = 0 in the mixedmodel (4) with DeepSAGEmeasurements as an outcome, and the original 𝑝-values as given in
the paper ofMastrokolias et al. (2015). Note that sincewe applied amore stringent data cleaning procedure, these latter two
𝑝-values might be different. For the sake of comparisons, we included both the unadjusted and the adjusted 𝑝-values in
Table 3. The adjusted 𝑝-values are the FDR-corrected 𝑝-values applying the Benjamini–Hochberg procedure (Benjamini
& Hochberg, 1995) on these 14 genes.
After multiple testing corrections, the gene expressions for all 14 genes are significantly associated with the motor score

when using only the data for time point 1 as well as when using the data for both time points. For almost all genes, the
𝑝-values based on the data from two time points are slightly larger than when using only data from the first time point,
except for SIK1. When considering only data at the first time point, the unadjusted 𝑝-values of our method are similar or
lower than the original analysis results for five genes, namely PTPN4, CYSTM1, NMT2, RASA3, and GNPTAB, reflecting
a different quality control compared to the original analysis. The effect sizes of the motor score on gene expression using
the data from time point 1 analysis and using all data with the full model are similar. The largest absolute effect size of the
motor score on the gene expression at the first time point is for CYSTM1 with 0.0114.
For eight genes, the intraclass correlation (𝜎2𝑢∕(𝜎2𝑢 + 𝜎2𝜖 )) is ≤ .001. The largest intraclass correlation is obtained for

CCR2 (.0329). The gene RHOB shows the lowest measurement error variation to the total variance (𝜎2𝜔∕(𝜎2𝜔 + 𝜎2𝑢 + 𝜎2𝜖 )) of
.1601.
To further study these results, we fitted the linear mixed model (6) with RNA-Seq measurements as the dependent

variable. The results are given in Table 4. The correlation between the measurements at time point 1 and 2 was much
larger for the RNA-Seq than for the DeepSAGE measurements. After multiple testing corrections, 2 out of 14 genes were
statistically significant, namely the genes RAPGEFL1 and SIK1.
When comparing the direction of the estimates of𝛽2 in themodel forDeepSAGEwith those for RNA-Seq, themajority of

estimates have the same direction, except for KLRG1 and SIK1. Note that the expression of SIK1 is significantly associated
with the motor score for both measurements. The 𝛽2 parameters in the two models have a slightly different interpre-
tation. In the RNA-Seq model 𝛽2, which is positive, represents the effect of the motor score on the observed RNA-Seq
measurements in the overlapping samples, and 𝛽2 + 𝛽4, which appears to be negative, represents the effect of the motor
score on the predicted RNA-measurements. The 𝛽2 in the model for DeepSAGE, which is negative, represents the effect
of the motor score on the observed DeepSAGE measurements in the whole sample. Further analyses revealed that the
relationship between motor score and DeepSAGE measurements is positive in the overlapping samples and negative in
the remaining samples at time point 1. Thus, the two platforms appear to agree for this gene.
Next, we studied the effect of plugging the value for 𝜎𝜔 obtained from themodel (2) instead of estimating it when fitting

the model (4). The results are given in Supplementary Table S1. As expected, the 𝛽2 estimates are similar and for most
genes the 𝑝-values are slightly larger when plugging in 𝜎𝜔 instead of estimating it.
Finally, we checked the effect of including the covariates age, gender, and hemoglobin percentage (HB) in the mixed

model (4). The inclusion of additional covariates might be beneficial if the covariates explain a part of the variance; hence
inclusion reduces the noise. However, when the covariate is a collider, the results might be biased. To investigate the effect
of including these covariates in the model, we have plotted the 𝛽2 estimates of the models with and without additional
covariates (Supplementary Figure S1) using the data of all genes. It appears that the two estimates are very similar. The
average estimated residual variance is smaller when including the covariates (0.554 vs. 0.588); hence there is a small
increase in efficiency when including these covariates.

5.3 All gene analysis

We also analyzed all available data without considering the initial results (Mastrokolias et al., 2015) using gene expression
measured by RNA-Seq as a response. Out of 811 genes that satisfy the criteria of 𝛼̂ ≥ .8 and 𝜌 ≥ .8, we identified 89 genes
for which their expressions were associated with the motor score using the full model. These genes were significant at the
.05 level without multiple testing corrections. After multiple testing corrections using FDR, we identified 59 genes with a
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TABLE 4 Results of the replication study with RNA-Seq as a dependent variable using data from both time points

Full model
𝜷𝟐

Gene est se 𝝈𝟐
𝒖

𝝈𝟐
𝒖+𝝈

𝟐
𝝐

a 𝝈𝟐
𝝎

𝝈𝟐
𝒖+𝝈

𝟐
𝝎+𝝈

𝟐
𝝐

b 𝒑-valuec Adj.𝒑-valuec

PTPN4d −.0134 .0138 .1895 .1836 .0686 .2619
CYSTM1d .0196 .0211 .1350 .3344 .3530 .6856
NMT2 −.0176 .0099 .4746 .6689 .0748 .2619
TLR2 .0079 .0145 .2469 .3550 .5895 .7177
CEP19 .0205 .0181 .2995 .3057 .2588 .6039
CCR2 .0060 .0130 .2213 .2876 .6430 .7177
RAPGEFL1 .0256 .0150 .4850 .2720 .0000 .0003
TLR6 .0090 .0139 .0000 .3852 .5159 .7177
RASA3 −.0128 .0086 .1969 .5769 .1372 .3842
GNPTAB −.0066 .0095 .3074 .4071 .4825 .7177
IFNGR2 .0058 .0140 .0849 .2641 .6796 .7177
RHOB .0127 .0148 .3226 .1810 .3918 .6856
KLRG1 .0070 .0193 .4452 .2754 .7177 .7177
SIK1 .0096 .01s32 .3922 .4639 .0027 .0189

aThe ratio of the subject-specific effect to the total variance at time point 1.
bThe ratio of the measurement error effect to the total variance at time point 2.
cModel using RNA-Seq as a dependent variable at both time points. The 𝑝-value is obtained from testing 𝛽2 = 0 using the likelihood ratio test. The adjusted 𝑝-value
is based on 14 genes tested.
dConfirmed by RT-qPCR in Mastrokolias et al. (2015) analysis.

TABLE 5 Results of the top 10 most significant genes when analysing all genes. The motor score effects on the gene expression at time
point 1 is represented by 𝛽2

Mixture model Full model
𝜷𝟐

Gene 𝝆𝒑
a 𝝆 𝜶 est se 𝝈𝟐

𝒖

𝝈𝟐
𝒖+𝝈

𝟐
𝝐

b 𝝈𝟐
𝝎

𝝈𝟐
𝒖+𝝈

𝟐
𝝎+𝝈

𝟐
𝝐

c 𝒑-valued Adj.𝒑-valuee

ATOH8 .9303 .9311 .9894 .0197 .0243 .9237 .1504 .0000 .0000
PSMD5-AS1 .9097 .9098 .9994 −.0167 .0128 .9397 .1621 .0000 .0000
MYOM2 .9633 .9792 .9328 .0285 .0312 .9005 .0767 .0000 .0000
PAX8-AS1 .9930 .9930 .9988 .0261 .0392 .8850 .0122 .0000 .0000
COL9A3 .9629 .9634 .9936 .0136 .0281 .8927 .0701 .0000 .0000
TNNT1 .9751 .9748 .9930 −.0300 .0249 .8109 .0751 .0000 .0000
PVRL2 .9630 .9814 .9244 −.0117 .0243 .8361 .1140 .0000 .0000
KIAA1671 .8418 .8419 .9983 −.0204 .0180 .8097 .2069 .0000 .0000
TMEM45B .8930 .8930 .9997 .0028 .0213 .7696 .0607 .0000 .0000
ANKRD55 .8267 .8269 .9988 −.0105 .0109 .7900 .4664 .0000 .0000

aCorrelation between two measurements in the overlapping samples.
bThe ratio of the subject-specific effect to the total variance at time point 1.
cThe ratio of the measurement error effect to the total variance at time point 2.
dThe 𝑝-value is obtained from testing 𝛽2 = 0 using the likelihood ratio test.
eThe adjusted 𝑝-value is based on 811 genes tested.

significant association between gene expression and themotor score. The full list of 89 genes can be found in Table S2 in the
Supporting Information, including the two significant genes (SIK1 and RAPGEFL1) in the replication study. When using
gene expression measured with DeepSAGE as an outcome, the number of significant genes was only six after multiple
testing corrections (see the Supporting Information).
The parameter estimates of the 10 most significant genes of these 89 genes are summarized in Table 5. Specifically,

parameter estimates of the mixture model (2) and the RNA-Seq full model (6) are presented. Only one gene had a Pearson
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correlation coefficient of less than .83, namely ANKRD55. The adjusted 𝑝-value was based on the testing of 811 genes. The
largest absolute effect size within these genes was obtained for TNNT1. The largest intraclass correlation was obtained
for PSMD5-AS1 with .9397. The lowest intraclass correlation was obtained for TMEM45B. The lowest measurement error
ratio was obtained for PAX8-AS1, namely .0122.

6 CONCLUSION AND DISCUSSION

We presented a new method to model the association between gene expressions measured with two technologies at two-
time points and a disease indicator. This method was used to test for an association between the motor score and gene
expression in HD patients and controls. At the first time point, gene expression was measured by DeepSAGE technology.
A small subset was also measured by RNA-Seq. At the second time point, only RNA-Seq measurements were available.
The data at the first time point were analyzed and published byMastrokolias et al. (2015). From the 167 genes identified to
be related to the motor score by this study only for 14 genes, the measurements were sufficiently similar to enable analysis
at both time points. Using DeepSAGE as a response, the association withmotor score remained significant for these genes
when we included the data at the second time point to the analysis.
We used a mixture model to select genes for which the gene expressions in the overlapping samples were highly corre-

lated between the twomeasurements. The rationale behind this step is to select genes for which the difference between the
twomeasurements isminimal. For the genes satisfying the requirements, ameasurement errormodelwas used to estimate
the latent variable from the observed variable. Finally, a linear mixed-effects model was used to assess the relationship
between gene expression and the motor score at both time points. We performed two analyses, namely a replication study
of the identified genes by Mastrokolias et al. (2015) using DeepSAGE as the outcome and the analysis of all genes using
RNA-Seq measurements as the outcome. When modeling these data, we made several assumptions.
First, we assumed that the log-transformed count variables representingDeepSAGEandRNA-Seq at the two time points

follow a multivariate normal distribution. To evaluate the robustness of our methods against the deviation of the nor-
mal distribution, we performed two sets of simulations. We studied the effect of assuming a normal distribution for log-
transformed count data on predicting DeepSAGE from RNA-Seq measurements and on the size of the likelihood ratio
test statistic to assess the relation between gene expression and the motor score. For a sample size of 100 and 20% of the
training set, the predicted values appeared to be almost similar to the observed data. The second set of simulations showed
that the size of the likelihood ratio test was correct for the range of overdispersion parameters found in our dataset. We
used the linearmixedmodel, since thismodel was used by the original study, and it is straightforward to fit for various ran-
dom effects structures. Alternatively, the negative-binomial mixedmodelmight be used to assess the relationship between
motor score and gene expressions. However, this model requires numerical integration over the random effects structure
and is therefore more challenging to fit.
Second, for the replication study of modeling DeepSAGE, we assumed that the joint distribution of DeepSAGE and

RNA-Seq at time point 2 was equal to the bivariate normal distribution of DeepSAGE and RNA-Seq at time point 1. This
assumption was needed since we estimated the relationship between the two technologies using data from time point
1 to estimate DeepSAGE from RNA-Seq responses at time point 2. This assumption was not needed when predicting
RNA-Seq from DeepSAGE since for RNA-Seq, we had to predict RNA-Seq from DeepSAGE responses at time point 1.
Other advantages for using RNA-Seq instead of DeepSAGE measurements as a dependent variable are that the number
of observed data points of RNA-seq is larger, and that the effects of the motor score due to different time points and due
to predicting the outcome variable can be distinguished.
Third, we included all samples in our analysis while for some samples the relationship between the two measurements

might be small. After fitting the mixture model, we chose genes for which the 𝛼 is larger than 0.8. Thus for these genes,
the fraction of samples with no correlation is smaller than 20%.We chose all samples since selection onmotor score (case-
control sample) and selection on gene expression may result in biased parameter estimates. Moreover for most samples,
we have only one measurement.
In this paper, the aim is to identify genes for which the severity of HD influences gene expression. The underlying

hypothesis is that the progress of the disease triggers reactions from several genes.We used total motor score as a surrogate
for HD severity, which is commonly applied in the literature. For example, the motor score was used to detect metabolic
markers of HD (Mastrokolias et al., 2016). Here, the metabolites were the responses. In another study, Mina et al. (2016)
identified two disease signatures of HD that related to the motor score using gene expression in blood and multiple brain
region samples. Here a network analysis was used to identify common modules of gene expression in blood and brain
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samples, and then correlation analysis was performed to relate the motor score and the common modules. Also, when
studying other traits, gene expressions are often modeled as an outcome. For example, Li et al. (2013) modeled the effect
of somatic genetic and epigenetic factors on gene expression levels in breast cancer tumors.
Only for 14 of the original significant 167 genes (Mastrokolias et al., 2015), the measurements of the two technologies

were sufficiently correlated to be selected for further analyses. Applying our DeepSAGE model (4) to these data yielded
replication of the results. We also analyzed these genes using RNA-Seq as an outcome. It appeared that only for two genes
the association is significant (RAPGEFL1, SIK1). However, for SIK1, the direction of the 𝛽2 was not the same for the two
models. The reason for the opposite direction of the 𝛽2 estimate could be explained by the slightly different interpretation
between the two models. An additional parameter was included in the model to allow for a difference in the effect of the
motor score on observed versus predicted RNA-Seq responses. For bothmeasurements, the relationship in the overlapping
samples was positive, while the relationship in the remaining samples was negative. In the model with DeepSAGE as an
outcome, these two subsets were not distinguished since, for both subsets, the measurements were observed. For RNA-
Seq, themeasurements of the remaining samples were predicted.With regard to the other 12 genes, the loss of significance
might be caused by the fact that the prediction of RNA-Seq was not sufficiently accurate (see Supplementary Figure S2).
Thus, we conclude that for the initially identified genes, only one gene could be replicated when using data from both
time points for both technologies, namely RAPGEFL1.
Concerning the analysis of all measured 19,711 genes, only 811 genes could be analyzed using both time points. The

RNA-Seq model was used to analyze these genes. Out of 811 genes, 59 genes were found significant after multiple testing
corrections. The list includes the two significant genes from the replication study. Reasons for more significant findings
using RNA-Seq are that for most genes, the variance of RNA-Seq measurements is larger than for DeepSAGE and that for
RNA-Seq, we have more observed measurements. The low number of replications using RNA-Seq instead of DeepSAGE
might be explained by the fact that the prediction of RNA-Seq from DeepSAGE was less accurate. Indeed the relationship
between the measurements in the overlapping samples is more linear in the top 10 significant genes of all genes than in
the genes from the replication study (see Supplementary Figures S2 and S3).
Data cleaning is one of the critical aspects of our analysis. Lowly expressed genes containmore noise andmight obscure

the real picture of gene expression as well as overestimate the true effects. Discarding these genes might be beneficial for
increasing the power of high-throughput experiments (Bourgon, Gentleman, & Huber, 2010; Ignatiadis, Klaus, Zaugg, &
Huber, 2016). However, one of the consequences is that we identified a relatively small number of genes compared to the
cross-sectional study (Mastrokolias et al., 2015). Besides low expression genes, too much disagreement between the two
measurements is also an essential aspect of a limited number of genes identified.
By jointly modeling the two types of measurements, we were able to obtain insight into the relationship between the

two technical platforms, the gene expression, and themotor score.Wewere able to replicate one gene, namelyRAPGEFL1,
using data fromboth time points and using both technologies. In addition,we replicated 13 genes forDeepSAGEusing data
from two time points and 58 genes for RNA-Seq using two time points. Note that themodels need to account for differences
between observed and predicted measurements when adding the second time point data. Therefore, the efficiency for
estimation of the parameters is only increased due to the availability of more information to estimate the effect of the
other covariates and the variance components.
Using different technologies in the same study brings all kinds of challenges. Each technology produces different reads

per gene transcript. DeepSAGE only provides one read, while RNA-Seq produces multiple reads per gene transcript. To
make them comparable, we applied several data cleaning and normalization procedures. To be selected for further anal-
yses, both measurements for a gene needed to satisfy the data cleaning criteria. Further, only genes with sufficient corre-
lation between the two measurements were included for the downstream analyses. Thus for each gene the relationship
between the two measurements needed to be estimated. Here we defined sufficiently correlated as a correlation larger
than .8 in 80% of the samples. By doing so, we might have missed genes whose expression is associated with motor score.
On the other hand, lowering the threshold may result in more noise and a higher testing burden. In larger samples, it
may be worthwhile to consider to lower the threshold. Finally, it was necessary to account for the different techniques by
including additional parameters to the models.
We modeled the relationship between the two measurements per gene, assuming a mixture of bivariate normal distri-

butions. Alternatively, one may consider modeling the relationship between the two datasets by assuming a multivariate
normal distribution and using multiple multivariate regression techniques such as partial least squares (PLS) (Wold,
1966). One interesting approach here is two-way orthogonal partial least square (O2PLS), which estimates the joint space
and considers data-specific spaces (Bouhaddani et al., 2016; Trygg &Wold, 2003). Such analyses will provide information
about the genes highly represented by the two datasets. Another extension was developed by Bouhaddani, Uh, Hayward,
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Jongbloed, and Houwing-Duistermaat (2018); they embedded PLS in a probabilistic framework to facilitate statistical
inference and unique identification of the parameters. One of the future directions is to compare the performance of the
measurement error models and PLS methods, where the former uses additional information about the structure of the
data, and the latter estimates this structure from the datasets.
Several extensions of our proposed method are possible. Instead of a two-step model, we might consider one model

using the full likelihood approach, which includes all measurements from two technologies. In our proposed method, the
overlapping samples were used twice, that is, for the mixture models and the linear mixed effect models. Moreover, the
uncertainty in the estimate of the variance of themeasurement error was not taken into account. In our analysis, twomea-
surements’ joint distribution was assumed to be similar at both time points. Relaxing this assumption can be considered
by incorporating a more complex covariance structure, where all variances and covariances vary across measurements at
each time point. Finally, method development to model the count data might be considered.
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