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Abstract

Chemical cues play a fundamental role in mate attraction and mate choice. Lepidopteran

females, such as the winter moth (Operophtera brumata), emit pheromones to attract males

in the reproductive period. However, these chemical cues could also be eavesdropped by

predators. To our knowledge, no studies have examined whether birds can detect phero-

mones of their prey. O. brumata adults are part of the winter diet of some insectivorous tit

species, such as the great tit (Parus major) and blue tit (Cyanistes caeruleus). We per-

formed a field experiment aimed to disentangle whether insectivorous birds can exploit the

pheromones emitted by their prey for prey location. We placed artificial larvae and a dis-

penser on branches of Pyrenean oak trees (Quercus pyrenaica). In half of the trees we

placed an O. brumata pheromone dispenser and in the other half we placed a control dis-

penser. We measured the predation rate of birds on artificial larvae. Our results show that

more trees had larvae with signs of avian predation when they contained an O. brumata

pheromone than when they contained a control dispenser. Furthermore, the proportion of

artificial larvae with signs of avian predation was greater in trees that contained the phero-

mone than in control trees. Our results indicate that insectivorous birds can exploit the pher-

omones emitted by moth females to attract males, as a method of prey detection. These

results highlight the potential use of insectivorous birds in the biological control of insect

pests.

Introduction

Chemical communication is probably the most ancient and widespread form of communica-

tion [1, 2] and plays an important role in sexual selection [3, 4]. The chemical compounds

emitted by animals and used in mate attraction and mate choice are known as pheromones

[4]. In many cases, the chemical signals involved in mate choice may allow potential partners

to evaluate an individual´s quality. Theoretical models have predicted that signals can only be

evolutionarily stable if they are condition-dependent, or costly to the signaler, and if the cost is

correlated with the signaler’s quality [5–7]. Therefore, individuals can not afford to cheat, i.e.,

to signal at too high a level [8], and conspecifics can rely on the information provided by these

honest signals.
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Chemical signals can provide information about the individual quality (i.e., body condition,

reproductive status, age, parasite load, health condition) [4]. However, chemical signals, as

well as other signals, are not only costly to produce but they may imply survival costs. Signals

are not only detected by potential partners but can also be eavesdropped by predators and par-

asites. Therefore, the emission of chemical signals can greatly increase the risk of predation or

parasitism [9, 10]. Examples of predators that eavesdrop the chemical cues involved in mate

attraction or signaling have been found in different taxa, from invertebrates to vertebrates

such as amphibians, reptiles and mammals [2]. For example, there are numerous studies of

natural predators that are able to detect the chemical cues of their bark beetle prey [11].

Smooth snakes (Coronella austriaca) can also detect the chemical cues of their lizard prey [12].

Mammalian predators often detect their prey by intercepting intraspecific reproductive cues,

such as least weasels (Mustela nivalis) [13–15], cats (Felis catus) and foxes (Vulpes vulpes) [16].

In the case of predatory birds, previous evidence suggests that some predatory species of rap-

tors and shrikes could be visually attracted to the UV light reflected by the urine and faeces

marks of their small mammal prey [17]. As some studies indicate, this detection of prey may

not depend entirely on UV vision, because birds do not prefer UV areas lacking scent marks

[18–20]. To our knowledge, there is no other evidence that birds use olfaction to eavesdrop the

chemical signals emitted by their prey.

The lack of studies in this area is probably due to the fact that birds were considered almost

anosmic in the past. However, an increasing number of studies have shown that birds can

detect odors in several ecological contexts. For example, birds can use their sense of smell in

intraspecific relationships [21]. The crimson rosella (Platycercus elegans) can discriminate

between subspecies using olfaction [22]. Antarctic prions (Pachiptila desolata) can recognize

the scent of their partners [23]. Passeriformes can discriminate the sex of conspecifics [24, 25],

and Sphenisciformes, Procellariiformes and Passeriformes use olfaction for kin recognition

[26, 27, 28]. Moreover, house finches (Carpodacus mexicanus) seem to be able to evaluate the

quality of conspecifics using olfaction [29]. In interspecific contexts, blue tits (Cyanistes caeru-
leus) and European starlings (Sturnus vulgaris) are known to use olfaction for detecting aro-

matic plants [30–32]. Columbiformes and Procellariiformes use olfaction for orientation and

navigation [33, 34]. For example, British storm-petrel (Hydrobates pelagicus) and blue petrels

(Halobaena caerulea), can find their own burrows using olfaction [35–36]. The ability to detect

the chemical cues of predators and use them to ascertain predators has been demonstrated in

Passeriformes [37–39], Galliformes [40] and Anseriformes [41].

Previous evidence suggests that birds are able to perceive odors in the process of foraging.

Vultures, such as turkey vultures (Cathartes aura) [42] and greater yellow-headed vultures (C.

melambrotus) [43], appear to use olfaction to locate carcasses. The role of olfaction in foraging

has also been suggested in honey-guides (family Indicatoridae) [44] and honey buzzards [45].

In addition, some species of parrots can find their food using olfaction. For example, kakapo

(Strigops habroptilus), a flightless, nocturnal and vegetarian bird, identifies bins with food

using olfaction [46]. Procellariiform seabirds use dimethyl sulphide (DMS) for foraging [47].

The DMS is produced when the zooplankton graze on the phytoplankton [47], thus signaling

areas of high productivity in the oceans. By detecting this compound, Procelariiformes [36, 47]

and Sphenisciformes[48, 49] can locate their prey. Insectivorous birds are also able to use

olfaction to find their food. Kiwis (Apteryx australis) can use olfaction when foraging [50, 51].

Parids, such as great tits, can exploit the herbivore-induced volatiles that trees emit in response

to lepidopteran caterpillar infestation for finding those caterpillars upon which they prey [52].

Attraction to trees infested with caterpillars has also been shown in different plant-insect-bird

systems [53–57].
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Birds may not only use indirect cues to find their prey [47, 52, 56], but may be able to detect

the chemical cues emitted by the prey itself. In many lepidopteran species, females release

pheromones during the reproductive period in order to attract males [58, 59]. Birds could

detect these pheromones and use them to locate their prey. In this way, they could maximize

their foraging effort. However, to our knowledge, no study has examined whether insectivo-

rous birds can use olfaction to detect the pheromones of adult lepidopteran. Therefore, the

aim of this study was to analyze whether insectivorous birds can eavesdrop on the sex phero-

mones of lepidoptera females. We performed a field experiment to investigate whether insec-

tivorous birds in the wild are attracted to the pheromones of one of their potential prey, O.

brumata adults. The winter moth is considered a plague in many forests and orchards in

Europe [60]. We measured whether the predation rates on artificial larvae located in Pyrenean

oak trees containing an O. brumata pheromone dispenser differed from those containing a

control dispenser. We expected that if birds can detect the pheromones of their prey and are

attracted to them, the predation rate of artificial larvae by birds will be higher in the trees that

contain a pheromone dispenser than in the trees that contain a control dispenser.

Materials and methods

Study area and species

The experimental study was carried out between May and June 2016 in a Pyrenean oak (Quer-
cus pyrenaica) forest included in a Site of Community Interest (SCI), located in Sierra de Fon-

frı́a, in Teruel province, Spain (40˚590N, 1˚050W). In this forest, a population of insectivorous

birds breeding in 100 wooden nest-boxes was established in 2011. Nest-boxes were occupied

mainly by breeding pairs of blue tits (Cyanistes caeruleus) (around 45 pairs), and some pairs of

great tits (Parus major) (around 10 pairs). Other insectivorous bird species were observed in

the study area at lower densities, including common blackbird (Turdus merula), Eurasian

blackcap (Sylvia atricapilla), Sardinian warbler (S. melanocephala) and common nightingale

(Luscinia megarhynchos). Tits feed mainly on caterpillars, such as the O. brumata, during the

breeding period [61, 62]. However, during the winter, when no caterpillars are available, parids

like great tits and blue tits prey upon O. brumata adults [61, 63]. Thus, O. brumata adults con-

stitute an important part of the diet when they are available in winter. Others species included

in the winter diet of tits belong to the Hemiptera, Lepidoptera, Coleoptera and Hymenoptera

orders [61]. O. brumata adults are present in the study area from November to February [64].

In this species only females produce pheromones during the reproductive period to attract

males [65, 66]. In 1982, the pheromone of O. brumata was identified as 1,Z3,Z6,Z9-nonadeca-

tetraene [65, 66]. A synthetic pheromone can be obtained from commercial supplier (Control-

Bio1 from OPENNATUR, S.L.). The pheromone dispensers attached to a trap are effectively

used in insect pest control in order to reduce male quantities. The pheromone dispensers con-

tain 0.5 mg of 1,Z3,Z6,Z9-nonadecatetraene (Pherobank, B.V.). The emission lasts 40 days,

and thus the emission rate is approximately 9 ng/min (Pherobank, B.V.). We performed the

study outside of the reproductive period of this species to ensure that adult moths were absent,

and therefore, bird attraction to the O. brumata pheromone could be attributed to the phero-

mone and not to the presence of males.

Experimental design and procedure

O. brumata adults can only be found in winter. Nevertheless, one week before the experiment,

we placed 5 moth traps with commercial O. brumata pheromone for one week in different

locations in the study area to ensure there were no O. brumata adults or other insect species

that could have been attracted by the same pheromone (e.g., predators or parasitoids). We
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found no O. brumata adults or other arthropods inside the traps. During the 27 days of the

experiment, we placed one dispenser and ten artificial larvae on branches of 32 Pyrenean oak

trees. The branches were approximately 1.5 m long with no evident signs of herbivory. The dis-

penser and artificial larvae were placed at similar average heights in the trees (approx. 1.5 m

high). Dispensers were fixed to the branch with a pin. Ten artificial larvae were placed in the

surroundings of the dispenser, from 2 to 50 cm from the dispenser. Thus, dispensers were situ-

ated in the middle of ten artificial larvae. Pheromone and control dispensers were brown and

opaque (approx. 20x10 mm). Pheromone dispensers were made with natural rubber (Fig 1).

Control dispensers were made of brown plasticine similar to the color of the pheromone dis-

penser. There were no significant differences between the reflectance spectra of the two types

of dispensers (p> 0.05; see Fig A in S1 Supporting Information).

We selected trees that were located within 10 meters from a nest-box, and therefore, within

the breeding territory of a blue tit or a great tit. Thirty-one of the 32 nest-boxes close to experi-

mental trees were occupied by blue tits. The artificial larvae were made of light green plasticine

(similar to the natural color of real O. brumata larvae, at least by human-visual perception).

Neither the plasticine caterpillars nor the dispensers emitted UV light. The plasticine larvae

were approximately the size of a large fifth instar O. brumata larva (length 25–30 mm, Ø 3–4

mm). The plasticine larvae were attached with cyanoacrylate adhesive glue on branches of 32

forest oak trees. Experimental trees were separated by at least 40 meters. The trees were alter-

natively assigned to one of the treatments: commercial O. brumata pheromone dispenser

(n = 16), or plasticine dispenser, simulating the shape of the commercial pheromone dispenser

(odorless control) (n = 16). Thus, treatments were spatially inter-mixed in the oak trees.

To study the attraction of the insectivorous birds to the O. brumata pheromone, we checked

the number of larvae with predation marks by birds in the trees. Artificial caterpillar models

have previously been used to estimate insectivorous bird attraction [54, 67–72]. A predation

event was assigned to a tree when the tree contained at least one larva damaged by birds. Larva

Fig 1. Photograph of the pheromone dispenser and several plasticine caterpillars, one of them with beak marks, indicating a

predation event by an insectivorous bird.

https://doi.org/10.1371/journal.pone.0190415.g001
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models were considered damaged when they had triangle-shaped marks and deep cuts made

by the beak of the birds and when a part of their body was taken by the birds, as described in

Mäntylä and collaborators [54, 69]. From the following day onwards we checked the condition

of these plasticine larvae every two days for the first ten days. After ten days, we checked them

twice, once at day 20 and again at day 27 from the beginning of the experiment. Each model

showing a predation mark was replaced with a new one at the same location during the visits.

The treatments were in place for 27 days, a period of time for which the effectiveness of the

commercial pheromone is guaranteed, as it can last up to 40 days (Pherobank, B.V.). At the

end of the experiment, we removed all plasticine larvae and the commercial pheromones and

controls. The experiment was conducted under a license issued by the Instituto Aragonés de

Gestión Ambiental (INAGA/500201/24/2015/11696).

Statistical analyses

We modeled the probability that at least one predation event occurs in a tree in relation to the

treatment (pheromone vs control) with a generalized linear model (GLM) fit by the Laplace

approximation with binomial errors and a logit link function. We also analyzed the probability

that the proportion of damaged larvae per tree differed in relation to the treatment with a gen-

eralized linear model (GLM) fit by the Bernoulli distribution with binomial errors and a logit

link function. We included the day of observation in the initial models but, as it was not signif-

icant (see S2 Supporting Information), it was removed from the final models. Data analyses

were performed with the statistical program R 2.15.1 “stats” package [73].

Results

The number of trees that had at least one caterpillar with signs of avian predation differed

between treatments (GLM: Z = 2.40, P = 0.02, Fig 2). Ten out of the 16 trees containing a

Fig 2. Number of trees that had at least one artificial larva with marks of avian predation when the tree contained

an Operophtera brumata pheromone dispenser and when the tree contained a control dispenser.

https://doi.org/10.1371/journal.pone.0190415.g002
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pheromone dispenser had at least one avian predation event (i.e., at least one artificial caterpil-

lar had signs of avian predation, Fig 1). In contrast, a predation event was observed in only 3

out of the 16 control trees. The proportion of larvae damaged by the birds differed between

treatments (GLM: Z = -3.72, P = 0.0002; see Table A in S3 Supporting Information), being sig-

nificantly higher in trees that contained a pheromone (Mean ± SE = 3.04% ± 1.48%) than in

control trees (Mean ± SE = 0.71% ± 0.54%).

Discussion

Our results show for the first time that insectivorous birds can exploit sex pheromones for

prey location [74]. A greater number of trees were visited by birds (i.e., they had at least one

artificial caterpillar with signs of avian predation) when they contained an O. brumata phero-

mone dispenser compared to a control dispenser (Fig 2). Additionally, a greater proportion of

artificial larvae were predated when the tree in which they were located contained an O. bru-
mata pheromone dispenser than when it contained a control dispenser.

We performed the study during the spring, when there are no adults of O. brumata. The

adults of this species emerge in November and can be observed in the field until February [64].

Therefore, when we placed the pheromones in the field, the attraction of males to this phero-

mone was not possible. Synthetic pheromones can be less specific that the natural female pher-

omones. Thus, we investigated the presence of adults in the study area to examine whether the

pheromone attracts other insects. We placed five traps containing the pheromone a week

before the beginning of the experiment and no moths or other arthropods were collected.

Other arthropod species were never observed close to dispensers or artificial larvae in the

study area. Moreover, we did not observe any damage to the caterpillars due to species other

than birds. Therefore, the greater predation rate of artificial larvae does not appear to be due to

the attraction of birds to the presence of O. brumata males or other arthropods close to the

female pheromone.

Control and pheromone dispensers were made of different material, which may have

induced differences in visual and odor cues available to birds between control and treated dis-

pensers. It is, however, unlikely that visual cues account for the differences in predation rates

because the color spectra of control and pheromone dispensers were not significantly different

(see Figure A in S1 Supporting Information). Therefore, the lack of significant differences

between dispensers in visual cues eliminates the possibility that birds were attracted to the dis-

penser’s appearance. The artificial caterpillars and control dispensers were made with plasti-

cine, and thus the volatiles emitted by plasticine would be present in both treatments. The

similarity in the chemical composition between the caterpillars and the control dispensers

would mean that bird attraction was not caused by differences in the volatiles emitted by the

different materials of the two types of dispensers. Regardless, further experiments using the

same dispensers in the control and pheromone treatments are needed to completely exclude

the possibility of an artifact. The emission rate of the pheromone dispenser was around 9 ng/

min. This emission rate is higher than that produced by a single female moth [75], and may be

similar to that produced by 10 females. However, the concentration of this synthetic phero-

mone attracts male moths (L. Amo, personal observation), suggesting that the emission rate of

the pheromone dispensers may be biologically relevant for male moths. Our results now show

that vertebrate predators, such as insectivorous birds, are also attracted to the emission rate of

this pheromone dispenser. However, birds could only detect female moths when the emission

rate is 10-times higher than that of a single female. Thus, further studies will test whether birds

can detect lower concentrations of the pheromone to disentangle whether birds can use the

pheromone emissions to locate a single female moth or whether they are only attracted to
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female groups. Furthermore, female moths become active from sunset, when diurnal insectiv-

orous birds such as blue tits decrease their foraging activity and search for roosting places.

Therefore, additional studies are needed to elucidate whether birds use pheromones as a pre-

cise localization cue or to find good areas for foraging the subsequent day.

Previous studies have shown that the use of artificial caterpillars is a reliable measure of

insectivorous bird attraction [e.g. 54, 57, 69, 72]. For example, Muiruri and collaborators

observed several individuals of breeding bird species pecking the artificial caterpillars [76]. To

prevent the same bird from visiting all the trees, we placed the caterpillars in trees that were

separated by at least 40 meters. Blue tits normally feed within 20 meters from the nest-box in

deciduous forests and up to 40 meters in mixed forests [77]. Additionally, results of another

study show that 90% of foraging observations of blue and great tits were made within 45 m

from the nest-box [78]. Therefore, it is unlikely that the same individuals visited more than

one experimental tree. Furthermore, we expected that birds learned to recognize plasticine cat-

erpillars as unpalatable, unprofitable prey. Thus, we did not expect birds to return to the same

location numerous times.

The study area has had a blue and great tit population breeding in nest-boxes since 2011.

Blue and great tits are the most abundant insectivorous birds in the area (more than 100 adults

and their nestlings) [79]. The high abundance of these two species, as well as the fact that

experimental trees were close to nest-boxes, suggest that these two species were likely responsi-

ble for the majority of the predation. Nonetheless, we cannot exclude the possibility that other

insectivorous species or even omnivorous species that include moths in their diets and are

present in the study area, may have been attracted to the pheromones.

Our results show that birds can exploit the pheromones emitted by O. brumata females.

The attraction of birds to the pheromones of this species may help birds maximize their forag-

ing effort. O. brumata females are wingless [80] and their brown coloration allows them to

blend into the trunks of trees, such as the Pyrenean oak, which could make them cryptic and

probably hampers visual detection by bird predators. Therefore, by using the chemical cues

emitted by female moths, birds can enhance their probability of finding the camouflaged

females, as well as the male moths that are attracted by the female pheromone. As a conse-

quence, males may also suffer an increased risk of predation [10].

Bird predation on O. brumata adults during the winter may reduce the number of lepidop-

teran clutches and therefore, the number of caterpillars in spring. This can have important

consequences for host trees in the subsequent spring. Previous studies using bird exclusion

have shown a positive effect of birds on predation rates of arthropods in spring or summer

[81]. However, the effect of avian predation on their prey population during the winter period

has been less studied [60, 82, 83].

Insectivorous birds are predators of lepidopteran moths, eggs and caterpillars, such as the

O. brumata [61, 84]. Thus, they may not only decrease the number of moth adults during the

winter, but also caterpillar numbers during the spring. The nestling period of many insectivo-

rous bird species coincides with the peak occurrence of most caterpillars, including the O. bru-
mata larva. Thus, birds can greatly reduce the number of lepidopteran larvae feeding on trees

[62]. Insectivorous birds, at least great tits, use olfaction to discriminate between trees infested

with O. brumata caterpillars and uninfested trees [52], thanks to the herbivore-induced vola-

tiles (HIPVs) that trees emit in response to herbivory [52]. The attraction of birds to caterpillar

infested trees can decrease herbivore damage to trees [62, 85, 86], leading to increased growth

and reduced mortality of the trees [86–88].

The attraction of birds to the pheromones of moth females adds birds to the list of predators

that are able to eavesdrop the chemical cues emitted by their prey for mate attraction. This

new evidence indicates the costs of the emission of chemical signals for females [89] as well as
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the costs of responding to such chemicals for males [10]. These results indicate the potential

use of insectivorous birds in controlling Lepidopteran numbers in forests and orchards. Tradi-

tional control of adult numbers is based on the use of pheromone traps to collect males and

remove them from the population, decreasing access to males by females, and therefore

decreasing fecundity of females [90]. However, birds prey upon both females and males and

may be much more efficient than pheromone traps in decreasing the number of adults.
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