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Abstract: The identification of weak vital signs has always been one of the difficulties in the field of
life detection. In this paper, a novel vital sign detection and extraction method with high efficiency,
high precision, high sensitivity and high signal-to-noise ratio is proposed. Based on the NVA6100
pulse radar system, the radar matrix which contains several radar pulse detection signals is received.
According to the characteristics of vital signs and radar matrices, the Singular Value Decomposition
(SVD) is adopted to perform signal denoising and decomposition after preprocessing, and the
temporal and spatial eigenvectors of each principal component are obtained. Through the energy
proportion screening, the Wavelet Transform decomposition and linear trend suppression, relatively
pure vital signs in each principal component, are obtained. The human location is detected by the
Energy Entropy of spatial eigenvectors, and the respiratory signal and heartbeat signal are restored
through a Butterworth Filter and an MTI harmonic canceller. Finally, through an analysis of the
performance of the algorithm, it is proved to have the properties of efficiency and accuracy.

Keywords: ultra-wideband radar (UWB); vital sign extraction; singular value decomposition (SVD);
wavelet transform decomposition; energy entropy; temporal and spatial eigenvectors

1. Introduction

In recent years, emergencies such as wars and terrorist attacks, natural disasters such
as earthquakes and tsunamis and potential nuclear, chemical and biological dangerous
goods and explosives have seriously endangered the safety of human life and property.
Through years of experience in post-disaster rescue, domestic and foreign experts have
concluded that 72 h after a disaster is the golden rescue time [1]. In this period, the primary
task of rescue is to find and save the trapped victims as soon as possible, so as to minimize
casualties. The severe situation puts forward very high requirements for life detection
technology and equipment. It has become the focus of research in various countries to use
advanced technology and equipment to rescue victims who survived the disaster better
and faster without being seen by the naked eye.

Ultra-wideband radar is usually defined as a radar whose transmitted signal has a
fractional bandwidth (FBW) greater than 0.25 [2]. It has the advantages of good electro-
magnetic compatibility, strong penetration of non-metallic media, high range resolution
and low average transmitting power. The radar life detector is developed according to
the reflection principle of electromagnetic waves. David Cist, a famous physicist and
doctor of MIT, creatively applied radar ultra-wideband technology (UWB) to the field of
safety rescue, thus bringing a revolutionary new technology to this field [3,4]. It detects
various micro-movements caused by human life activities and obtains relevant information
about respiration and heartbeats from those micro-movements, thereby identifying the
survivors [5]. However, there are many factors that will cause strong interference and even
cover up the useful weak signals, such as the direct wave and strong clutter formed by

Sensors 2022, 22, 1177. https://doi.org/10.3390/s22031177 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22031177
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1899-0885
https://doi.org/10.3390/s22031177
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22031177?type=check_update&version=3


Sensors 2022, 22, 1177 2 of 44

multiple reflections off walls, the coupled signal of objects and antennas, the thermal noise
caused by the passive components in the circuit, the linear trend caused by DC components,
etc. [6–8]. Therefore, weak signal detection has always been a hotspot and a vexed issue in
the field of signal processing.

Among traditional denoising methods, the Median Filter and the Wiener Filter cannot
describe the non-stationary characteristics of the signal [9]. The Time-domain Mean Sub-
traction method can remove background clutters of stationary targets, but it will inevitably
bring additional harmonic interference [10,11]. The Linear Trend Subtraction method can
effectively remove static clutters and linear trend items of echo [12]. The Auto Gain Con-
trol method can enhance weak vital signs, thereby further improving the signal-to-noise
ratio [13]. Gerstein used the high-order cumulant method to detect the heartbeat signal,
which can effectively suppress Gaussian noise [14]. However, the above-mentioned tradi-
tional methods can only suppress specific components in the UWB echo signal, which is
difficult to meet the demand for the accurate detection of weak vital signs.

Since Fourier Transform was proposed in 1807, it has played an irreplaceable role in
the field of signal processing [15]. The Wavelet Transform theory, as a time-domain analysis
method developed by inheriting the Fourier Transform, has gradually emerged and has
been applied to the extraction technology of vital signs in recent years [16]. Wavelet Trans-
form can perform a time-frequency joint analysis of signals, with high resolution, and can
effectively denoise and extract non-stationary signals [17,18]. Kumar used Wavelet Trans-
form to process ECG signals with an improved threshold algorithm to remove the influence
of baseline drift, power frequency interference and EMG interference [19]. Guevorkian
applied the pipeline structure to the discrete Wavelet Transform, which greatly improved
the computational efficiency [20]. Liu Xiuping used Wavelet Transform and Lifting Wavelet
Transform to denoise the X-ray pulsar signals polluted by large noises [21]. Yang Xiufang
used a soft-threshold function and hard-threshold function to denoise the radar signal
under strong noise interference [22].

In recent years, the Empirical Mode Decomposition (EMD) method has attracted the
attention of scholars because it completely got rid of the limitations of time-frequency
analysis [23,24]. Based on the EMD method, Xiong filtered each of the decomposed IMF
components and reconstructed the denoised signal [25]. In 2017, Giovanni proposed a
method of extracting heartbeat and respiratory signals by using the EMD method in a
certain range combined with Doppler information [26]. Yan J. of Nanjing University of
Science and Technology used the Variational Mode Decomposition (VMD) method to
extract the vital signs of one or more targets based on UWB radar [27]. In 2018, in the
vital signs monitoring system based on UWB radar proposed by Liang, the spectrum
accumulation of Ensemble Empirical Mode Decomposition (EEMD) was used to detect the
vital signs parameters, which improved the performance and detection accuracy of the
EMD method [28].

In addition, Spatial Spectrum Estimation is also an emerging technology in the field
of signal processing in recent years [29–31]. Since the signal space of heartbeats and
respiration is orthogonal to the noise signal space, a Multiple Signal Classification (MUSIC)
algorithm can be used for spectrum estimation [32–34]. Z. Dong applied the Root-MUSIC
algorithm to greatly improve the performance of the MUSIC algorithm, reduce the amount
of calculation and improve the efficiency of vital sign extraction [35]. Other effective
methods include ARMA Model Estimation [36,37], Maximum Likelihood Estimation [38],
Entropy Spectrum Estimation [39,40], Pisarenko Harmonic Decomposition [41], Eigen
Decomposition Method [42–44], etc.

At present, during the actual disaster rescue process, UWB life detectors have played
a certain role, but it is undeniable that the application effect is still limited. In this paper, a
new method is proposed to improve the robustness, accuracy and timeliness of the UWB
radar signal processing and vital signs extraction algorithm. Thus, the life detector can
better detect the weak life signals in various complex environments and find the trapped
survivors more accurately and quickly.
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2. Basic Principles of UWB Life Detection

The UWB radar life detector detects the situation inside the ruins by transmitting
pulse detection signals to the surface. Based on the time-domain Doppler effect of vital
signs within the UWB radar echo signals, it analyzes whether there are survivors in the
ruins and calculates the specific location information. When a UWB radar signal encounters
the trapped victims and generates an echo signal, the human life activities change the
parameters of the echo signal. This modulation effect on the echo signal has the following
characteristics:

(1) The vital signs of the human body such as respiration and heartbeat have low-
frequency characteristics. The human heartbeat is about 70–80 times/min, and respi-
ration is about 20–40 times/min. Therefore, the modulation frequency of vital signs
to radar echo signals is in the range of 0.2 to 2 Hz.

(2) Under normal circumstances, human vital signs have relatively accurate periodic
characteristics.

Figure 1 shows the characteristics of the echo signals of stationary targets and human
periodic fretting vital signs. Assuming that the fluctuating motion of the chest caused by
respiration and heartbeat changes in the law of sinusoidal signals, the distance between the
vital signs’ signal source and the UWB radar detector can be expressed as follows:

d(t) = d0 + ∆dr sin 2π frt + ∆dh sin 2π fht, (1)

where d(t) represents the distance from chest to radar antenna, d0 is the average reference
distance from chest to radar antenna, ∆dr is the amplitude of chest changes caused by
respiration, fr is the respiration frequency, ∆dh is the amplitude of chest changes caused
by the heartbeat and fh is the heartbeat frequency. In the process of vital signs detection,
the response caused by the radar pulse signal is the superposition of echo signals of static
objects and dynamic objects:

h(t, τ) = ∑
i

αiδ(τ − τi) + αdδ(τ − τd(t)), (2)

τd(t) =
2d(t)

c
= τ0 + τr sin 2π frt + τh sin 2π fht, (3)

where the former represents the static response generated in the detection environment,
and the latter represents the dynamic response caused by human respiration and heartbeat.
Moreover, αd is the amplitude of the dynamic response, and τd(t) is the time delay of
dynamic response. In addition, it can be seen from Equation (3) that the motion of the chest
cavity modulates the echo signal, resulting in a certain periodic change in the position of
the dynamic time delay. Therefore, the echo signal received by the receiving antenna can
be regarded as the convolution of the transmitted pulse signal and the response function,
which is expressed by the following equation:

r(t, τ) = p(t) ∗ h(t, τ)
= ∑

i
αi p(τ − τi) + αd p(τ − τd(t)), (4)

where p(t) is the radar pulse detection signal. In Equation (4), t represents the accumulation
time of multiple pulses transmitted by the radar, and τ represents the sampling time of
each pulse. The pulse sampling time is closely related to the distance information from
each position in space to the radar antenna.
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Figure 1. Schematic diagram of vital signs signals detection effect. 
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where Ts is the pulse repetition interval time, δτ is the sampling interval in fast time, m is 
the number of slow time samples, n is the number of fast time samples, c[n] is the echo 
signals components of static object and h[n, m] is the vital signs of respiration and heart-
beat. 
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first-order Gaussian pulse signals. There are two independent pulse generators inside the 
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resolution. Figure 2 shows the hardware structure of the vital sign detection system. 
Through setting the internal registers, the detection, acquisition and processing of UWB 
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the slow time domain sampling frequency is set to 152.6 Hz and the fast time domain 
sampling length is 512. Figure 3 shows the experimental setup of the system for different 
scenes. According to the actual test environment, a simple test system platform is built on 
site to detect the performance of the radar device in practical application. An NVA6100 
Radar device is used for UWB radar signal transmission, data acquisition and processing. 

Figure 1. Schematic diagram of vital signs signals detection effect.

Sampling the radar signals’ waveform at continuous discrete time series when the
pulse accumulation time t = mTs (m = 1, 2, . . . , M), the received echo signals observed for a
long time are:

r(mTs, τ) = ∑
i

αi p(τ − τi) + αd p(τ − τd(mTs)), (5)

Storing the discrete time series of M pulse signals after sampling, namely, the UWB
pulse echo signals are discretized and stored in a two-dimensional matrix of N rows and M
columns, the UWB echo matrix is formed:

RN×M = {r[n, m]}

=

{
∑
i

αi p(nδτ − τi) + αd p(nδτ − τd(mTs))

}
,

= {c[n] + h[n, m]} (1 ≤ m ≤ M, 1 ≤ n ≤ N)

(6)

where Ts is the pulse repetition interval time, δτ is the sampling interval in fast time, m is
the number of slow time samples, n is the number of fast time samples, c[n] is the echo
signals components of static object and h[n, m] is the vital signs of respiration and heartbeat.

Based on the above analysis, one can preliminarily judge whether there are vital signs
by filtering the static object components and detecting whether there are periodic change
characteristics in the UWB echo signals.

3. Construction of Vital Signs Detection System

In this project, the NVA6100 pulse radar experimental platform is adopted. Two
transceiver antennas based on the Vivaldi antenna structure are used to realize the trans-
mission and reception of UWB signals, and the transmitted signals are approximately
first-order Gaussian pulse signals. There are two independent pulse generators inside the
NVA6100 chip, which can generate nanosecond pulse detection signals with high range res-
olution. Figure 2 shows the hardware structure of the vital sign detection system. Through
setting the internal registers, the detection, acquisition and processing of UWB echo signals
can be realized. The fast time domain sampling frequency is set to 39 GHz, the slow time
domain sampling frequency is set to 152.6 Hz and the fast time domain sampling length is
512. Figure 3 shows the experimental setup of the system for different scenes. According
to the actual test environment, a simple test system platform is built on site to detect the
performance of the radar device in practical application. An NVA6100 Radar device is
used for UWB radar signal transmission, data acquisition and processing. A computer
is used to receive and store data and display the algorithm running results. While the
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radar device is detecting, the detected target person records the number of breaths he takes
during the test period, and the heart rate tester is used to test the heartbeat frequency.
In order to test whether the algorithm proposed in this paper can meet the actual needs,
different test scenes, such as the detection of indoor stationary targets, targets covered by
obstacles, dynamic targets, multiple targets and targets in complex outdoor environments
are constructed. Figure 3a shows the indoor obstacle free detection scene; Figure 3b shows
the indoor obstacle crossing the detection scene, where the obstacle is a wall made of
concrete with a thickness of 25 cm and a density of 2500 kg/m3; Figure 3c shows the indoor
dynamic object detection sense where the dynamic target is marching on the spot; Figure 3d
shows the outdoor obstacle-free detection scene; Figure 3e shows the outdoor obstacle
crossing detection scene, the radar device need to pass through the obstacle to detect the
outdoor human target, and the obstacle is a wall made of concrete with a thickness of 32
cm and a density of 2500 kg/m3; Figure 3f shows the outdoor dynamic object detection
sense where the dynamic target is marching on the spot.
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In a complex field detection environment, weak respiration and heartbeat signals
are covered by a large number of noises and clutters. Therefore, in order to improve the
accuracy of vital signs extraction in low signal-to-noise ratio environment, the algorithm
proposed in this paper includes the following steps: signal preprocessing, signal denoising
and decomposition, vital signs extraction and restoration, and vital signs reconstruction.
Figure 4 shows the specific flowchart of the algorithm proposed in this paper. In the
following chapters, firstly, the algorithm will be explained in detail with the sense of
indoor stationary object detection, which is regarded as the simplest case. Then, the
experimental results in other groups of scenarios will be displayed to verify the effectiveness
of the proposed method in the actual complex environment. Finally, the performance of
the proposed algorithm will be compared with the existing technologies to illustrate the
advancement of the method.
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4. Signal Preprocessing

Under the actual detection circumstances, there are a lot of interference clutters in the
UWB echo signal. The echo matrix model in a real environment is shown as follows:

R[n, m] = h[n, m] + c[n] + w[n, m] + d[m] + l[n, m], (7)

where h[n, m] represents the vital signs to be acquired, c[n] represents the static background
clutters, w[n, m] represents the additive white noises caused by the radar system source,
d[m] represents the unstable fast time DC components and l[n, m] is the linear trend on the
slow time axis due to the unstable amplitude of the radar system during the acquisition
process. After obtaining the UWB echo signals, it is necessary to remove some above clutter
through signal preprocessing.

4.1. Clutter Suppression

Background clutters c[n] refers to all static components of signals unrelated to vital
signs. They are generated from the multi-path reflection of human limbs, trunks and static
objects, thus hardly any change can be observed in fast time.

4.1.1. Range Profile Subtraction (RPS) Method

The Background clutters c[n] always contain high-frequency components. Static
background clutter which has a large amplitude can be regarded as a constant component
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for the scanning process. To perform the pulse cancellation, the Range Profile Subtraction
(RPS) method is applied:

R′[1, m] = R[1, m]
R′[n, m] = R[n, m]− R[n− 1, m] (m = 1, . . . , M, n = 2, . . . , N)

, (8)

4.1.2. Time Mean Subtraction (TMS) Method

The background clutter caused by detecting static objects in the scene can be ap-
proximated as a DC component, so the Time Mean Subtraction (TMS) method is used to
eliminate this component:

R′′ [n, m] = R′[n, m]− 1
N

N

∑
i=1

R′[i, m] (m = 1, . . . , M, n = 1, . . . , N) , (9)

4.2. Signal Enhancement

In the actual application scene of life detectors, UWB pulse signals often need to pene-
trate walls, ruins, sheltered objects and other media, which often leads to the concealment of
key vital signs. At the same time, the strength of the received signal is related to the signal
transmission distance, so the echo signal of the distant target object is relatively weak. In
view of the above situation, the weak signal enhancement algorithm for the original radar
echo signals is the key to improve the detection success rate in a complex environment.

4.2.1. Advance Normalization Method

To enhance the vital signs, the Advance Normalization method is performed. The over-
all idea of the algorithm is to perform piecewise normalization for the whole signal interval
according to the multi-order maximum, so as to strengthen the key information masked
by the previous large amplitude signals. The specific flow of the Advance Normalization
method is as follows:

In the first iteration step, for each column of echo signal {R”[i, m], i = 1, . . . , N}, find the
maximum value Smax(1) of the echo sampling data. τmax(1) is the position of the sampling
point corresponding to the maximum value Smax(1). According to Equation (10), for i = 1,
. . . , τmax(1), the echo data are normalized with Smax(1):

Smax(1) = R′′ [τmax(1), m] = Max(R′′ [i, m]) i = 1, . . . , N
Y[i, m] = R′′ [i,m]

Smax(1)
= R′′ [i,m]

R′′ [τmax(1),m]
i = 1, . . . , τmax(1)

, (10)

In subsequent iteration steps, assuming that the iteration step number is j, partial
echo sampling data {R”[i, m], i = τmax(j − 1) + 1, . . . , N} are intercepted. Find the j order
maximum value Smax(j). τmax(j) is the position of the sampling point corresponding to the
maximum value Smax(j). According to Equation (11), for i = τmax(j − 1) + 1, . . . , τmax(j),
the echo data are normalized with Smax(j):

Smax(j) = R′′ [τmax(j), m] = Max(R′′ [i, m]) i = τmax(j− 1) + 1, . . . , N
Y[i, m] = R′′ [i,m]

Smax(j) =
R′′ [i,m]

R′′ [τmax(j),m]
i = τmax(j− 1) + 1, . . . , τmax(j)

, (11)

The above iterative process continues until τmax(j) = N. The Advance Normalization
process of the whole UWB echo signal is completed.

4.2.2. Automatic Gain Control (AGC) Method

Automatic Gain Control is an automatic control method that makes the gain of the
amplification circuit automatically adjust with the signal strength. It takes the effective
combination of linear amplification and compression amplification to adjust the output
signal. Therefore, the Automatic Gain Control (AGC) method is used to enhance the weak
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vital signs in slow time, so as to further improve the signal-to-noise ratio. The specific
algorithm is as follows:

First, set the sliding window length d and the maximum gain value gmax. Then,
calculate the corresponding gain coefficient according to the signal power within the
window. Finally, calculate the controlled data by multiplying the gain coefficient to realize
the adaptive control effect:

g(i, m) =
2d + 1√

i+d
∑

k=i−d
Y(i, m)2

, (12)

gmask(i, m) =

{
gmax

g(i, m)
, g(i, m) > gmax
, g(i, m) ≤ gmax

, (13)

X(i, m) = gmask(i, m)Y(i, m), (14)

Figure 5 shows the radar data before and after preprocessing.

Sensors 2022, 22, 1177 9 of 44 
 

 

4.2.2. Automatic Gain Control (AGC) Method 
Automatic Gain Control is an automatic control method that makes the gain of the 

amplification circuit automatically adjust with the signal strength. It takes the effective 
combination of linear amplification and compression amplification to adjust the output 
signal. Therefore, the Automatic Gain Control (AGC) method is used to enhance the weak 
vital signs in slow time, so as to further improve the signal-to-noise ratio. The specific 
algorithm is as follows: 

First, set the sliding window length d and the maximum gain value gmax. Then, calcu-
late the corresponding gain coefficient according to the signal power within the window. 
Finally, calculate the controlled data by multiplying the gain coefficient to realize the 
adaptive control effect: 

2

2 1( , )
( , )

i d

k i d

dg i m
Y i m

+

= −

+=


, 

(12)

maxmax

max

, ( , )
( , )

, ( , )( , )mask

g i m gg
g i m

g i m gg i m
>

=  ≤
, (13)

( , ) ( , ) ( , )maskX i m g i m Y i m= , (14)

Figure 5 shows the radar data before and after preprocessing. 

  
(a) (b) 

Figure 5. Signal preprocessing performance: (a) Radar raw data; (b) Radar data after preprocessing. 

5. Signal Processing Based on SVD 
5.1. Singular Value Decomposition Principle 

Singular Value Decomposition (SVD) is a widely used algorithm in the field of ma-
chine learning. It can be used for characteristic decomposition and massive data compres-
sion. In this paper, the SVD method is used to process the radar data after signal prepro-
cessing, so as to achieve the purpose of denoising, data compression, dimensionality re-
duction and characteristic decomposition. The steps of Singular Value Decomposition 
(SVD) for the radar data XN×M, which is after signal preprocessing, will be described in 
detail later. 

The process of SVD is to decompose the radar data matrix XN×M into the following 
form: 

Figure 5. Signal preprocessing performance: (a) Radar raw data; (b) Radar data after preprocessing.

5. Signal Processing Based on SVD
5.1. Singular Value Decomposition Principle

Singular Value Decomposition (SVD) is a widely used algorithm in the field of machine
learning. It can be used for characteristic decomposition and massive data compression. In
this paper, the SVD method is used to process the radar data after signal preprocessing, so
as to achieve the purpose of denoising, data compression, dimensionality reduction and
characteristic decomposition. The steps of Singular Value Decomposition (SVD) for the
radar data XN×M, which is after signal preprocessing, will be described in detail later.

The process of SVD is to decompose the radar data matrix XN×M into the following form:

XN×M = UN×NΣN×MVT
M×M =

k

∑
i=1

uiσivi
T , (15)

ΣN×M =



σ1 0 0 0 0 0
0 σ2 0 0 0 0
0 0 σ3 0 0 0
...

...
...

. . . 0 0

0 0 0 0
. . . 0


N×M,

σ1 ≥ σ2 ≥ σ3 ≥ · · · ≥ σk , k ≤ min(N, M)

(16)
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UN×N =
[→

u 1,
→
u 2,
→
u 3, · · ·→u N

]
, (17)

VM×M =
[→

v 1,
→
v 2,
→
v 3, · · ·→v M

]
, (18)

Firstly, the square matrices XXT and XTX are constructed. Since both XXT and XTX
are real symmetric square matrices, they can be performed orthogonal similarity diagonal-
ization. According to the principle of eigenvalue decomposition and the form after SVD,
one can obtain:

XXT = UΣVT(UΣVT)
T

= UΣVTVΣTUT = U(ΣΣT)UT ,
= UΣ1UT

(19)

XTX = (UΣVT)
TUΣVT

= VΣTUTUΣVT = V(ΣTΣ)VT ,
= VΣ2VT

(20)

UN×N and VM×M are unit orthogonal matrices, namely, UUT = I and VVT = I. Σ1 and
Σ2 are the eigenvalue matrices, which have singular values only on the main diagonal, and
only zero value for any other element.

According to Equations (19) and (20), the eigenvector matrix UN×N of XXT is the left
singular matrix of XN×M when performing SVD, and the eigenvector matrix VM×M of XTX
is the right singular matrix of XN×M when performing SVD. The singular value matrix
ΣN×M can be obtained by extracting the square root of the eigenvalues of matrix Σ1 or
matrix Σ2.

The singular value matrix ΣN×M has singular values only on the main diagonal,
namely, σ1, σ2, σ3, . . . , σk, σ1 ≥ σ2 ≥ σ3 ≥ . . . ≥ σk. ui represents the ith column vector of
matrix UN×N, which is called the ith order left singular vector. vi represents the ith column
vector of matrix VM×M, which is called the ith order right singular vector. σi represents the
ith element of the singular value spectrum.

5.2. Data Denoising and Dimensionality Reduction Based on SVD

According to the principle of principal components analysis, for radar data XN×M,
each column vector xi represents a group of individual sample data, the target vital signs
among each group of individual sample data have strong correlation and the noise signal
has randomness. Combined with Formula (19), the Covariance Matrix of XN×M is:

Cx = 1
M X·XT =

M−1
M


cov(

→
xc1,

→
xc1) cov(

→
xc1,

→
xc2) · · · cov(

→
xc1,

→
xcN)

cov(
→

xc2,
→

xc1) cov(
→

xc2,
→

xc2) · · · cov(
→

xc2,
→

xcN)
...

...
. . .

...

cov(
→

xcN ,
→

xc1) cov(
→

xcN ,
→

xc2) · · · cov(
→

xcN ,
→

xcN)

,
(21)

where cov() represents the covariance between two vectors, the diagonal elements of the
covariance matrix Cx represent the variance of the data set and the non-diagonal elements
represent the correlation between different dimensions of the data. Because the composition
of radar data XN×M is complex and different dimensions of data have strong correlation,
the amount of data is large, and some of them cannot be rounded off.

However, according to Equation (19), the following relationship can be obtained:

XXT = UΣ1UT

⇒ UTXXTU = Σ1 ,
⇒ UTX(UTX)

T
= Σ1

(22)
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Therefore, for matrix UTX, its covariance matrix is:

CUT X =
1
M

UTX·(UTX)
T
=

1
M

Σ1, (23)

Therefore, for radar matrix XN×M, after orthogonal similarity transformation by matrix
UT, the data can be projected into a new vector space, where the covariance matrix of the
data in the new vector space is a diagonal matrix Σ1. The non-diagonal elements of Σ1
are zero, indicating that different dimensions are independent of each other in the new
data space. The diagonal elements of Σ1 are σ1

2, σ2
2, σ3

2, . . . , σk
2, σ1

2 ≥ σ2
2 ≥ σ3

2 ≥ . . .
≥ σk

2, indicating that the components corresponding to the fronter elements account for a
larger proportion of the data. According to the above characteristics, by selecting the main
elements in matrix Σ1, one can retain the essential parts and reduce the dimensionality of
the original radar data.

Above is the process of dimensionality reduction and denoising for XN×M in the y-axis
direction. According to the same principle, the covariance matrix of XT can be analyzed
to reduce dimensionality and denoise in x-axis direction. The result is the form of SVD as
shown in Formula (15).

For the radar data XN×M after SVD processing, the principal components are screened
through Cattell’s Scree-Test. Figure 6 shows the Scree plot of Cattell’s Scree-Test, and the
magnitudes and variation trends of major singular values are also shown.
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From Figure 6, the second-order to third-order singular values decline rapidly. Com-
bined with Formulas (24) and (25), one can calculate the descent gradient and normalized
singular values. After comprehensive consideration, the first six order principal compo-
nents are selected and retained for subsequent processing after dimensionality reduction
and denoising:

gj =
σj − σj+1

σ1
, j = 1, 2, 3, · · · , k− 1, (24)

hj =
σj

σ1
, j = 1, 2, 3, · · · , k, (25)

In addition, the noise signal w[n, m] has randomness, so its components in each
spatial direction are equal. The signal to noise ration sketch map has been shown in
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Figure 7. The component size of each order principal component is different, but the noise
signal contained can be regarded as invariant, so the Signal to Noise Ratio (SNR) of each
component can be compared as in Equation (26):

SNR(σ1u1v1) ≥ SNR(σ2u2v2) ≥ · · · ≥ SNR(σkukvk), (26)
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For those small singular values, their corresponding components have a very small
signal-to-noise ratio. Therefore, abandoning these components with small signal-to-noise
ratio from the original data will cause little loss to the effective components, and at the
same time, parts of the noise with relatively large proportions are removed. Figure 8 shows
the signal time domain characteristics of the first six order principal components of the
radar matrix XN×M.
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5.3. Signal Eigen Decomposition in Time-Space Dimension

After extracting the principal components of the radar matrix, the variety characteristic
of each principal component in temporal and spatial dimensions can still be extracted by
the SVD algorithm. The principle is as follows:

According to Equations (22) and (23), for radar matrix XNxM, after orthogonal similarity
transformation with UT, the data are projected into a new space, and each row of matrix
UTX is linearly independent with each other. Noting that YU = UTX, one can obtain:

YU =



→
yu1

T
→

yu2
T

...
→

yuk
T

...


=



σ1·
→

eu1
T

σ2·
→
→
e u2

T

...

σk·
→

euk
T

...


= UTX, (27)
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X = U·YU =
[→
u1,
→
u2, · · · ,

→
uk

]


σ1·
→

eu1
T

σ2·
→

eu2
T

...

σk·
→

euk
T


= σ1

→
u1

→
eu1

T + σ2
→
u2

→
eu2

T + · · ·+ σk
→
uk

→
euk

T

(28)

where the vectors eu1, eu2, . . . , euk are the unit orthogonal bases corresponding to each order
principal components in the x-axis direction, which are linearly independent of each other.
The left singular matrix U projects and restores each order principal components which
feature in the x-axis direction to the original radar matrix XN×M. It can be derived that each
order left singular vectors ui reflect the variation characteristics of the principal components
along the y-axis, namely, ui decomposes the variation characteristics of the radar matrix
XN×M in spatial dimension. In this paper, ui is noted as the ith spatial eigenvector of the
radar matrix XN×M. By analyzing ui, one can obtain the variation characteristics of radar
signal components at different detection distance.

Similarly, noting that YV = VTX, one can obtain:

YV =



→
yv1

T
→

yv2
T

...
→

yvk
T

...


=



σ1·
→

ev1
T

σ2·
→
→
e v2

T

...

σk·
→

evk
T

...


= VTXT , (29)

XT = V·YV =
[→
v1,
→
v2, · · · ,

→
vk

]


σ1·
→

ev1
T

σ2·
→

ev2
T

...

σk·
→

evk
T


= σ1

→
v1

→
ev1

T + σ2
→
v2

→
ev2

T + · · ·+ σk
→
vk

→
evk

T

(30)

Each order right singular vectors vi reflect the variation characteristics of the principal
components along the x-axis, namely, vi decomposes the variation characteristics of the
radar matrix XN×M in the temporal dimension. In this paper, vi is noted as the ith temporal
eigenvector of the radar matrix XN×M. By analyzing vi, one can obtain the variation
characteristics of radar signal components at different detection time. Figure 9 shows the
temporal and spatial eigenvectors for the first six order principal components.
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first converted to the frequency domain by fast Fourier transform. Generally, the fre-
quency range of human cardiopulmonary movements such as respiration and heartbeats 
are 0.2 to 0.7 Hz and 1.1 to 2 Hz, respectively. Therefore, the range of frequency domain 
characteristic extracted after fast Fourier transform is set between 0.2 and 2 Hz to cover 
the frequency range of the whole vital sign signal. Figure 10 shows the amplitude spec-
trum of each order principal component. By calculating the ratio of the vital signs’ frequency 
band energy to the whole signal frequency band energy, one can obtain the energy propor-
tion diagram of vital signs frequency band shown in Figure 11. Finally, the first, third and 
fifth order principal components were selected for further analysis and processing. 
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6. Vital Signs Extraction and Restoration
6.1. Signal Components Screening Based on Energy Proportion Analysis

For each order principal component extracted by SVD, some clutters and noise still
exist. For the principal components with much noise and only a small number of vital
signs, it is difficult to extract effective information because of the low signal-to-noise ratio,
therefore, it is not necessary to perform further analysis. For screening, these signals are
first converted to the frequency domain by fast Fourier transform. Generally, the frequency
range of human cardiopulmonary movements such as respiration and heartbeats are 0.2 to
0.7 Hz and 1.1 to 2 Hz, respectively. Therefore, the range of frequency domain characteristic
extracted after fast Fourier transform is set between 0.2 and 2 Hz to cover the frequency
range of the whole vital sign signal. Figure 10 shows the amplitude spectrum of each order
principal component. By calculating the ratio of the vital signs’ frequency band energy to
the whole signal frequency band energy, one can obtain the energy proportion diagram
of vital signs frequency band shown in Figure 11. Finally, the first, third and fifth order
principal components were selected for further analysis and processing.
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6.2. Vital Signs Extraction Based on Wavelet Transformation

In case of practical engineering applications, the analyzed signal may contain many
spikes or abrupt parts, and the noise is not always stationary white noise. In this case, the
traditional Fourier analysis is incapable of action because it cannot reflect the signal change
at a certain time point, so that any sudden change in the time axis will affect the whole
spectrum of the signal. The wavelet analysis can carry out multi-resolution analysis on the
signal in time and frequency domain at the same time, so it can effectively distinguish the
abrupt part and noise in the signal, so as to realize signal denoising.
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Assume that the received signal has the following form:

f (t) = s(t) + u(t), (31)

where s(t) is the target signal without noise, u(t)~N(0, σ2) is the steady additive Gaussian
white noise with the mean value of zero and variance of σ2. By discrete sampling of the
signal f (t), one can obtain:

f (n), n = 0, 1, . . . , N − 1 , (32)

The wavelet transform process is:

WTf (j, k) = 2−
j
2

N−1

∑
n=0

f (n)ψ(2−jn− k), (33)

where WTf (j, k) is the wavelet coefficient, and j represents the number of wavelet decom-
position layers. In practical application, in order to simplify the process, the recursive
implementation method of wavelet transform is always obtained according to the double-
scale equation, namely, the Mallet algorithm:

S f (0, k) = f (k)
S f (j + 1, k) = S f (j, k) ∗ h(j, k)
WTf (j + 1, k) = S f (j, k) ∗ g(j, k)

(34)

where h and g are low-pass and high-pass filters corresponding to scale function δ(x) and
wavelet function ψ(x), respectively, Sf (j, k) is scale coefficient and WTf (j, k) is the wavelet
coefficient. Accordingly, the reconstruction formula of the wavelet transform is:

S f (j− 1, k) = S f (j, k) ∗ h̃(j, k) + WTf (j, k) ∗ g̃(j, k), (35)

The process of signal denoising by wavelet transform is shown in Figure 12.
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Perform wavelet transform on the noisy signal of Equation (31), noting W as the
wavelet transform matrix and f and s as the vectors corresponding to f (n) and s(n), respec-
tively. Then, one can obtain:

WTf = W f , WTs = Ws, WTu = Wu, (36)

According to the linear property of wavelet transform, one can obtain:

WTf = WTs + WTu, (37)

According to the property of noise u, there are:

E{WTu} = E{Wu} = WE{u} = 0
P{WTu} = E

{
WTuWTu

T} = E
{

WuuTWT} = σ2 I
, (38)

According to the above properties, after orthogonal wavelet transformation, the en-
ergy of wavelet coefficients WTf (j, k) on each scale corresponding to signal s(n) is mainly
concentrated in a few specific positions, which correspond to the odd positions and impor-
tant information of original signal s(n). The noise u(n) is still white noise after orthogonal
wavelet transformation, and its wavelet coefficients are uncorrelated to each other and
distributed on all time axes at all scales.

Based on above characteristic, the process and principle of wavelet denoising are as
follows: First, wavelet transformation is applied to the noisy signal. Then, the wavelet
coefficients of the target signal are extracted by various methods at each scale. At the same
time, the wavelet coefficients of noise are removed as much as possible. Finally, the signal
is reconstructed by inverse wavelet transformation to achieve the purpose of denoising.

In this paper, the sym6 wavelet base is used. The commonly used threshold functions
are hard threshold function and soft threshold functions, which are given by Formulas (39)
and (40), respectively:

ŵj,k =

 wj,k

∣∣∣wj,k

∣∣∣ ≥ λ

0
∣∣∣wj,k

∣∣∣ < λ
, (39)

ŵj,k =

 sgn(wj,k)(
∣∣∣wj,k

∣∣∣− λ)
∣∣∣wj,k

∣∣∣ ≥ λ

0
∣∣∣wj,k

∣∣∣ < λ
, (40)

The hard threshold function can retain the peak characteristics of the original signal as
much as possible, while the soft threshold function has good continuity at the threshold
boundary. Therefore, the hard threshold function is used to denoise the spatial eigenvectors
ui in the spatial dimension, and the soft threshold function is used to denoise the temporal
eigenvectors vi in the time dimension.

In this paper, the frequency of radar pulse transmission is 152.6 Hz, while the frequency
range of vital signs is 0.2–2 Hz. Therefore, when extracting vital signs from the temporal
eigenvectors vi, the number of wavelet decomposition layers is set to seven. The frequency
range of the radar signal under wavelet multi-scale decomposition is shown in Figure 13.
The threshold of noise reduction is determined with the penalty strategy. According to
the frequency range, the energy of vital signs is concentrated on the seventh layer wavelet
component, so only the seventh layer low-frequency and high-frequency components are
retained for further denoising to extract vital signs. The vital signs extraction results of
each principal component are shown in Figure 14.
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6.3. Survivor Location Based on Energy Entropy

As described in the previous section, wavelet transform is used to denoise the spatial
eigenvector. The results of wavelet denoising of ui by using the hard threshold function are
shown in Figure 15.

Then, constructing the Hamming window according to the thickness of human chest,
calculate the energy entropy of each order principal component at different positions. The
results are shown in Figure 16. As shown in Table 1, the maximum energy entropy is the
location of the target vital signs. At the same time, the confidence factors (K) are calculated
according to the signal-to-noise ratio of each order spatial eigenvector.

Different proportions are given according to the singular value and signal-to-noise
ratio of each order principal component, the final calculated survivor target position is
Pc = 0.811 m. Therefore, the positioning error of the algorithm proposed in this paper is
err = 0.011 m.
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Table 1. Survivor location information based on energy entropy.

Order Singular Value Size Calculated Target Position (m) K

1 170.04 0.810 97.1%
3 40.38 0.810 91.4%
5 19.17 0.821 80.2%

6.4. Respiratory Signal Restoration

The vital signs extracted from each order principal components shown in Figure 14
have removed a large amount of high-frequency noise. Therefore, except for the vital signs
of respiration and heartbeats, the residual clutter in the current signal is the low-frequency
linear drift. The principle of linear trend suppression is as follows:

W = ΩT − X(XTX)
−1

XTΩT , (41)

The linear trend suppression effects are shown in Figure 17.
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In order to extract the target respiratory signal of 0.2–0.6 Hz in vital signs, the But-
terworth filter is adopted according to the properties of original signal and target signal.
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The Butterworth filter is an infinite impulse response (IIR) digital filter, which is char-
acterized by a frequency response curve that is maximally flat in the passband without
ripple and gradually drops to zero in the stopband. In order to extract the breathing
signal, a Butterworth bandpass filter needs to be designed, and its transfer function can be
expressed as:

H(u, v) =
1

1 +
[

D2(u,v)−D0
2

D(u,v)·W

]2n , (42)

where D0 is the center frequency of the passband, W is the bandwidth of the bandpass filter
and n is the order. In order to obtain a purer signal and ensure that the filter can effectively
extract the signal, the upper and lower boundary frequencies of the passband are set to
0.2 Hz and 0.6 Hz, respectively, the passband attenuation is set to 0.1 dB. In addition, the
upper and lower boundary frequencies of the stopband are set to 0.05 Hz and 0.8 Hz, the
stopband attenuation is set to 1 dB. The order of the Butterworth filter n is calculated equals
three, and its amplitude-frequency characteristic curve is shown in Figure 18.
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Figure 19. Respiratory signal restoration result: (a) Restoration of first order respiratory signal; (b) 
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Extracting the maximum value in each order spectrum as the respiratory signal fre-
quency and calculating the signal-to-noise ratio according to the following equation, one 
can obtain the results shown in Table 2: 

0.025

0.025
0.025

0.025

10 log10

( )
10 log10

( ( )) ( )

RF

f RF
RF

f RF

sigPowerSNR
noisePower

Ak f

sum Ak f Ak f

+

= −
+

= −

= ×

= ×
−





, (43) 

Table 2. Respiratory signal restoration result. 

Order Singular Value Size Respiratory Frequency (Hz) SNR (dB) 
1 170.04 0.342 1.457 
3 40.38 0.328 −4.269 
5 19.17 0.340 −1.196 

Figure 19. Respiratory signal restoration result: (a) Restoration of first order respiratory signal;
(b) first order respiratory signal spectrum; (c) Restoration of third order respiratory signal; (d) third
order respiratory signal spectrum; (e) Restoration of fifth order respiratory signal; (f) fifth order
respiratory signal spectrum.

Extracting the maximum value in each order spectrum as the respiratory signal fre-
quency and calculating the signal-to-noise ratio according to the following equation, one
can obtain the results shown in Table 2:

SNR = 10× log 10 sigPower
noisePower

= 10× log 10

RF+0.025
∑

f=RF−0.025
Ak( f )

sum(Ak( f ))−
RF+0.025

∑
f=RF−0.025

Ak( f )

, (43)

Table 2. Respiratory signal restoration result.

Order Singular Value Size Respiratory Frequency (Hz) SNR (dB)

1 170.04 0.342 1.457
3 40.38 0.328 −4.269
5 19.17 0.340 −1.196
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6.5. Heartbeat Signal Restoration

Among the extracted principal components of each order, the heartbeat signal compo-
nent is only observed in the spectrum of the third temporal eigenvector. However, because
of the weak strength, it is still difficult to be directly visible, even after clutter and noise
removal performance.

Figure 20 shows the normalized spectrum of the third temporal eigenvector, the
position of the maximum peak corresponds to the respiratory frequency, and the positions
of the second and third peaks correspond to two and three times of the respiratory frequency.
Therefore, it can be seen that the high-order harmonics of respiratory signal produce
great interference.
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The Moving Target Indicator (MTI) method is adopted to attenuate the breathing
harmonics. Figure 21 shows the principle of a double-delay MTI harmonic canceller. Set
the system delay Tr to the inverse of the respiratory frequency RF. The response of the
double-delay MTI harmonic canceller system is demonstrated in Equation (45):

Tr =
1

RF
, (44)

h(t) = δ(t)− 2δ(t− Tr) + δ(t− 2Tr), (45)
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The transfer function of the system is as follows:

H(ω) = (1− e−jωTr )
2
= (2j sin(ωTr))

2e−jωTr , (46)

According to the above system transfer equation, it is easy to infer that the filter can
suppress the signal frequencies that are multiples of respiratory frequency RF. One can
obtain a good effect of the MTI harmonic canceller processing on the radar signal.

Same as extracting the respiratory signal, build a Butterworth filter to extract the heart-
beat signal from the harmonic cancelled signal. The upper and lower boundary frequencies
of the passband are set to 1.0 Hz and 1.9 Hz respectively, the passband attenuation is set to
0.1 dB. The upper and lower boundary frequencies of the stopband are set to 0.7 Hz and
2.2 Hz, respectively, the stopband attenuation is set to 0.6 dB. The order of the Butterworth
filter n equals 3, and its amplitude–frequency characteristic curve is shown in Figure 22.
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The restoration results and normalized spectrum of the original signal and each step’s
processed signal are shown in Figure 23c,d.
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6.6. Vital Signs Reconstruction and Result Analysis

According to the above research works, the vital sign reconstruction results are shown
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Figure 24. Vital signs reconstruction results: (a) Reconstruction of respiratory signal; (b) Three-
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Table 4. Results and performance of the proposed algorithm.

Parameter Result Truth Value Error SNR (dB)

Position (m) 0.811 0.8 0.011 \
RF (Hz) 0.342 0.367 0.025 1.457
HF (Hz) 1.375 1.267 0.108 −5.573

Running time (s) 2.18 \ \ \

During the experimental tests, the vital signs are detected with the UWB radar life
detector, meanwhile and the respiratory and heartbeat frequencies of the target human
body are measured. The target human body breathes 22 times per minute and their heart
beats 76 times per minute. The true values of the respiratory frequency and heartbeat
frequency are 0.367 Hz and 1.267 Hz, respectively. For the above simple scenario, the
running time of the algorithm on a specific experiment platform is 2.18 s. The above results
show the good properties of the algorithm.

7. Performance Verification and Comparison

In order to verify the effectiveness of the algorithm proposed in this paper, five
volunteers were chosen for the validation experiment; A, B, C, D are healthy adult males
(A: 26 years old, 176 cm, 72 kg; B: 30 years old, 183 cm, 96 kg; C: 38 years old, 174 cm, 63 kg;
D: 42 years old, 171 cm, 86 kg); E is a healthy adult female (E: 23 years old, 160 cm, 48 kg).
The results are shown in Table 5.

Table 5. Detection results for different subjects.

Subject
Position RF HF

Time (s)
Error (m) Error (Hz) SNR (dB) Error (Hz) SNR (dB)

A 0.011 0.025 1.457 0.108 −5.573 2.18
B 0.027 0.036 1.387 0.098 −3.342 1.95
C 0.018 0.017 1.255 0.148 −3.189 2.25
D 0.042 0.032 2.176 0.067 −3.476 2.17
E 0.023 0.038 1.167 0.147 −3.868 2.09
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The above results show that the proposed algorithm has good effectiveness, accuracy
and efficiency under simple detection conditions. For a demonstration of the performance
of the proposed method in complex environment, several experiments under different
conditions have been executed. During the experiments, different detection distances,
different personnel numbers and characteristics, indoor and outdoor environment, whether
there are obstacles, etc., are used for the construction of different detection conditions. The
basic experimental platform architectures have been shown in Figure 3. The settings of
different experimental control groups are shown in Table 6. It is worth noting that the
dynamic target shown in the table does not mean that the tested person is moving in a
large range but refers to his small-scale activities such as stepping. In addition, in order to
achieve long-distance detection, the fast time sampling frequency of the UWB radar system
is changed to 5 Ghz, and the slow time impulse frequency is changed to 10 Hz.

Table 6. Settings of different experimental groups.

No. Objects Distance (m) State Obstacle Environment

1 A 0.8 Static No Indoor
2 B 4 Static No Outdoor
3 A 3 Static Concrete (25 cm) Indoor
4 C 11 Static Concrete (32 cm) Outdoor

5
A 5 Static

No OutdoorB 10 Static

6
A 4 Static

No OutdoorB 7 Dynamic
C 10 Static

The results of essential steps for different experiment groups are shown in Figures 25–29.
In order to illustrate the advancement of the proposed method in this paper, Table 7

compares some performances of the algorithm relative to the reference methods. (The
performance of the algorithms is measured on the same experimental platform using the
same experimental data, and the reference algorithms are reproduced by the author of
this paper).
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Figure 25. Results of essential steps for experiment group 2: (a) Radar raw data; (b) Radar data after 
preprocessing; (c) The relative principal component; (d) Spatial eigenvector; (e) Temporal eigenvec-
tor; (f) Energy entropy; (g) Restoration of respiratory signal; (h) Respiratory signal spectrum; (i) 
Restoration of heartbeat signal; (j) Heartbeat signal spectrum. 
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Figure 25. Results of essential steps for experiment group 2: (a) Radar raw data; (b) Radar data
after preprocessing; (c) The relative principal component; (d) Spatial eigenvector; (e) Temporal
eigenvector; (f) Energy entropy; (g) Restoration of respiratory signal; (h) Respiratory signal spectrum;
(i) Restoration of heartbeat signal; (j) Heartbeat signal spectrum.
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(i) Restoration of heartbeat signal; (j) Heartbeat signal spectrum.
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Figure 27. Results of essential steps for experiment group 4: (a) Radar raw data; (b) Radar data after 
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Figure 27. Results of essential steps for experiment group 4: (a) Radar raw data; (b) Radar data
after preprocessing; (c) The relative principal component; (d) Spatial eigenvector; (e) Temporal
eigenvector; (f) Energy entropy; (g) Restoration of respiratory signal; (h) Respiratory signal spectrum;
(i) Restoration of heartbeat signal; (j) Heartbeat signal spectrum.
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after preprocessing; (c) The relative principal component; (d) Spatial eigenvector; (e) Temporal
eigenvector; (f) Energy entropy; (g) Restoration of respiratory signal; (h) Respiratory signal spectrum;
(i) Restoration of heartbeat signal; (j) Heartbeat signal spectrum.
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Figure 29. Results of essential steps for experiment group 6: (a) Radar raw data; (b) Radar data after 
preprocessing; (c) The relative principal component; (d) Spatial eigenvector; (e) Temporal eigenvec-
tor; (f) Energy entropy; (g) Restoration of respiratory signal; (h) Respiratory signal spectrum; (i) 
Restoration of heartbeat signal; (j) Heartbeat signal spectrum. 
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Figure 29. Results of essential steps for experiment group 6: (a) Radar raw data; (b) Radar data
after preprocessing; (c) The relative principal component; (d) Spatial eigenvector; (e) Temporal
eigenvector; (f) Energy entropy; (g) Restoration of respiratory signal; (h) Respiratory signal spectrum;
(i) Restoration of heartbeat signal; (j) Heartbeat signal spectrum.
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Table 7. Results and performance comparison with the referenced algorithm.

Value
Method

No. FFT VMD PE-EEMD Proposed Measured
Position(m) 0.89 0.87 0.84 0.811 0.8

Err(m) 0.09 0.07 0.04 0.011 \
RF(Hz) 0.36 0.36 0.34 0.342 0.37

SNR(dB) −1.89 0.38 1.13 1.457 \
HF(Hz) \ \ 1.40 1.375 1.27

SNR(dB) \ \ −5.24 −5.573 \

1

Time(s) 21.86 45.34 20.97 2.18 \
Position(m) 4.26 4.12 4.14 4.075 4

Err(m) 0.26 0.12 0.14 0.075 \
RF(Hz) 0.37 0.34 0.34 0.336 0.32

SNR(dB) −2.73 −1.08 −0.39 −0.083 \
HF(Hz) 1.19 1.32 1.34 1.404 1.38

SNR(dB) −4.63 −4.11 −3.88 −3.268 \

2

Time(s) 27.79 50.38 26.89 2.76 \
Position(m) 2.71 2.74 2.83 2.972 3

Err(m) 0.29 0.26 0.17 0.028 \
RF(Hz) 0.33 0.34 0.37 0.364 0.35

SNR(dB) −2.48 −1.39 −0.87 0.553 \
HF(Hz) \ 1.34 1.34 1.376 1.39

SNR(dB) \ −5.76 −5.07 −4.373 \

3

Time(s) 23.65 45.14 25.57 2.39 \
Position(m) \ \ \ 11.774 11

Err(m) \ \ \ 0.774 \
RF(Hz) \ \ \ 0.369 0.37

SNR(dB) \ \ \ −2.953 \
HF(Hz) \ \ \ 1.471 1.38

SNR(dB) \ \ \ −4.475 \

4

Time (s) 23.67 49.76 28.78 2.93 \
Position(m) 4.98 \ 5.06 \ 5.07 \ 5.025 10.583 5 10

Err(m) 0.02 \ 0.06 \ 0.07 \ 0.025 0.583 \
RF(Hz) 0.34 \ 0.37 \ 0.36 \ 0.386 0.386 0.38 0.37

SNR(dB) −4.22 \ −1.67 \ −1.79 \ −1.764 −1.764 \
HF(Hz) \ \ 1.43 \ 1.40 \ 1.404 1.404 1.42 1.38

SNR(dB) \ \ −3.76 \ −3.36 \ −2.873 −2.873 \

5

Time(s) 28.76 56.87 31.84 3.08 \
Position(m) 3.92 7.28 \ 4.01 7.34 \ 3.87 7.10 \ 3.975 7.264 9.669 4 7 10

Err(m) 0.08 0.28 \ 0.01 0.34 \ 0.13 0.10 \ 0.025 0.264 0.331 \
RF(Hz) 0.32 0.45 \ 0.35 0.42 \ 0.32 0.39 \ 0.366 0.441 0.366 0.37 0.47 0.35

SNR(dB) −3.87 −3.64 \ −1.41 −2.73 \ −2.03 −1.97 \ −0.887 −1.576 −0.887 \
HF(Hz) \ \ \ 1.23 \ \ 1.21 1.17 \ 1.296 1.632 1.404 1.35 1.89 1.38

SNR(dB) \ \ \ −5.87 \ \ −5.37 −5.43 \ −4.771 −5.315 −4.891 \

6

Time(s) 28.64 57.37 30.65 3.27 \

In order to further verify the effectiveness of the algorithm proposed in this paper
in complex environments, the detected person (combinations of persons) and the corre-
sponding positional relationship were randomly selected for the above 6 groups, and
15 verification experiments were performed for each group. According to the experimental
results, one can summarize the key indicators as shown in Table 8.

Table 8. Key indicators of verification experiments.

No.
Position Err. (m) RF Err. (Hz) HF Err. (Hz) Time (s)

Success Rate
Max. Avg. Max. Avg. Max. Avg. Max. Avg.

1 0.042 0.025 0.038 0.027 0.148 0.105 2.25 2.16 100%
2 0.075 0.047 0.022 0.017 0.117 0.096 2.41 2.24 100%
3 0.037 0.031 0.026 0.018 0.084 0.047 2.39 2.07 100%
4 1.261 0.984 0.043 0.027 0.145 0.112 2.94 2.86 73.3%
5 0.632 0.216 0.038 0.021 0.145 0.097 3.08 2.79 100%
6 0.527 0.197 0.029 0.011 0.369 0.184 3.35 3.21 86.7%
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Table 7 summarizes the results of multiple experiment groups when executing the
proposed method and different algorithms, such as traditional FFT, VMD [27] and PE-
EEMD [39]. In simple experimental scenarios, various methods can obtain accurate results,
the proposed method can greatly shorten the calculation time and improve the timeliness
by about 10 times, and at the same time, its detection accuracy and signal-to-noise ratio
(SNR) are generally better than other algorithms. In complex experimental scenarios,
such as long-distance, multiple targets, obstacle crossing, dynamic targets and so on, the
performance of the proposed algorithm is particularly outstanding. For example, in group 4,
the radar signal of a distant target covered by an obstacle is too weak; therefore, traditional
algorithms have difficulty separating it from interference noise and clutter. However, the
proposed method is still capable to obtain the information from the ninth higher order
principal component based on the good characteristics of the SVD algorithm. Similarly,
in the case of the multi-target detection of groups 5 and 6, the proposed method can
successfully extract the information of a distant target interfered by the front targets. The
detection of a heartbeat signal and dynamic target information is also more accurate and
sensitive. In addition, most traditional algorithms need to traverse all data. In contrast, the
proposed method adopts the principle of macroscopic big data analysis, after decomposing
the temporal and spatial eigenvectors, it only processes the one-dimensional vectors, so it
can always maintain high detection efficiency. Table 8 shows the statistical results of a large
number of validation experiments, they reflect that the algorithm proposed in this paper
can generally maintain effectiveness and high accuracy. For relatively simple scenarios, the
algorithm in this paper can ensure a 100% success rate. For the long-range target detection
through obstacles and the simultaneous detection of three different range targets, the vital
signs are weak and subject to a lot of interference, but the algorithm in this paper can still
ensure the success rate of 73.3% and 86.7%, with high detection accuracy and timeliness.
In general, from the performance indicators such as accuracy, success rate, signal-to-noise
ratio, and running time, one can conclude that the proposed algorithm has the properties
of high efficiency, high precision, high sensitivity and high signal-to-noise ratio.

8. Conclusions

In this paper, a novel vital sign detection and extraction method based on Singular
Value Decomposition (SVD) and Wavelet Transform decomposition is proposed. The
experimental platform is established based on NVA6100 pulse radar system, the detection,
acquisition and processing of UWB echo signals can be realized. The radar matrix contains
discrete time series of M pulse signals after sampling; therefore, a two-dimensional matrix
of N rows and M columns is formed. In order to improve the detection accuracy of
vital signs in low signal-to-noise ratio environment, the algorithm proposed includes the
following steps: signal preprocessing, signal denoising and decomposition; vital signs
extraction and restoration; and vital signs reconstruction.

In the signal preprocessing, the clutter is suppressed with the Range Profile Subtraction
method and the Time Mean Subtraction method, and the target signals are enhanced by
the Advance Normalization method and Auto Gain Control.

Singular Value Decomposition (SVD) method is adapted to process the radar data
after signal preprocessing, so as to achieve the purpose of denoising, data compression,
dimension reduction and characteristic decomposition. The first six principal components
are retained, and the temporal and spatial eigenvectors of each principal component of the
radar signal are obtained.

The principal components extracted by SVD are screened based on energy proportion
analysis. This paper adopted sym6 wavelet base to perform wavelet transformation, the
number of wavelet decomposition layers is set to seven. The hard threshold function is used
to denoise the spatial eigenvectors ui, and the soft threshold function is used to denoise
the temporal eigenvectors vi. Then, the energy entropy of each order principal component
at different positions is calculated, and the maximum energy entropy is considered to be
the location of the human body. The respiratory signal is restored through linear trend
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suppression and the Butterworth Filter, and the heartbeat signal is restored through the
MTI harmonic canceller and the Butterworth Filter.

According to the above research works, the vital signs are reconstructed, and the
results are analyzed. By setting up various complex experimental scenarios, such as long-
distance, multiple targets, obstacle crossing, dynamic targets and so on, the performance of
the proposed method is compared with the traditional FFT, VMD and PE-EEMD methods.
From the performance indicators such as accuracy, success rate, signal-to-noise ratio (SNR)
and running time, one can conclude that the proposed algorithm has the properties of high
efficiency, high precision, high sensitivity and high signal-to-noise ratio.
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