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Abstract
Kawasaki disease (KD) is a systemic vasculitis primarily affecting children < 5 years old.

Genes significantly associated with KD mostly involve cardiovascular, immune, and inflam-

matory responses. Recent studies have observed stronger associations for KD risk with

multiple genes compared to individual genes. Therefore, we investigated whether gene

combinations influenced KD susceptibility or coronary artery lesion (CAL) formation. We

examined 384 single-nucleotide polymorphisms (SNPs) for 159 immune-related candidate

genes in DNA samples from KD patients with CAL (n = 73), KD patients without CAL (n =

153), and cohort controls (n = 575). Individual SNPs were first assessed by univariate analy-

sis (UVA) and multivariate analysis (MVA). We used multifactor dimensionality reduction

(MDR) to examine individual SNPs in one-, two-, and three-locus best fit models. UVA

identified 53 individual SNPs that were significantly associated with KD risk or CAL forma-

tion (p < 0.10), while 35 individual SNPs were significantly associated using MVA (p�
0.05). Significant associations in MDR analysis were only observed for the two-locus mod-

els after permutation testing (p� 0.05). In logistic regression, combined possession of

PDE2A (rs341058) and CYFIP2 (rs767007) significantly increased KD susceptibility (OR =

3.54; p = 4.14 x 10−7), while combinations of LOC100133214 (rs2517892) and IL2RA
(rs3118470) significantly increased the risk of CAL in KD patients (OR = 5.35; p = 7.46 x

10−5). Our results suggest varying gene-gene associations respectively predispose individ-

uals to KD risk or its complications of CAL.
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Introduction
Kawasaki disease (KD) is an acute febrile illness that predominately affects children under 5
years of age. KD is characterized by the development of an autoimmune-like vasculitis involv-
ing the small- to medium-sized arteries, and has a predilection for the coronary arteries. KD
patients present with marked elevation of various circulating immune and inflammatory cells,
which infiltrate pass activated endothelial cells and into the vascular wall. As a result, up to 25
to 30% of untreated KD patients develop coronary artery lesions (CAL) including coronary
artery dilation, aneurysms, or fistula formation. In rare cases, cardiac failure or thrombosis can
occur and may result in sudden death (1 to 2%)[1, 2]. Therefore, prompt detection of acute KD
is crucial and must be followed by timely treatment before the 10th day after disease onset, as
delayed treatment with intravenous immunoglobulin (IVIG) is significantly associated with an
increased risk of CAL formation in KD patients. In addition, approximately 10% of all KD
patients do not respond to IVIG treatment, which is significantly associated with a higher risk
of CAL formation[3].

To fulfill a diagnosis of KD, patients must develop a high-grade fever lasting longer than
five days that does not respond to either antibiotics or antipyretics, in addition to four out of
the following five principal diagnostic features: 1) conjunctivitis; 2) changes in the extremities;
3) oral changes; 4) polymorphous rash; and 5) cervical lymphadenitis[4].

The cause of KD remains unknown despite several decades of extensive international inves-
tigation. Genetic investigations are now primarily used to identify pathways involved in KD so
that its cause may ultimately be discovered. This has led to a wealth of reports largely regarding
single-nucleotide polymorphisms (SNP) that are associated with cardiovascular, inflammatory,
or immune responses. However, numerous genetic findings are later found to be inconsistent
or conflicting in KD upon replication.

The genetic propensity to develop KD seems to be greatly influenced by ethnicity. Not
only are Asian children 10 to 20 times more likely to develop KD when compared to other
ethnic groups[5], the genes associated with KD and the degree of their expression appears to
differ among varying ethnic populations, including ethnic Han Chinese, Korean, or Japanese
children[6]. In response to this situation, genome-wide association studies (GWAS) and
their meta-analyses are now employed in differing ethnic populations to determine the sta-
tistical significance of genetic associations. This has led to the apparent confirmation of sev-
eral susceptibility loci in KD, including SNPs for the FCGR2A, BLK, CD40, ITPKC, and
CASP3 genes[7–9]. However, these are fairly modest genetic findings of an increased risk for
KD susceptibility and do not reveal any primary genes that are involved in the development
of KD.

Several authors have recently begun to investigate potential gene-gene interactions in KD
patients, and have found that gene-gene associations may have a greater predictive value for
the development and prognosis of KD when compared to individual SNPs alone. For example,
prior studies have found that patients who possess the susceptibility allele SNPs for both
ITPKC and CASP3 were more significantly associated with IVIG resistance when compared
with those with only one susceptible SNP[10, 11]. Therefore, we examined 159 immune-related
candidate genes using a commercialized 384-SNP multiplex microarray to identify potential
gene-gene interactions associated with KD risk or subsequent CAL formation. In addition, we
also collected the plasma levels for certain inflammatory and immune markers in KD patients
to correlate the functional effect of significantly identified gene-gene associations.
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Materials and Methods

Study participants
Our study received the approve consent procedure from the Institutional Review Board of the
Chang Gung Memorial Hospital in Taiwan. We collected blood samples after written informed
consent had been obtained from either the parents or guardians. For patients with KD, blood
samples were collected before IVIG treatment. Our study participants included Taiwanese chil-
dren who completely fulfilled the diagnostic criteria for KD according to the American Heart
Association guidelines and were admitted to the Kaohsiung Chang Gung Memorial Hospital
for IVIG treatment between 2001 and 2006. Previously, we had investigated this sample of KD
patients for biomarkers of IVIG treatment resistance[12] and CAL formation[13].

KD patients were treated with a single dose of IVIG (2 g/kg) during a 12-hour period. Aspi-
rin was administered until all of the signs of inflammation resolved and CAL regressed as
detected with two-dimensional (2D) echocardiography. Principle clinical features of KD that
occur during the acute stage of the illness were recorded and coded for analysis. Each patient
with KD underwent 2D echocardiography of the coronary arteries before treatment with IVIG.
Two subsequent echocardiograms were performed within the 4 weeks following IVIG treat-
ment. CAL were defined as the internal diameter of the coronary artery being at least 3 mm for
KD patients aged 0 to 5 years (4 mm in patients> 5 years of age) or if the internal diameter of
a coronary artery segment was at least 1.5 times larger than an adjacent segment as detected by
echocardiogram[14].

According to PASS 2008 Statistical Software (Utah, USA), we initially estimated the sample
size at 59 patients with CAL formation in KD subjects based on a study power of 0.8, with sig-
nificance at< 0.05 for two-sided alternative hypothesis, the 25 to 30% of untreated KD patients
may develop CAL, and 10% of all KD patients do not respond to IVIG whose risk of CAL for-
mation are very high[3]. We finally included 73 children with CAL formation (32.3%) in the
study from 226 KD subjects. 575 control subjects for KD susceptibility were obtained from our
previous investigations of a Taiwanese birth cohort examining gene-gene interactions with IgE
production until the sixth year of age[15, 16]. Our cohort controls were confirmed to have no
history of KD, while more than 90% of KD cases occur by the sixth year of age. We used KD
patients without CAL as controls to investigate the risk of CAL formation.

Collection of plasma and DNA from peripheral blood samples
We collected blood samples from KD patients and cohort controls in heparin tubes. Plasma
was prepared from the blood samples by centrifuge at 3,000 rpm for 10 minutes and then
stored in six aliquots. DNA samples were harvested from total leukocytes in the plasma using
cell lyses buffer according to instructions from the manufacturer (GENETRA DNA extraction
kit, Minneapolis, MN).

Amplification of genomic DNA for oligonucleotide-based 384-SNP
microarray
The criteria for selection of 384 SNPs of 159 candidate genes were mainly based on several pre-
viously reports as described on our previous publication[16]. These SNPs were preliminarily
screened via a proprietary algorithm of Illumina (San Diego, CA, USA) according to their per-
formance on the Illumina platform. After excluding the SNPs containing minor allele fre-
quency less than 5% in Chinese population, we selected 91 SNPs in 44 innate genes, 102 SNPs
in 37 adaptive genes, and 191 SNPs in 78 oxidative stress and remodeling genes for the 384 cus-
tomized SNPs design on different chromosomes. In total, 384 SNPs from 159 candidate genes
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with representative SNPs in the NCBI Genome Build 36.3 (dbSNP build 129) were genotyped
with the Illumina BeadStation 500GX. DNA samples were quantified with a PicoGreen dsDNA
Quantitation Kit (Molecular Probes, Eugene, OR, USA). After DNA quantification, DNA sam-
ples were adjusted to 50 ng/μL in a TE buffer (Tris-HCl, 10 mM, EDTA 1 mM, pH 8.0) for
PCR amplification in Oligo Pool All (OPA), which contained a set of all the primers for every
individual SNP. The PCR products were hybridized and then analyzed using BeadStudio soft-
ware (version 2.1.10) for genotyping. We conducted the genotyping in accordance with the
manufacturer's recommendations and as outlined in our previous investigations of the allergy
cohort[15, 16].

Verification of 384-SNPmicroarray data accuracy through repeat
measurements and concurrent experiments of restriction fragment
length polymorphisms
To further verify the accuracy of the 384-SNP multiplex microarray, we performed a parallel
genotyping experiment to validate significantly identified gene-gene associations for the
PDE2A (rs341058), CYFIP2 (rs767007), and IL2RA (rs3118470) SNPs. Restriction fragment
length polymorphism methods were conducted using DNA samples (n = 98) from our KD
patient sample. The LOC100133214 (rs2517892) SNP was respectively validated via pyrose-
quencing assay using a PyroMark Q24 instrument (Qiagen, Valencia, CA, USA). The genotyp-
ing accuracy for the PDE2A, CYPIP2, IL2RA and LOC100133214 SNPs between these two
methods was 100%.

Measurement of plasma cytokines in KD patients
A total of n = 73 KD patients, including n = 35 with CAL formation, from our sample were fur-
ther enrolled to examine cytokines levels in the illness. Plasma concentrations of IL-2, IL-3, IL-
4, IL-5, IL-6, IL-8, IL-10, IL-17A, and IFN-γ in KD patients were assessed using the Upstate
Beadlyte Human Cytokine Beadmates System (Upstate Group, Inc.) in association to high-risk
genotypes for our identified gene-gene combinations. In summary, we mixed 50 μl plasma
samples with multiplexed antibody-conjugated beads, which were then subjected to a multi-
channel detection of their bead-array. Acquired fluorescence data was assessed by Master-
PlexTM QT software (Ver. 1.2; MiraiBio, Inc.). We determined the calibration of cytokine
concentrations in KD patients through the interpolation of a series of well-known standard
samples in accordance to the manufacturer’s recommendation. The plasma levels of TGF-β1 in
KD patients were determined with ELISA using a commercial kit (R&D Systems). This study
method was modified from our previous report examining risk factors for CAL formation in
KD patients.

Data analysis and statistics
Individual SNPs were initially examined among KD patients and cohort controls by univariate
analysis (UVA) to identify associations with the risk of KD or CAL formation. We then used
multivariate analysis (MVA) to investigate the respective allele combinations for individual
SNPs among KD patients and controls in association with the development of KD or CAL for-
mation. The variables for MVA consisted of a dominant (AA/AB vs. BB), co-dominant (AB vs.
AA/BB), recessive (BB vs. AB/AA), and additive genotype (number of A or B alleles). Using
these variables, we determined the best fitting genetic model for the allele variations of each
individual SNP. For our study purposes, a p-value< 0.10 was considered to be statistically sig-
nificant in UVA, while we considered a p-value� 0.05 to be statistically significant in MVA.
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To investigate potential gene-gene interactions associated with either KD risk or CAL for-
mation, we used a multifactor dimensionality reduction (MDR) method to examine each indi-
vidual SNP in a one-, two-, and three-locus best fit model. Statistically significant best fit
models were further analyzed in logistic regression. We classified statistically significant gene-
gene associations into high- and low-risk genotypes using the varying combinations of alleles
for identified SNPs. High- and low-risk groups were then analyzed in the Chi-square test. We
conducted our analysis with MDR software (version 1.1.0), which is a freely available program
that is part of a collaborative open-source project (sourceforge.net/projects/mdr/).

Several methods to correct for multiple testing are useful for candidate gene studies, espe-
cially for GWAS. The Bonferroni correction and permutation are common adjustments. In
contrast to the Bonferroni correction, permutation tests can give the optimal exact threshold
and are considered the gold standard in multiple testing adjustments for genetic association
studies[17]. The MDR analysis incorporates a cross-validation/permutation procedure to mini-
mize the rate of false positive findings that may otherwise result from tests involving multiple
variables or comparisons[18]. In this study, the predictive performance of the best model is
then assessed through 20-fold cross-validation and its significance determined through Monte
Carlo permutation testing[19, 20]. Calculate p-value by comparing where the observed test sta-
tistic value lies in the permuted distributed of test statistics as following description. To identify
the best fit models, we performed 20 cross-validation runs of permutation testing to calculate
the cross-validation consistency (CVC) and prediction errors for every pooled combination of
individual SNPs. Pooled SNPs were chosen in a cross-validation run when they presented with
the highest training-balanced accuracy [(Sensitivity + Specificity) / 2], while the CVC involved
the number of times a group of pooled SNPs was selected in a cross-validation run. Individual
groups of pooled SNPs with the highest CVC following 20 cross-validation runs were selected
as the best fit for the one-, two-, and three-locus models. Statistical significance was determined
by comparing average the prediction errors from our observed data to the average prediction
errors under the null hypothesis of no association, which we derived empirically from 10,000
permutations. The null hypothesis was rejected when the p-value derived from our permuta-
tion testing was� 0.05.

Results

Clinical features of KD patients
A total of n = 801 cases were enrolled in our current investigation, including n = 226 patients
with KD and n = 575 cohort controls. There were n = 230 female (40.0%) and n = 345 male
(60.0%) subjects in the control group. Among the KD group, males accounted for n = 153 cases
(67.6%) and females accounted for n = 73 cases (33.4%). All of our patients with KD presented
with fever (100%), while most of our KD patients also presented with conjunctivitis (96.5%),
fissured lips (92.9%), a strawberry tongue (87.6%), changes in the extremities (86.3%), and
polymorphous skin rashes (88.5%). Approximately half of these KD patients presented with
lymphadenopathy. For children in the KD group, n = 73 cases (32.3%) developed CAL
formation.

Excluded SNPs in candidate genes
A total of 345 SNPs assessed in DNA samples from KD patients (n = 226) and cohort controls
(n = 575) were included in our final analysis. We excluded a total of 39 SNPs from our analyses
that possessed either a call rate< 90% or were beyond the Hardy-Weinberg equilibrium
(HWE), as shown in S1 Table. Most of our excluded genes with an SNP distribution beyond
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the HWE were located in HLA-DR regions that have been previously reported to be distributed
beyond the HWE[15].

Univariate and multivariate analysis
We identified 31 individual SNPs for 27 genes that were significantly associated with KD sus-
ceptibility in UVA (p< 0.10), as shown in S2 Table. After using MVA to investigate allele vari-
ations, we identified 23 individual SNPs for 22 genes that demonstrated associations with
increased KD risk in a statistically significant manner (p� 0.05), as shown in Table 1. The
majority of these best fit allele variations identified in MVA demonstrated a protective effect
against KD development (60.9%). More than half of protective alleles were recessive (57.1%),
while only one susceptibility allele was recessive (7.1%). The recessive T allele of an SNP for the
SPP1 gene (rs2853744) demonstrated the greatest protective effect against the development of
KD (OR = 0.04; p = 0.028), while the dominant T allele of an SNP for the PDGFRA gene
(rs4358459) demonstrated the highest risk of KD development (OR = 4.24; p = 0.027).

We identified 22 individual SNPs for 21 genes that were significantly associated with CAL
formation in KD patients using UVA (p< 0.10), as shown in S3 Table. After using MVA to
investigate allele variations, 12 SNPs for 12 genes that were significantly associated with CAL
formation in KD patients (p� 0.05), as shown in Table 2. The majority of these allele varia-
tions were significantly associated with an increased risk of CAL formation in patients with KD

Table 1. Multivariate analysis of 345 SNPs associated with KD susceptibility in patients and cohort controls (p� 0.05).

Gene dbSNP Best fitting genetic model p-value OR (95% CI)

Innate immunity

SPP1 rs2853744 Recessive (TT vs. TG/GG) 0.028 0.04 (0.00–0.72)

CLEC4C rs10845821 Recessive (TT vs. TC/CC) 0.011 0.45 (0.25–0.83)

SPP1 rs2728127 Additive (number of G alleles) 0.011 0.89 (0.82–0.97)

COLEC11 rs10210631 Dominant (AA/AG vs. GG) 0.030 1.51 (1.04–2.19)

C5 rs17611 Recessive (AA vs. AG/GG) 0.012 1.67 (1.12–2.49)

CD209 rs2287886 Dominant (AA/AG vs. GG) 0.002 3.50 (1.58–7.76)

Adaptive immunity

HLA-DQA1 rs2040410 Recessive (AA vs. AG/GG) 0.035 0.12 (0.02–0.86)

TBX21 rs2240017 Co-dominant (CG vs. CC/GG) 6.92*10−5 0.37 (0.23–0.61)

TAP1 rs2071541 Recessive (TT vs. TC/CC) 0.011 0.59 (0.40–0.89)

LY75 rs2042772 Recessive (TT vs. TC/CC) 0.031 0.66 (0.46–0.96)

IL13 rs1800925 Additive (number of C alleles) 0.003 0.94 (0.91–0.98)

HLA-DPB1 rs3097671 Additive (number of G alleles) 2.10*10−4 1.10 (1.05–1.16)

IL5RA rs340833 Co-dominant (AG vs. AA/GG) 0.014 1.61 (1.10–2.34)

Stress and response

ADAM33 rs3918400 Recessive (TT vs. TC/CC) 0.018 0.24 (0.07–0.78)

ELF5 rs836145 Recessive (TT vs. TG/GG) 0.009 0.54 (0.34–0.86)

PIK3CD rs11121484 Co-dominant (TC vs. TT/CC) 0.043 0.57 (0.33–0.98)

PDE2A rs341058 Recessive (AA vs. AG/GG) 0.040 0.68 (0.47–0.98)

CYFIP2 rs767007 Additive (number of G alleles) 0.042 0.96 (0.92–1.00)

PEX6 rs2274514 Additive (number of G alleles) 0.005 0.98 (0.97–0.99)

SELP rs6128 Additive (number of G alleles) 0.016 1.02 (1.00–1.04)

ADRB2 rs1042713 Co-dominant (AG vs. AA/GG) 0.014 1.59 (1.10–2.29)

PIM1 rs262918 Dominant (TT/TC vs. CC) 0.021 2.07 (1.11–3.83)

PDGFRA rs4358459 Dominant (TT/TG vs. GG) 0.027 4.24 (1.18–15.31)

doi:10.1371/journal.pone.0143056.t001
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(75.0%). Half of the identified susceptibility alleles were co-dominant (50.0%), while only one
protective allele was co-dominant (25.0%). The dominant T allele of an SNP for the IL4 gene
(rs2243250) demonstrated the greatest protective effect against the development of CAL in KD
patients (OR = 0.03; p = 0.006), while the dominant A allele of an SNP for the CD14 gene
(rs2569190) demonstrated the highest risk of CAL formation in KD patients (OR = 5.72;
p = 0.005).

Multifactor dimensionality reduction analysis
We identified pooled SNPs with the highest training-balanced accuracy in one-, two-, and
three-way best fit models. Significant associations were only observed with two-locus models
after permutation testing (p� 0.05). For the increased risk of KD susceptibility, two SNPs of
PDE2A (rs341058) and CYFIP2 (rs767007) revealed the highest training-balanced accuracy
average (53.7%) in the two-way model (Table 3), with an OR = 3.54 in logistic regression
(p = 4.14 x 10−7). For the subsequent risk of CAL formation in KD patients, two SNPs of
LOC100133214 (rs2517892) and IL2RA (rs3118470) revealed the highest average training-bal-
anced accuracy (53.6%) in the two-way model (Table 4), with an OR = 5.35 in logistic regres-
sion (p = 7.46 x 10−5).

The MDR results of these significant associations in the two-locus model were further ana-
lyzed using the Chi-square test. As shown in Fig 1A and 1B, our classification of varying allele
combinations for the PDE2A and CYFIP2 SNPs identified in MDR revealed four low-risk geno-
types (n = 358) and five high-risk genotypes (n = 443) that significantly differed between the
KD group and cohort controls (p = 9.71 x 10−7). As shown in Fig 2A and 2B, our classification
of varying allele combinations for the LOC100133214 and IL2RA SNPs revealed four low-risk
genotypes (n = 118) and five high-risk genotypes (n = 108) that differed significantly between
KD patients with subsequent CAL formation and KD patients without CAL (p = 3.36 x 10−6).

Among the nine allele classifications, we observed that combinations of the AG allele for
PDE2A and the CC allele for CYFIP2 conferred the highest risk of KD susceptibility (42.9%),
while combinations of the CC allele for CYFIP2 and the GG allele for PDE2A conferred the
lowest risk (15.0%). No significant associations were observed between these genotype

Table 2. Multivariate analysis of 345 SNPs associated with CAL formation in KD patients (p� 0.05).

Gene dbSNP Best fitting genetic model p-value OR (95% CI)

Innate immunity

CD209 rs12611071 Recessive (AA vs. AC/CC) 0.007 0.20 (0.06–0.64)

NOD2 rs2111235 Additive (number of C alleles) 0.006 1.28 (1.07–1.53)

CLEC2D rs1863873 Co-dominant (TC vs. TT/CC) 0.032 2.36 (1.08–5.16)

CXCL10 rs867562 Co-dominant (AG vs. AA/GG) 0.002 3.41 (1.55–7.49)

CCL24 rs2302004 Co-dominant (TC vs. TT/CC) 0.001 3.64 (1.64–8.07)

CD14 rs2569190 Dominant (AA/AG vs. GG) 0.005 5.72 (1.67–19.60)

Adaptive immunity

IL4 rs2243250 Dominant (TT/TC vs. CC) 0.006 0.03 (0.00–0.38)

CD80 rs1485332 Additive (number of G alleles) 0.001 1.22 (1.09–1.38)

MS4A2 rs2583476 Co-dominant (TC vs. TT/CC) 0.001 3.81 (1.69–8.57)

Stress and response

LTC4S rs730012 Co-dominant (AC vs. AA/CC) 0.027 0.29 (0.10–0.87)

ADAM33 rs3918400 Additive (number of C alleles) 0.015 0.91 (0.84–0.98)

EHF rs286902 Recessive (AA vs. AG/GG) 0.003 3.31 (1.51–7.26)

doi:10.1371/journal.pone.0143056.t002
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combinations of the CYFIP2 and PDE2A SNPs with the development of either CAL formation
or IVIG resistance in KD (p< 0.10). We also found that combinations of the AA allele for
LOC100133214 and the CC allele for IL2RA conferred the highest risk of CAL formation in
KD patients (66.7%), while combinations of the TC allele of IL2RA and the AA allele of
LOC100133214 conferred the lowest risk (5.0%). We did not observe any significant associa-
tions for these genotypes with either KD risk or the development of IVIG resistance (p< 0.10).

High-risk allele combinations of the PDE2A and CYFIP2 SNPs accounted for 67.1% of our
KD cases. As shown in Fig 3A, we observed that these high-risk genotypes in KD patients were
significantly associated with reduced plasma levels of TGF-β1 (9489 ± 1605 vs. 16133 ± 3015
pg/ml; p = 0.036) compared to KD patients in the low-risk group. High-risk allele combina-
tions of the LOC100133214 and IL2RA SNPs accounted for 47.9% of our KD cases. We found
significantly elevated plasma levels of interleukin (IL)-2 (14.1 ± 1.6 vs. 9.6 ± 1.2 pg/ml; p =
0.028), IL-6 (51.0 ± 14.3 vs. 18.4 ± 3.7 pg/ml; p = 0.033), and Interferon-γ (119.2 ± 15.2 vs.
81.8 ± 10.1 pg/ml; p = 0.041) in KD patients with the high-risk genotypes of CAL formation
compared to KD patients in the low-risk CAL formation genotype group, as shown in Fig 3B,
3C and 3D. No significant differences were found between high- and low-risk genotypes in KD
patients with levels of IL-3, IL-4, IL-5, IL-10, or IL-17A.

Table 3. Best fit results usingmultifactor dimensionality reduction analysis of one-, two-, and three-locusmodels for KD susceptibility in patients
and cohort controls.

Gene (polymorphism) a Average testing balanced
accuracy

b Average cross validation
consistency

c p-value

TBX21 (rs2240017) 50.32% 12/20 0.868

PDE2A (rs341058) and CYFIP2 (rs767007) 53.73% 17/20 0.021**

STAT3 (rs1026916), CLEC7A (rs2078178), and PSMB8
(rs3763364)

43.24% 6/20 0.999

a Average testing balanced accuracy is the accuracy of classifications for cases and controls in the testing dataset (one-twentieth of the data) calculated

as (Sensitivity+Specificity)/2.
b Average cross validation consistency is the number of times the model was selected as the best model after 20 cross-validation runs.
c Significance of accuracy (empirical p-value based on 10,000 permutations).

** p-value � 0.05

doi:10.1371/journal.pone.0143056.t003

Table 4. Best fit results usingmultifactor dimensionality reduction analysis of one-, two-, and three-locusmodels for CAL formation in KD
patients.

Gene (polymorphism) a Average testing balanced
accuracy

b Average cross validation
consistency

c p-value

LY75 (rs2042772) 45.59% 12/20 0.588

LOC100133214 (rs2517892) and IL2RA (rs3118470) 53.60% 13/20 0.021**

FGF1 (rs249923), CLEC2D (rs1863873), and CCL2
(rs2857656)

43.42% 5/20 0.942

a Average testing balanced accuracy is the accuracy of classifications for cases and controls in the testing dataset (one-twentieth of the data) calculated

as (Sensitivity+Specificity)/2.
b Average cross validation consistency is the number of times the model was selected as the best model after 20 cross-validation runs.
c Significance of accuracy (empirical p-value based on 10,000 permutations).

** p-value � 0.05

doi:10.1371/journal.pone.0143056.t004
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Fig 1. PDE2A (rs341058) andCYFIP2 (rs767007) gene-gene interaction in a two-waymode of MDR analysis. The interaction of PDE2A andCYFIP2
was significantly associated with increased KD risk in logistic regression of our MDR results from KD patients (n = 226) and cohort controls (n = 575), with an
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Discussion
To investigate gene-gene associations for the development of KD or its outcomes, we used an
MDR method of analysis to establish the best fit models after repeated permutation testing for
either individual or multiple genes. The cross-validation/permutation procedure incorporated
in our MDR analysis minimizes false positive rates that result from multiple comparisons. This
method of MDR analysis is able to identify a high order of evidence for gene-gene interactions
in diseases when there is a lack of any primary individual genes that influence susceptibility
[21], including autoimmune disorders and certain malignancies[22]. Therefore, MDR is of
potential value in genetic studies of KD, which lacks a primary susceptibility marker. Numer-
ous genes to date have been found to be associated with the development or prognosis of KD,
which probably reflects the multi-genetic nature of the disease. Our approach using MDR anal-
ysis more closely matches the seemingly complex nature of genetics in KD and allows us to
examine genes in a more unbiased manner, by taking into account the effect of gene-gene inter-
actions, as opposed to the effect of one candidate gene alone. As reported in previous studies,
we observed much stronger associations with KD and its outcomes for multiple genes com-
pared to individual genes. We found that the two-locus models were significantly associated
with either the development of KD or the subsequent formation of CAL (p� 0.05), although
no statistically significant associations for any of the individual genes in our one-locus model
after repeated permutation testing. This was seen as a surprising development given the fact
that we identified allele variations in nearly three dozen individual SNPs that were significantly
associated with KD risk or CAL formation.

We also observed that varying alleles of individual SNPs or gene-gene combinations were
associated with either the development of KD or its subsequent complications. We also found
that KD patients who possessed the high-risk genotypes of our identified gene-gene associa-
tions also had significantly different levels of the immune and inflammatory markers that were
tested in this study. Lastly, our analyses using an MDR method yielded the most significant
results with the lowest p-value compared to our analyses using univariate or multivariate
methods.

In our initial investigations using UVA and MVA, we found several dozen individual SNPs
and allele variations that were significantly associated with either an increased risk of KD sus-
ceptibility or the formation of CAL. Among our results, we found that the dominant A allele of
an SNP for the DC-SIGN (CD209) promoter gene (rs2287886) was significantly associated with
an increased risk of KD susceptibility (OR = 3.50; p = 0.002). Previously, Portman et al.
reported that the major A allele of the rs2287886 SNP for the CD209 gene was significantly
associated with IVIG-treatment resistance during acute KD among Asian children in a US pop-
ulation (OR = 1.76; p = 0.04)[23]. The authors did not find a similar association among either
Caucasian or Hispanic children, for whom the A allele was only of minor frequency. We
recently reported that haplotypes of CD209 polymorphisms were significantly associated with
an increased risk of KD susceptibility in Taiwanese children[24], which included the major A
allele of the rs2287886 SNP (OR = 1.61; p = 0.0002). However, we did not observe significant
associations between any polymorphisms of CD209 polymorphisms and IVIG-treatment
response for Taiwanese children with KD.

In addition, we found that KD patients with the dominant A allele of an SNP for CD14
(rs2569190) were at greatest risk for the development of CAL formation (OR = 5.76,

odds ratio of 3.54 (95%CI: 2.17–5.78) and a p-value of 4.14 x 10−7. (A) MDR classified the nine interactive items of allele combinations into high- or low-risk
KD groups, which were significantly different in our further analysis using the Chi-square test (p = 9.71 x 10–7). (B).

doi:10.1371/journal.pone.0143056.g001
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Fig 2. LOC100133214 (rs2517892) and IL2RA (rs3118470) gene-gene interaction in a 2-waymode of MDR analysis. The interaction of LOC100133214
and IL2RA was significantly associated with a higher risk of CAL formation using logistic regression of our MDR results from KD patients with CAL (n = 73)

Gene-Gene Associations in Kawasaki Disease

PLOS ONE | DOI:10.1371/journal.pone.0143056 November 30, 2015 11 / 16



p = 0.005). Previously, an investigation in Japan reported that KD patients with the T allele of
the CD14 C(−159)T polymorphism (rs2569190) were significantly more likely to develop CAL
(OR = 2.20; p< 0.05), although no associations were found with KD susceptibility[25]. We
also observed that KD patients with the dominant T allele of an SNP for the IL-4 gene
(rs2243250) had the lowest risk of developing CAL formation (OR = 0.03; p = 0.006). Previ-
ously, Burns et al. reported the significant asymmetrical transmission of alleles for the IL-4 C
(-589)T polymorphism (rs2243250) from parents to their children with KD (p = 0.05) in a US
population, although no association was observed with CAL formation[26]. However, SNPs of
the IL-4 gene have not been found to be associated with KD susceptibility or subsequent CAL
formation among children in Taiwan[27, 28].

and KD patients without CAL (n = 153), with an odds ratio of 5.35 (95% CI: 2.33–12.25) and a p-value of 7.46 x 10−5. (A) MDR classified the nine interactive
items into high- or low-risk CAL groups, which were significantly different in our further analysis using the Chi-square test (p = 3.36 x 10−6). (B).

doi:10.1371/journal.pone.0143056.g002

Fig 3. Comparison cytokines levels between KD patients with high-risk genotypes and low-risk genotypes. KD patients possessing the high-risk (KD
risk: 1) PDE2A (rs341058) andCYFIP2 (rs767007) genotypes of KD susceptibility (n = 49) presented with significantly lower plasma levels of TGF-β1
(9489 ± 1605 vs. 16133 ± 3015) compared to KD patients in the low-risk group (KD risk: 0, n = 24), with an odds ratio of 0.59 (p = 0.036). (A) KD patients
possessing the high-risk LOC100133214 (rs2517892) and IL2RA (rs3118470) genotypes of CAL formation (CAL risk: 1, n = 35) presented with significantly
elevated plasma levels of IL-2 (14.1 ± 1.6 vs. 9.6 ± 1.2) compared to KD patients in the low-risk group (CAL risk: 0, n = 38), with an odds ratio of 1.47
(p = 0.028). (B) KD patients possessing the high-risk LOC100133214 (rs2517892) and IL2RA (rs3118470) genotypes of CAL formation (CAL risk: 1, n = 35)
presented with significantly elevated plasma levels of IL-6 (51.0 ± 14.3 vs. 18.4 ± 3.7) compared to KD patients in the low-risk group (CAL risk: 0, n = 38), with
an odds ratio of 2.77 (p = 0.033). (C) KD patients possessing the high-risk LOC100133214 (rs2517892) and IL2RA (rs3118470) genotypes of CAL formation
(CAL risk: 1, n = 35) presented with significantly elevated plasma levels of IFN-γ (119.2 ± 15.2 vs. 81.8 ± 10.1) compared to KD patients in the low-risk group
(CAL risk: 0, n = 38), with an odds ratio of 1.46 (p = 0.041). (D).

doi:10.1371/journal.pone.0143056.g003
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In our two-locus model, combined possession of SNPs for the PDE2A (rs341058) and the
CYFIP2 (rs767007) gene were significantly associated with increased KD susceptibility in logis-
tic regression (OR = 3.54; p = 4.14 x 10−7), although no associations were found for the risk of
CAL formation or responsiveness to IVIG treatment. Respectively, we observed that KD
patients with both SNPs for LOC100133214 (rs2517892) and IL2RA (rs3118470) were signifi-
cantly more likely to develop CAL formation in logistic regression (OR = 5.35; p = 7.46 x 10−5),
although no associations were found with the risk of developing KD or the response to IVIG
treatment during the disease course. We observed even lower p-values in the Chi-square test
for both of the identified gene-gene associations after we had separated individuals into high-
and low-risk genotype groups by their respective allele combinations. KD patients with high-
risk genotypes for the PDE2A and CYFIP2 SNPs had significantly reduced plasma levels of
TGF-β1 (OR = 0.59; p = 0.036) compared to the low-risk KD group, while KD patients with
high-risk allele combinations for the LOC100133214 and IL2RA SNPs had significantly ele-
vated plasma IL-2 (OR = 1.47; p = 0.028), IL-6 (OR = 2.77; p = 0.033), and IFN-γ (OR = 1.46;
p = 0.041) compared to the low-risk KD group.

In our current investigation, PDE2A (rs341058) and CYFIP2 (rs767007) were the only SNPs
significantly associated in UVA, MVA, and MDR analysis. To our knowledge, no other study
to date has found a link between CYFIP2 SNPs and the development or prognosis of KD,
although SNPs in the gene CYFIP2 has been found to be associated with allergic disease. In a
study of 492 Mexican children, rs17599222 in the gene CYFIP2 was found to be associated with
childhood asthma[29]. Similarly, in our previous study, we found that the combination of
PDE2A (rs341058) and CYFIP2 (rs767007) plus an SNP of IL-13 (rs1800925) in a three-locus
model was significantly associated with increased IgE production in Taiwanese children who
lacked a history of KD[15]. Recent populations studies have also found that patients with
Kawasaki disease appear to have a higher subsequent risk of developing atopic dermatitis and
other allergic diseases[30, 31], suggesting that both KD and allergic disease may share a similar
immune response. It is possible that CYFIP2 is implicated in a common pathway shared by
both KD and allergy, although more research regarding the functional effect of CYFIP2
(rs767007) SNP mutations would be required to confirm this hypothesis.

Likewise, the link between PDE2A (rs341058) SNP and Kawasaki disease found in this
study, is to our knowledge, a novel finding. The PDE2A gene encodes for phosphodiesterase 2
(PDE2), which increases the hydrolysis of cAMP after being activated by cGMP. Overexpres-
sion of PDE2 has been found in human myocytes of patients with heart failure, and blunts β-
adrenergic responses via decreasing the cAMP stimulation of the L-type Ca2+ current[32]. This
finding suggests that development of Kawasaki disease may be associated with differences in
myocardial calcium current conduction; of note, previous studies have linked KD susceptibility
to the C allele of the ITPKC SNP (rs28493229) a gene associated with the Ca2+/NFAT pathway
[33, 34]. Tumor necrosis factor-alpha, a cytokine that is critical in the development coronary
artery lesions in KD, has been found to upregulate PDE2 in cultivated human umbilical vein
endothelial cells, and may play a role in increased endothelial permeability[35].

Previously, the identification of ITPKC susceptibility has led to a great emphasis upon the
Ca2+/NFAT pathway in KD research. Inositol 1,4,5-triphosphate 3-kinase C (ITPKC) nega-
tively regulates cell signaling through converting inositol 1,4,5-triphosphate (IP3) into its inac-
tive state, inositol 1,3,4,5-tetrakisphosphate (IP4). This prevents IP3 from stimulating receptors
upon the endoplasmic reticulum to trigger the release of Ca2+ from its intracellular stores[36].
The C allele of the ITPKC SNP (rs28493229) reduces transcription of the gene by decreasing
the efficiency of RNA splicing. Therefore, ITPKC susceptibility in KD reduces expression of
the gene and would result in the decreased inactivation of IP3. Subsequently, ITPKC suscepti-
bility renders KD patients susceptible to the hyperactivation of Ca2+ signaling in the immune
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system, which results in an elevation of immune and inflammatory cells. As genetic studies are
largely used to identify pathways involved in KD so that its environmental causes are ultimately
being discovered, it is therefore concluded that the ITPKC susceptibility in KD sensitizes indi-
viduals to xenobiotics that induce calcium influx[33, 34].

In conclusion, our findings indicate that differing gene-gene interactions appear to be
respectively associated with predisposition for the development of KD or CAL formation.
Varying gene-gene interactions may account for why individual susceptibility loci in KD
appear to be fairly modest or inconsistent upon larger replication and meta-analysis, while
stronger associations are observed when these genes are present in combination. This suggests
a fairly high order of genetic variation for KD and may reflect a multifactorial etiology in the
disease process that impacts the same general pathways. The highest incidence of KD in Tai-
wan is 69 cases per 100,000 children under 5 years of age[37]. The major limitation of this
study is that the low sample size, which reflected the difficulties inherent in recruiting patients
with such a rare disease. Replication of the findings in large, well-powered independent sam-
ples is crucial if this problem is to be overcome, and will likely require a multicenter collabora-
tion to provide strong evidence on validation of the novel gene to gene interactions discovered
the susceptibility of Kawasaki disease and coronary artery lesions. This study only analyzed
patients with KD in our current investigation without a formal assessment of population struc-
ture of the sampled population; there is still a possibility that the observed positive association
is over-represented. These limitations should be considered in future studies.
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