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Objective. This study is aimed at using genes related to the peroxisome proliferator-activated receptor (PPAR) pathway to establish a
prognostic risk model in kidney renal clear cell carcinoma (KIRC).Methods. For this study, we first found the PPAR pathway-related
genes on the gene set enrichment analysis (GSEA) website and found the KIRC mRNA expression data and clinical data through
TCGA database. Subsequently, we used R language and multiple R language expansion packages to analyze the expression, hazard
ratio analysis, and coexpression analysis of PPAR pathway-related genes in KIRC. Afterward, using the Search Tool for the
Retrieval of Interacting Genes/Proteins (STRING) website, we established the protein-protein interaction (PPI) network of genes
related to the PPAR pathway. After that, we used LASSO regression curve analysis to establish a prognostic survival model in
KIRC. Finally, based on the model, we conducted correlation analysis of the clinicopathological characteristics, univariate analysis,
and multivariate analysis. Results. We found that most of the genes related to the PPAR pathway had different degrees of
expression differences in KIRC. Among them, the high expression of 27 genes is related to low survival rate of KIRC patients, and
the high expression of 13 other genes is related to their high survival rate. Most importantly, we used 13 of these genes successfully
to establish a risk model that could accurately predict patients’ prognosis. There is a clear correlation between this model and
metastasis, tumor, stage, grade, and fustat. Conclusions. To the best of our knowledge, this is the first study to analyze the entire
PPAR pathway in KIRC in detail and successfully establish a risk model for patient prognosis. We believe that our research can
provide valuable data for future researchers and clinicians.

1. Introduction

Renal malignancies are the twelfth most common tumors
occurring worldwide [1]. Renal cell carcinoma (RCC) is the
most common primary malignant tumor of the kidney,
accounting for 90% to 95% of all cases of renal cancer [2].
Kidney renal clear cell carcinoma (KIRC) is the most com-
mon subtype of RCC [3]. Surgery is the primary treatment
for early kidney cancer; however, it usually results in unsatis-

factory outcomes, because 20% to 50% of the patients will
relapse after surgery, and about 30% of the patients, though
they miss local recurrence after surgery, end up having
distant metastasis [4]. Renal cell carcinoma is highly resistant
to radiotherapy and chemotherapy. Immunotherapy is
extraordinarily inefficient and has apparent side effects [5,
6]. Molecular-targeted drug therapy is the primary treatment
for advanced renal cancer [7]. In recent years, targeted drugs
such as sunitinib have shown sound therapeutic effects and
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have become first-line treatment for patients with advanced
kidney cancer. However, a considerable number of patients
with kidney cancer show the original primary resistance
and secondary resistance. Therefore, there is an urgent need
to find new molecular therapeutic targets. Molecules such
as VHL and VEGF were discovered as part of this ongoing
quest for new targets for cancer therapy. However, more in-
depth understanding of cancer shows that the occurrence of
the disease is not the result of uncontrolled single or several
oncogenes or tumor suppressors. Oncogenesis is the result
of a complex mechanism, which may involve typical serial
changes in many critical biological pathways, involving
groups of highly related molecules [8, 9]. We use this new
understanding to explore the potential role played by entire
pathways in kidney cancer, to potentially arrive at successful
therapeutic modes of action. Such research helps to under-
stand the pathogenesis of renal cancer and provide personal-
ized treatment.

As a biological pathway mediated by specific receptors,
the peroxisome proliferator-activated receptor (PPAR) path-
way plays a key role in cell differentiation, development,
metabolism (sugar, lipid, and protein), and tumorigenesis.
KIRC is also known as clear cell renal cell carcinoma
(ccRCC) because its cells contain a large amount of deposited
lipids and present a special transparent appearance. PPAR is
a nuclear hormone receptor activated by fatty acids and their
derivatives [10]. Therefore, we have reason to believe that the
PPAR pathway plays an important role in the progress of
KIRC. PPAR has three subtypes (PPARα, PPARβ, and
PPARγ), which show different expressions in vertebrates
[11]. They are each encoded by a separate gene and combine
fatty acids and eicosanoids. PPARα plays a role in clearing
circulating lipids or cellular lipids by regulating the expres-
sion of genes involved in lipid metabolism in liver and skele-
tal muscle. PPARβ is involved in lipid oxidation and cell
proliferation. PPARγ promotes the differentiation of adipo-
cytes, thereby increasing blood glucose uptake. The PPAR
pathway is also considered to be a regulatory pathway for
various cancers. PPARα is a potential drug target for the
treatment of kidney cancer. In renal cancer cell lines, the
PPARα antagonist GW6471 can arrest the cell cycle in
G0/G1 phase by attenuating cell cycle regulatory proteins,
thereby inducing cell apoptosis. GW6471 can also attenuate
fatty acid oxidation and oxidative phosphorylation by
inhibiting glycolysis, and thereby inhibit the growth of kid-
ney cancer cells. However, PPARα has been controversial in
the regulation of cell growth, proliferation, and tumorigene-
sis [12, 13]. Some studies have shown that in colorectal
cancer, PPARα activated by fenofibrate can stall the progress
of colorectal cancer by inhibiting the expression of proin-
flammatory factors and by increasing the antioxidant capac-
ity of cells [14]. Additionally, activated PPARα can play an
anti-inflammatory function by reducing the production of
cytokines, which may lead to the downregulation of NF-κB
and COX-2 [15, 16]. It has been reported that after the
retinoic acid/PPARα pathway is disrupted, it will affect
oxidative damage and change the expression of tumor
suppressors, which may lead to colorectal tumors caused by
low folic acid intake [17]. Shaw et al. found that retinoic acid

could also bind to PPARβ to promote tumor cell growth and
inhibit apoptosis [18]. Previous studies have found that some
PPARγ agonists can inhibit tumor cell proliferation, induce
tumor cell apoptosis, and inhibit tumor angiogenesis. If used
in combination with chemotherapeutics, it is also thought to
increase the antitumor effect of the latter [19, 20]. However,
some studies have found that activation of PPARγ can pro-
mote tumor development [21–25]. All this shows that PPARs
and the PPAR pathway are closely related to the occurrence
and development of tumors and may become a potential
target for tumor treatment.

In our study, we conducted an in-depth and detailed
analysis of genes related to the PPAR pathway in KIRC. We
analyzed the expression of these genes in KIRC, and found
that most of them had apparent expression differences. After
conducting hazard ratio (HR) analysis, we found that most of
them played a role as a promoter or inhibitor in the occur-
rence and development of KIRC. We then established a prog-
nostic model composed of 13 PPAR pathway-related genes.
The ROC curve results show that this model has good predic-
tion accuracy. In the future, we hope that our research can
provide accurate data for later researchers, and at the same
time, can help doctors make proper clinical diagnosis and
treatment decisions for patients.

2. Materials and Methods

2.1. Data Collection. In May 2020, we obtained mRNA
expression data and clinical data set of KIRC through TCGA
database. Then we found the PPAR pathway through the
GSEA analysis website (https://www.gsea-msigdb.org/gsea/
index.jsp) and evaluated the genes in this pathway. The
standard name of this path is KEGG_PPAR_signaling_path-
way, and the systematic name is M13088.

2.2. Generation of Protein-Protein Interaction Networks. The
Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING) website can be used to predict the functional cor-
relation between different proteins (https://string-db.org/)
[26]. The STRING is a continuously updated biological
database that contains comprehensive and easily accessible
interactive information, some of which are obtained through
experiments and others through predictive analysis. In this
study, we used the website’s online tool to map the protein-
protein interaction (PPI) network between molecules related
to the PPAR pathway.

2.3. The Human Protein Atlas (HPA) Website. This database
(http://www.proteinatlas.org/) contains protein distribution
information including those of multiple human tissues and
organs and provides tissue and cell expression levels of nearly
20,000 human proteins [27, 28]. We used this website to
explore the protein expression of CPT2 in normal kidney tis-
sues and kidney cancer tissues.

2.4. Renal Cancer Cell Lines and Plasmid Transfection. In this
study, renal cancer cell lines 786-O and ACHN were
purchased from the Institute of Cell Research, Chinese Acad-
emy of Sciences. These two cell lines were cultured in the
presence of penicillin and streptomycin at 37°C in an
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atmosphere containing 5% CO2. We harvested 2 × 105 786-O
and ACHN cells during the logarithmic growth period and
seeded them into 6-well plates. The plasmid was transfected
the next day. Subsequently, Lipofectamine 2000 (Invitrogen)
and plasmid fragments were diluted in serum-free medium,
and a pipette was used to add 100μL of the mixture to the
6-well plates. After 6 hours of incubation at 37°C, the
medium containing serum was changed to continue the
culture until 24 hours. Finally, the cells were digested with
trypsin and collected for proliferation experiments.

2.5. Cell Counting Kit-8 (CCK-8) Experiment. First, we
cultured 1 × 103 786-O and ACHN cells per well in a 96-
well culture plates (4 replicate wells per group). Subse-
quently, we added 10μL of the CCK-8 reagent to each well
according to the instructions of Cell Counting Kit-8
(Dojindo, Japan) and incubated it in a 37°C incubator for
1-2 hours. Finally, we used a microplate reader to measure
the optical density (OD) of each well at 450 nm, record,
analyze, and draw the corresponding histogram.

2.6. Data Processing and Analysis. In May 2020, we down-
loaded RNA-seq transcriptome data of KIRC through the
R/Bioconductor software package from TCGAbiolinks,
which contains 72 normal kidney tissues and 539 tumor tis-
sues. The clinical information of KIRC patients including
age, survival status, grade, stage, tumor (T), and metastasis
(M) were all downloaded from TCGAbiolinks and analyzed
using Perl language and R studio. We then constructed a heat
map that reflects the expression of PPAR pathway-related
genes in KIRC. The “pheatmap” expansion package was used
to draw heat maps, and the “limma” expansion package was
used to analyze mRNA differences. We then performed a
hazard ratio (HR) analysis of these molecules in KIRC to
show the relationship these molecules have with kidney can-
cer progression. Afterward, we used the “corrplot” expansion
package to plot the coexpression relationship among the
PPAR pathway-related genes. Then we used the “glmnet”
and “survival” extension packages to draw the LASSO regres-
sion curve and survival curve. To verify this model’s accu-
racy, we used the “survival ROC” expansion package to
bring a five-year and ten-year ROC curve. Subsequently,
based on this model, we analyzed the correlation with the
pathological characteristics of renal cell carcinoma patients
and depicted it in the form of a heat map. The “rms” software
package was used to draw the nomogram. Finally, we com-
bined the clinical data of KIRC patients with the model
through the “survival” expansion package for univariate
and multivariate analysis.

2.7. Statistical Analyses. One-way ANOVA was used to com-
pare the expression of PPAR pathway-related genes in tumor
and normal tissue samples. The Student’s t-test was used to
compare the expression of PPAR pathway-related genes in
the KIRC dataset according to gender, age, stage, tumor
(T), and metastasis (M). Node (N) was not included in the
study because it was not verified for a large number of sam-
ples in TCGA database. The cut-off value of each risk score
in the tumor group was determined using the “survminer”

expansion package, and the patients were divided into high-
and low-risk groups according to the best cut-off threshold
value. The R studio package was used for all statistical analy-
ses. P < 0:05 was considered statistically significant.

3. Results

3.1. The Expression of PPAR-Related Genes in KIRC and the
Univariate Cox Regression Analysis in KIRC. To explore the
expression of PPAR pathway-related genes in KIRC, we indi-
vidually plotted their related heat maps (Figure 1(a)). We
observed that the vast majority of PPAR pathway-related
genes differed significantly in tumor tissues and normal tis-
sues. It can be inferred from this that any change in this path-
way plays a significant role in tumorigenesis and progress of
the cancer. Then, we performed the univariate Cox regres-
sion analysis of these PPAR pathway-related molecules in
KIRC (Figure 1(b)). The results show the hazard ratios with
95% confidence intervals (CI) and P values for the PPAR
pathway-related genes. The results showed that high expres-
sion of PCK2, PPARG/PPARγ, ACOX2, PLIN2, CYP27A1,
SORBS1, PDPK1, GK, PPARA/PPARα, SLC27A2, CPT1A,
SCD5, CYP4A11, ACOX1, ACAA1, CD36, EHHADH,
PCK1, RXRA, SCP2, ACADM, ACADL, CYP4A22, LPL,
ILK, ACSL1, and CPT2 correlated with better survival rates;
in contrast, high expression of MMP1, FABP5, ACOX3,
NR1H3, DBI, PLIN4, ACSBG1, PLTP, ADIPOQ, PLIN1,
CPT1B, CPT1C, and UCP1 correlated with worse survival
rates in KIRC patients.

3.2. PPI Network and Coexpression Analysis between PPAR
Pathway-Related Molecules. To explore the interaction
between PPAR pathway-related molecules, we used the
online tool of the STRING website to illustrate the PPI
network (Figure 2(a)). We observed that there were relatively
close interactions between the various molecules on the
PPAR pathway. When the expansion package on the R
language was used to draw an image showing coexpression
between molecules (Figure 2(b); Supplementary Table S1
and S2), we observed that there was a highly positive
coexpression relationship between the four molecules
APOA1, APOA5, APOC3, and CYP7A1. There was a clear
positive correlation between PPARA/PPARα and CPT1A,
ACSL1, PCK1, PCK2, ACOX2, ACAA1, GK, ACOX1,
ACADM, SLC27A2, EHHADH, and so on. Among them,
CPT1A was the representative. CPT1A is an important
rate-limiting enzyme for fatty acid transport into
mitochondria to participate in fatty acid β-oxidation,
suggesting that PPARA/PPARα may play an important role
in lipid metabolism. Additionally, previous studies have
shown that CPT1A may be a potential therapeutic target in
KIRC [29]. As we all know, KIRC is also known as clear
cell renal cell carcinoma because this kidney cancer cell
contains many lipid droplets. The presence of apparent
abnormalities in fatty acid metabolism in kidney cancer is
recognized. In our previous studies, it was found that
breaking the lipid homeostasis in this type of kidney cancer
could significantly limit tumor progression [30]. Of course,
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many molecules clearly express correlations, and because of
the limited space, they are not listed here.

3.3. Using LASSO Regression to Establish a Risk Model
Related to the Prognosis of Patients in KIRC. To explore
whether it was possible to use PPAR pathway-related
molecules to establish a model in KIRC that could predict

the clinical outcome of patients, we conducted a LASSO
regression curve analysis (Figures 3(a) and 3(b)). We derived
a model composed of thirteen molecules PDPK1, ACADM,
SCP2, SLC27A2, EHHADH, CPT2, SCD5, SORBS1, PLTP,
FABP5, PLIN1, and PLIN4. We then used this model to
divide KIRC patients into a high-risk group and a low-risk
group. We observed that the overall survival rate of patients
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Figure 1: (a) Heat map of PPAR pathway-related gene expression and (b) analysis of their risk factors in KIRC. ∗P < 0:05; ∗∗P < 0:01; ∗∗∗
P < 0:001.
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in the high-risk group was significantly lower than that in the
low-risk group (P = 3:697e‐14) (Figure 3(c)). Additionally,
we performed ROC curve analysis to analyze the prognostic

prediction performance of the new survival model in KIRC
patients and obtained a five-year AUC score of 0.746
(Figure 3(d)) and a ten-year AUC score of 0.825
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Figure 3: The establishment of the risk model and analysis of its prediction accuracy. (a, b) Target gene selection using LASSO logistic
regression. (c) Based on this model, we conducted survival analysis in KIRC. (d) Five-year ROC curve. (e) Ten-year ROC curve.
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(Figure 3(e)), which indicated that the risk score calculated
by the model could accurately predict the 5-year and 10-year
survival rates of KIRC patients.

3.4. Model-Based Correlation Analysis with Clinicopathological
Characteristics, Univariate Cox Regression Analysis, and
Multivariate Cox Regression Analysis. We plotted a heat map
between these target molecules and clinical data to explore
the correlation between this risk model and clinicopathologi-
cal features (Figure 4(a)). In this heat map, we found a
relationship between this risk model and the patient’s M, T,
stage, grade, and fustat. Then we conducted univariate Cox
regression analysis (Figure 4(b)) and multivariate Cox regres-
sion analysis (Figure 4(c)) and found that this risk model
played a risk factor in both different regression analyses.
And the hazard ratio of the risk model is higher than that of
other clinicopathological features.

3.5. Draw a Novel Nomogram Based on Logistic Regression
and Verify In Vitro Experiments. The nomogram predicts
the risk of KIRC patients (Figure 5). The value of each
variable gets a score on the dot scale axis. The nomogram
generates a total of nine rows. The second, third, fourth,
and fifth lines represent age, grade, stage, and risk score,
respectively. The total score in the sixth row is obtained from
the sum of each score assigned to age, grade, stage, and the
risk score, and the five-year, seven-year, and ten-year survival
rates of KIRC patients can be easily estimated from the total
score. Additionally, in order to add validity to our conclu-
sions, we conducted in vitro experiments.

By consulting the literature, we found that CPT2 has not
been studied in KIRC thus far; hence, we chose CPT2 as a
target molecule for subsequent exploration. We explored the
expression of CPT2 between normal kidney tissue and renal
tumor tissue through the HPA website. We found that the
protein expression level of CPT2 in KIRC tissue was
significantly lower than that in normal kidney tissue
(Figure 6(a)). Subsequently, we used a plasmid transfection
technology to establish CPT2 overexpressing renal cancer cell
lines (786-O and ACHN cell lines) and conducted CCK-8
experiments. The experimental results showed that the cell
proliferation of 786-O and ACHN cells overexpressing CPT2
was significantly inhibited (Figures 6(b) and 6(c)). These
results indicate that CPT2may become a potential therapeutic
target in the treatment of renal cancer in the future.

4. Discussion

Over the past decade, the research onmolecules related to the
PPAR pathway in cancer has been ongoing, but the results
remain unclear. Some reports suggest that the PPAR pathway
plays a protective factor in tumorigenesis, and the primary
mechanism is achieved by inhibiting the activity of inflam-
mation or angiogenesis [31, 32]. At the same time, other
researchers regard it as a promoter of tumorigenesis [33].
Recently, another study showed that PPARG/PPARγ overex-
pression might help to better treat patients with CRC by
inhibiting the process of EMT (epithelial-mesenchymal tran-
sition) [34]. PPARA/PPARα in KIRC can overcome sunitinib

resistance by regulating the NF-κB pathway [35]. PPARG/P-
PARγ in KIRC can promote cell apoptosis and inhibit cell
migration and proliferation by inhibiting SIX2 [36, 37].
Similarly, in this investigation, the hazard ratio results show
that PPARG/PPARγ plays a protective factor in KIRC. This
study aims at integrating PPAR pathway-related genes and
determining a model that can predict patients’ survival. In
our study, we first investigated the expression and prognosis
of PPAR pathway-related genes in KIRC. Subsequently, the
interaction and coexpression of these molecules were ana-
lyzed and through the LASSO regression and cross-valida-
tion, the novel thirteen-gene model was determined. This
model divides KIRC patients into high-risk and low-risk
groups through the risk score, and survival curve analysis
shows that the survival of patients in the high-risk group is
significantly worse than that of the low-risk group patients.
The ROC curve shows that this model has good five-year
and ten-year survival prediction accuracy. Multivariate Cox
regression analysis shows that this new 13-gene prognostic
model is an independent risk factor for KIRC.

The occurrence and development of clear cell renal cell
carcinoma is a complex process regulated by genetic changes
of multiple molecules. To date, there have been many previ-
ous studies exploring the prognostic role of risk models in
predicting KIRC patients [38–41]. The clinical application
results based on multiple gene expression profiles indicate
that genetic risk model may be a promising clinical diagnosis
and treatment method [42–44]. In this study, we successfully
used 13 genes of PDPK1, ACADM, SCP2, SLC27A2,
EHHADH, CPT2, SCD5, SORBS1, PLTP, FABP5, PLIN1,
and PLIN4 to construct risk models related to the prognosis
of KIRC patients. Its five-year ROC curve has an AUC value
of 0.746, and its ten-year ROC curve has an AUC value of
0.825. Generally, a risk model with an AUC value over 0.7
indicates a very high prediction accuracy.

PDPK1 is a regulated protein kinase from the AGC
protein kinase family, which can activate multiple down-
stream effectors associated with various pathways of tumori-
genesis [45]. Previous researchers found that inhibiting
PDPK1 expression in small cell lung cancer and melanoma
can inhibit tumor progression [46, 47]. ACADM can catalyze
the first dehydrogenation process of β-oxidation of fatty acyl-
CoA [48]. In KIRC, the low expression of ACADM may
affect the metabolism of medium-chain fatty acids, and then
the metabolism of triglycerides, and play an essential role in
apoptosis through the function of light chains [49, 50]. Previ-
ous studies have shown that SCP2 plays a critical role in
stabilizing PML expression. Low expression of SCP2 will
increase the phosphorylation level of PMLS518, thereby
reducing PML. The downregulation of PML is related to
the occurrence and development of high-grade tumors [51].
In endometrial and ovarian cancer, researchers found that
SLC27A2 can play a biological role in regulating chemical
resistance [52, 53]. EHHADH can encode a bifunctional
enzyme and is one of the four enzymes for peroxisomal β-
oxidation [54]. In the studies of Cablé et al. and Suto et al.,
it was found that EHHADH had a significantly low expres-
sion in colon cancer and hepatocellular carcinoma and could
be used as a potential prognostic marker [55, 56].
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Figure 4: (a) Based on this risk model, the analysis correlates with the clinicopathological characteristics. (b) Univariate Cox regression
analysis. The results of univariate Cox regression analysis showed clinicopathological parameters such as age, grade, stage, T (tumor), M
(metastasis), and risk score of the new survival model with the OS of KIRC patients. (c) Multivariate Cox regression analysis. The results
of multivariate Cox regression analysis showed clinicopathological parameters such as age, grade, stage, and risk score of the new survival
model with the OS of KIRC patients. ∗∗∗P < 0:001.
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PPARA/PPARα mainly regulates the expression of CPT2.
Studies have shown that in hepatocellular carcinoma, CPT2
is the rate-limiting enzyme for fatty acid oxidation. Its
expression level is related to the proliferation and invasion
of liver cancer cells. Silencing CPT2 can induce chemical
resistance to cisplatin [57]. Some researchers have found that
downregulating the expression of CPT2 helps to avoid the
lipid toxicity caused by the lipid-rich cell environment [58].
SCD5 is a protein-coding gene that can regulate neuronal cell
growth and differentiation by regulating key fat-generating
pathways. SCD5 may play an important role through the
PPAR pathway in breast cancer chemotherapy [59]. The
activity of SCD5 is also correlated with the activity of multi-
ple cancer pathways such as AKT, WNT, and EGFR [60].

SORBS1, also known as Cap/Ponsin protein, can regulate
biological processes such as growth factor signaling, cell
adhesion, and cancer metastasis [61]. The primary function
of the protein encoded by PLTP is to transfer phospholipids
from triglyceride-rich lipoproteins to high-density lipopro-
teins. Studies have shown that PLTP can induce anti-
inflammatory responses by activating the ABCA1/STAT3
pathway [62, 63]. FABP5 is a member of the FABP family
[64]. Some researchers have found that it can affect the prog-
ress of tumors by affecting the activity of the PI3K/AKT
signaling pathway in KIRC [65], and that it plays a role as
an oncogene in KIRC [66]. CPT1B is one of three CPT1
subtypes. The researchers found that knocking down the
expression of CPT1B in BLCA could increase the ability of
tumor proliferation and invasion by inhibiting FAO [67].

Overexpression of PLIN1 can inhibit the proliferation,
migration, and invasion of breast cancer cells. The expression
level of PLIN1 is correlated with the prognosis of breast
cancer patients and is expected to become a potential new
gene therapy target for breast cancer [68]. PLIN1 may affect
tumor progression through PPARG/PPARγ pathway in
breast cancer [69]. At the same time, another member of
the same family, PLIN4, has also been identified as a thera-
peutic target for triple-negative breast cancer [70].

It can be inferred from the above-mentioned information
that the target gene used to establish this model in this study
has received varying degrees of attention and research in
various tumors. However, there are parameters like CPT2,
SORBS1, PLIN1, and PLIN4 that have not been studied in
KIRC. These biomarkers may be worthy of attention in the
future of KIRC research. In particular, we explore the potential
role of CPT2 in KIRC through in vitro experiments. When we
overexpressed CPT2 in 786-O and ACHN kidney cancer cell
lines, the cell proliferation ability was significantly inhibited.
Hereafter, we will continue to explore the potential role of
these genes in KIRC. We believe that this model related to
patient prognosis can help doctors choose more personalized
treatment for KIRC patients in the future. After the grouping
of this model, for patients in the low-risk group, clinicians
can appropriately reduce the frequency of examinations and
reduce the economic pressure on patients. For patients in the
high-risk group, clinicians would be able to give more inten-
sive treatments and strengthen follow-up and regular physical
examination to monitor the development of the disease.
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Figure 5: The novel nomogram was constructed based on the risk model for predicting 5-, 7-, or 10-year survival rates in KIRC. The value of
each variable gets a score on the dot scale axis. The total score can be easily calculated by adding up each individual score and projecting the
total score to a lower total score system, and we can estimate the risk of KIRC patients.
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5. Conclusions

In this study, we used 13 genes related to the PPAR pathway
to establish a new prognostic risk model in KIRC, which
could accurately predict the five-year and ten-year survival
rates of patients. However, it must be admitted that in this
study, these thirteen target genes have not been thoroughly
explored in KIRC. In the future, large-scale single-center or
multicenter clinical validation of this risk model is needed.
However, we believe that our research can provide valuable
data for future scientific research and clinical practice.
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Figure 6: Experimental verification of CPT2. (a) Immunohistochemical images from the HPA database show CPT2 protein expression in
normal kidney (N) and KIRC (T) tissues. (b, c) CCK8 assay results show the relative proliferation of OV-NC- and OV-CPT2-transfected
786-O and ACHN cell lines. The data are shown as mean ± S:D. ∗∗P < 0:01; ∗∗∗P < 0:001; ∗∗∗∗P < 0:0001.
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