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Abstract: Osteosarcoma (OS) is a primary bone sarcoma, manifesting as osteogenesis by malignant
cells. Nowadays, patients’ quality of life has been improved, however continuing high rates of limb
amputation, pulmonary metastasis and drug toxicity, remain unresolved issues. Thus, effective
osteosarcoma therapies are still required. Recently, the potentialities of biophysical treatments
in osteosarcoma have been evaluated and seem to offer a promising future, thanks in this field
as they are less invasive. Several approaches have been investigated such as hyperthermia (HT),
high intensity focused ultrasound (HIFU), low intensity pulsed ultrasound (LIPUS) and sono- and
photodynamic therapies (SDT, PDT). This review aims to summarize in vitro and in vivo studies and
clinical trials employing biophysical stimuli in osteosarcoma treatment. The findings underscore
how the technological development of biophysical therapies might represent an adjuvant role and,
in some cases, alternative role to the surgery, radio and chemotherapy treatment of OS. Among
them, the most promising are HIFU and HT, which are already employed in OS patient treatment,
while LIPUS/SDT and PDT seem to be particularly interesting for their low toxicity.
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1. Introduction

Osteosarcoma (OS) is the most frequent malignant bone-tumor, accounting for 20% of primary
bone cancers, with a manifestation peak occurring during the second and third decades of life.
Current standard treatment consists of surgery associated to chemotherapy, which leads to long-term
disease-free survival in approximately 60% of patients with localized extremity lesion [1–3] and 20–30%
of patients with axial primaries or metastases [1,3]. However, the efficacy of these therapeutic strategies
is limited and some of them and can cause severe complications and adverse effects [4–6].

Traditionally, the gold standard for primary bone malignancies localized in extremity has been
amputation. Over the past decades, the therapy has shifted toward limb salvage with intact local
function in order to improve the life quality of patients, leading recently to the use of this protocol as a
standard procedure for primary bone malignancies. Limb salvaging procedures may include resection
of the local bone lesion, as well as bone reconstruction after surgery. Bone reconstruction often involves
the implantation of large-segment prostheses [7–10], which are widely used with good functional
results. However, this procedure has some important disadvantages in terms of clinical and economic
aspects such as prosthetic loosening and periprosthetic infections or the requirement of a custom-made
prosthesis design that has been recently overcome, thanks to 3D-bioprinting techniques [11,12].
Regarding the use of bone allograft for reconstruction procedures, even though its implantation
is technically easier, it is strongly associated with risks of disease transmission (i.e., hepatitis, HIV, etc.),
immune rejection, nonunion, and bone resorption [13,14].
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In parallel with surgical problems, there are also those related to chemotherapy ones (Figure 1).
Although survival rate has increased up to 60–70% within the last 20 years, the problem of
non-response to chemotherapy still remains, as well as that of toxic side effects [4,6]. For these
reasons, alternative strategies able to improve the efficacy of chemotherapy and the quality of life
of patients, particularly for those cases where it is impossible to perform surgery, are mandatory.
In recent years, the potentialities of biophysical treatments in OS have been taken into account and
several approaches have been investigated such as hyperthermia, high intensity focused ultrasound,
low intensity pulsed ultrasound and sono- and photodynamic therapies. The aim of the present review
was to summarize the state of the art of these different biophysical approaches to OS therapy during
the last 10 years.
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NCCN Clinical Practice Guidelines in Oncology Version I.2018.

2. Search Strategy

The following literature search was carried out in the MEDLINE database (PubMed research
engine) to identify studies reporting the use of biophysical therapies to treat OS, including original
articles in English from January 2007 to December 2018. The keywords used were osteosarcoma,
hyperthermia, high intensity focused ultrasound, low intensity pulsed ultrasound, sono- and
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photodynamic therapies. Two reviewers manually assessed the title and abstract of each collected
reference. A total of one hundred sixty-nine articles were retrieved. However, some were not
considered because they were related to: (a) canine diseases (n = 12); (b) the development of
nanoparticles used in association with biophysical therapies or the use of ultrasounds for inducing
osteogenic differentiation (n = 27); or (c) others that were completely non-related (n = 30). The resulting
references were selected for supplementary analysis based on the title and abstract, resulting in 100
articles considered eligible for the review. An additional 63 articles (n = 35 published before 2007 and
n = 28 from 2007 to 2018) were included in the final review to complete the introduction and conclusion
section or to add information on some technical aspects.

3. Physical Principle of Biophysical Stimuli

3.1. Hyperthermia (HT)

HT is an artificial increase of temperature in target cells within a range of 39–43 ◦C. At tissue level,
this increase modifies the vascular permeability, enhances blood flow and could lead to oxygenation
of the tumor, making the cancer cells more susceptible to other treatment modalities (thermal cell
sensitization). Conventional HT generates a temperature gradient with a maximum on the body’s
surface that decreases while moving away from the source; thus, the majority of energy is dissipated
in the healthy tissues situated along the path of external radiation without any discrimination between
the targeted tissue and the surrounding normal tissues, leading to serious side effects [15]. To avoid
this drawback, continuing efforts to develop more effective hyperthermia methods have led to the
application of nanoparticles as hyperthermia agents, which, when evenly spread in the tumor may
distribute heat homogeneously. The temperature increase can be raised applying different sources
(Figure 2A): electromagnetic waves (microwaves, radio waves), laser or acoustic waves (ultrasound):

• Electromagnetic waves: To achieve the desired heat in target site, magnetic nanoparticles (MNPs)
are first injected and subsequently exposed to an alternating magnetic field (AMF). The AMF
frequency ranges from several KHz up to 10 MHz with sufficient penetration depth. The HT
efficiency is affect by several parameters: frequency an amplitude of AMF, and size-dependent
magnetic properties of the nanoparticles [16].

• Radio Frequency (RF): Non-ionizing radiation are employed as an adjuvant therapy to enhance
the chemotherapy and radiotherapy effects. RF waves effectively penetrate into the deep sites
by needle insertion directly into the tumor site, but this technique enhance the temperature
in a non-specific and non-uniform manner causing hot spots within overlying healthy tissues.
To avoid these disadvantages, it is useful the use of nanoparticles (gold nanoparticles) that reach
the tumor site and release RF exposure. The heating rate is inversely proportional to particle size.

• Laser: localized hyperthermia is achieved by introduction of nanoparticles (such as gold
nanoparticles) into the target site where the laser exposure causes a change in the medium
photothermal properties and increases the local conversion of optical energy into heat, by exciting
the PS electrons [17]

• Acoustic: see High Intensity Focused Ultrasound section

3.2. High Intensity Focused Ultrasound (HIFU)

HIFU is a form of ultrasound delivering high intensity (>3 W/cm2) and high frequency
(1–20 MHz) [17]. HIFU acts both by thermal and non-thermal mechanisms causing cell death at
tissue level through the conversion of mechanical energy into heat (up to 80–90 ◦C within tissues) and
unstable cavitation (formation and immediate and violent collapse of gas-filled bubbles) causing cell
death acting on cell membrane and organelle rotation (Figure 2B) [18]. HIFU transducers are made by
piezoelectric materials that oscillate upon alternating voltage application that cause the ultrasound
waves formation in the receiving medium. The transducers employ relatively high levels of power and
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localize acoustic energy in a small volume in medical applications. Focusing can be reached, either by
using a curved (spherical section) transducer or by using a plane transducer and a curved lens.
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Figure 2. Physical principles of adjuvant biophysical stimuli. HT treatment (A): The use of different
type of HT source alone (alternating magnetic field (AMF) or radiofrequency (RF) or laser) causes a
temperature increase reaching the maximum on the body surface that decreases while moving away
from the source (Left Panel). The combined use with nanoparticles is able to concentrate the heat
into target cells without heating the surrounding tissues (Right Panel). HIFU treatment (B): Thermal
effect: the mechanical energy is converted into heat reaching the maximum temperature on tumor by
focusing the US in a site-specific manner (Left Panel). Mechanical effect: focused ultrasound causes
inertial cavitation, bubble explosion and ROS formation (Right Panel). LIPUS and SDT Treatment
(C): LIPUS brings microstreaming improving membrane permeability and drugs uptake, moreover,
in combination with sonosensitizer, triggers stable cavitation causing ROS generation. PDT treatment
(D): The light beam excites photosensitizer electrons that, returning to the basal level, transmit the
energy to nearby molecules inducing two type of reaction: (a) generation of reactive oxygen species
(ROS) into the medium; (b) activation of singlet oxygen (1O2) promoting also ROS production.

3.3. Low Intensity Pulsed Ultrasound (LIPUS) and Sonodynamic Therapy (SDT)

LIPUS is a form of ultrasound delivering low intensity (<3 W/cm2) and low frequency
(20–200 kHz). LIPUS acts exerting both a minimal thermal effect due to its low intensity and pulsed
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output mode, and non-thermal effects (stable cavitation) (Figure 2C). The thermal effect is due to the
absorption of US by the tissue, while the non-thermal one (mechanical effect) is due to the acoustic
streaming and stable cavitation [19] which is the formation of gas bubbles caused by the accumulation
of dissolved gas in the medium [20]. The acoustic streaming is responsible of membrane permeability,
diffusion rate and alteration of protein synthesis, cellular secretion, and sonoporation, while the
cavitation improves drugs transport and cellular up-take [17]. The sound wave is produced by a sound
source, often a circular ceramic disk exhibiting a piezoelectric effect, that vibrate sinusoidally thus
generating a sound wave

An important characteristic is the possibility of being used in combination with sonosensitizers,
agents able to increase the energy deposition in a target area by affecting the acoustic environment [21].
The advantage of this technique is in its ability to focus the ultrasound energy on targeted tissues
inducing local cytotoxicity by activating sonosensitizers with minimal damage to healthy tissues [22,23].
In SDT, the sonication parameters (usually 1.0–2.0 MHz at an intensity of 0.5 to 3.0 m2) are selected to
produce inertial cavitation in a cell culture or tumor [24].

3.4. Photodynamic Therapy (PDT)

PDT (Figure 2D) is a treatment based on the local light application after systemic photosensitizer
(PS) injection [25]. The light sources are characterized by two factors: a wavelength ranging between
600–800 nm and illumination intensity (in the near infrared spectral region-NISR) that do not
cause damage to tissues [26]. The penetration capability depends on wavelengths, as the effective
illumination intensity is too weak for deep tissue, indeed the major challenge is to find a novel and
appropriate irradiation approach, or apply its use in an intraoperative setting [26]. PDT exploits the
ability of photosensitizers to release energy to nearby molecules after excitation with specific light
wavelengths, transforming light energy into chemical energy. The PSs are molecules characterized by
two important features: (a) they are non-toxic to normal tissue in the dark, and (b) are able to cause
photodamage with an appropriate light source without temperatures rising, distinguishing PDT from
photothermal therapy [27,28]. Each PS has an exciting light with optimum wavelength that is able to
excite PS electrons that return to the basal level transmitting energy to nearby molecules inducing two
type of reaction: (a) generation of reactive oxygen species (ROS); (b) activation of singlet oxygen (1O2)
promoting also ROS production. Both mechanisms are able to cause cell apoptosis [25,29–31].

4. Biophysical Therapies in Oncology

4.1. HT

HT acts at cellular level through several mechanisms: proteins denaturation, DNA and RNA
damages, reactive oxygen species (ROS) production [32], heat shock proteins (HSPs) activation [33–35],
and intrinsic and extrinsic apoptosis pathways activation [32,36]. Currently HT is considered an
adjuvant therapy in treating numerous cancers [37] when associated to radio- or chemotherapy, thanks
to new technology that can provide precise control and measurement of heat delivery [33–35,38–41].
In fact, HT treatment can be modulated to control tissue temperature around 40–42 ◦C, which does
not determine cell death and vascular destruction, but increases cancer cell sensitivity to radiotherapy
or various chemotherapeutic drugs, and tumor blood perfusion, improving drug delivery to tumor
cells [42]. HT may alter the membranes of the tumor cells enabling the drugs to penetrate them more
easily. Moreover, HT may also promote the ability of the drugs to induce apoptosis in the tumor cells,
thanks to molecular pathways modulation [43,44]. Indeed, a randomized phase III trial showed that
the combination of regional HT with neoadjuvant chemotherapy for soft tissue sarcomas had better
local progression-free survival than chemotherapy alone [45].

HT can be also combined with radiotherapy representing a possible tool for local control of
inoperable tumors or an adjuvant therapy in the context of surgery. Heat radiosensitization is due to
the pleiotropic effect as a damaging agent on multiple cell components by altering protein structures
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and/or influencing the DNA damage response [46–48]. Radiofrequency and ultrasound HT ablations
were reported as further HT modalities, but their efficacy depends on the size and depth of the tumor,
and disadvantages include the ability to target the tumor and control the exposure [49].

A promising way to overcome these disadvantages might be the combined use of HT and
nanoparticles able to localize specifically inside a tumor, producing an increase in temperature higher
than the surrounding tissues, leading to cell death [50,51]. The heat dissipation can be exploited from
MNPs under an alternating current magnetic field in specific tumor sites, resulting in a therapeutic
outcome and driving malignant cells to destruction, in particular for cancer cells that are generally
more susceptible in regional temperature variations than normal cells [52].

Several studies were performed on gold nanoparticles, such as nanospheres and gold nanorods
for tumor treatment, providing remarkable opportunities in the detection and therapy due to their
inherently low toxicity [53] and strongly enhanced optical properties associated with localized surface
plasmon resonance (LSPR) [54,55]. These characteristics allow the local temperature to increase to
more than 50 ◦C, causing the so-called thermal ablation, which corresponds to severe cell damage
resulting in coagulative necrosis and membrane lysis [56].

Moreover, an important aspect of the combination of HT to MNPs is to allow the release of the
selected drug loaded on MNPs in cancer tissue when they are irradiated with an appropriate laser
beam [57–59], thus increasing drug delivery efficiency and favoring intracellular drug incorporation,
thanks also to the temperature-induced increase of cell membrane permeability [60].

4.2. HIFU

Recent studies on acoustic technology have shown how ultrasounds can be an important resource
not only for diagnosis, but for oncological therapy as well [17,61]. In particular, HIFU is usually
employed in cancer therapy for tumor ablation [62,63] and pain reduction [64].

It has been used for various kinds of malignancies, including prostate, liver, breast, kidney,
pancreas, bone metastasis, glioblastoma and soft tissue sarcoma [65–73]. In recent years, the HIFU
technique has been used more because its potential has been improved by the combined use of
imaging equipment. Currently, both B-mode ultrasonography (US) and magnetic resonance imaging
(MRI) have been incorporated into HIFU devices developing US-imaging-guided HIFU (USgHIFU)
and MRI-guided HIFU (MrgFUS) and facilitating the ablation of a three-dimensional target [74,75].
Recently, the MRgFUS has been approved by the FDA to be used in bone metastasis to treat pain
management [76].

4.3. LIPUS and SDT

It is well known that mechanical stimuli, such as ultrasounds, in the bone microenvironment
are important for bone homeostasis and growth, playing key roles in the development of many
tissues such as bone, cartilage or lung [77–79]. Ultrasounds at lower intensity can also play a role
in developing a mild temperature, which enhances blood flow and increase vascular permeability
useful in both bone regeneration and tumor treatment. In this regard, the increase in temperature and
oxygenation promotes the effectiveness of chemotherapy [45]. In oncology, LIPUS treatment has been
studied for several therapeutic uses [80]: (a) Sonodynamic Therapy (SDT): combination of LIPUS and
sonosensitizers to affect cancer cells [81–83]; (b) ultrasound-mediated chemotherapy: combination
of LIPUS and chemotherapeutic molecules that increase their activity in cancer therapy [84–86];
(c) sonoporation: technique used both to affect cells directly and for gene delivery or transfection [87,88]
and (d) molecular effects on cancer cells [81–83,89,90].

In recent years, the use of SDT in tumor treatment has increased, demonstrating its ability to
mediate apoptosis in numerous experimental systems in vitro or in vivo. The capability of SDT to
induce cell death by apoptosis was proven in different human tumor cell lines, such as liver, oral,
leukemia, lung and colon cancer cell lines [37].
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4.4. PDT

PDT induces tumor destruction by cellular effects, vascular effects or both. Cellular lethal effect
may be caused by an imbalance in the mitochondria, lysosomes, plasma, hydrolytic enzymes, certain
cytokines and calcium, or even by DNA damage [91]. As a result, the tumor cells are eliminated
through apoptotic pathway or necrosis.

Despite its approval almost twenty years ago by the FDA, PDT is nowadays only used to treat
a limited number of cancer types (skin, bladder) and non-oncological diseases (psoriasis, actinic
keratosis) [25]. PDT was commonly used for the treatment of solid tumors at superficial anatomical
locations (head and neck cancers, skin cancer, and malignant melanomas) due to the limited light
penetration capacity [25,92]. Its application in other tumors at more inaccessible sites is still an aim of
clinical investigations.

Another important advantage of PDT is its ability to bypass multidrug-resistance (MDR) in various
deep tumor models, which is the main limitation of prognosis improvement in cancer patients [93,94],
by means of: (a) inhibiting anti-apoptotic proteins [95]; (b) preventing a drug-efflux effect,
impairing ATP-binding transporters [96]; (c) altering the microenvironment of tumor cells, including
microvascular injury and inflammatory factor secretion [97,98]; (d) enhancing the permeability of tumor
vessels and promoting drug delivery [98,99] and (e) promoting immune system response [100]. Finally,
in addition to elicit direct cytotoxicity, PDT provokes a variety of additional beneficial anti-tumor
effects such as an acute inflammatory response, anti-vascular effects and an activation of the immune
system [25].

An important disadvantage of PDT therapy concerns the PSs distribution in the body. Despite
nanotechnology and other targeting techniques, PSs still tend to concentrate in the liver, kidney and
other tissues [101,102]. The non-specific concentration of PSs leads to irradiated injury of normal
tissues as well as liver and kidney damage. Since the existing PSs are not satisfactory for further PDT
development, there is a need for another generation of PSs [31].

5. Application of Biophysical Therapies in Osteosarcoma

5.1. HT

HT induced by microwave energies is already used in orthopedics to treat bone tumors during
surgery [103,104]. The cellular responses to HT are different and depend mainly on temperature
and protocols employed (Table 1). Therefore, it is mandatory to investigate and know the correct
temperature to be used in different tumors, because just a degree of difference might change strongly
the effect of treatment [105,106]. One of the mechanisms by which HT causes cell death involves
the heat shock proteins (HSPs) pathway and the different expression level of HSPs in different
tumor cells seems to be one of the major reasons for the variances in thermo-sensitivity [33–35].
Some in vitro studies have shown that HT treatment inhibited cell proliferation in OS cell lines
via HSP70 upregulation [36], reduced tumor cell motility and autocrine motility factor (AMF)
expression via HSP27 [107], and induced cell apoptosis via ROS, ER stress, mitochondria, and caspase
pathways [32]. In a more recent work, Moise et al. showed in a preliminary study that HT treatment at
42 ◦C, apart from induce cell death, is able to trigger differentiation commitment towards a mature
phenotype in the surviving cells, showing another important mechanism through which HT could
affect tumors [108]. another recent study by Han et al. showed that microwave-induced HT may be
an alternative treatment for distal tibia OS, without any apparent increase in death, local recurrence,
or complications [109].

5.1.1. HT and Chemotherapy

Concerning the antitumor action of thermo-chemotherapy, the ability of the drugs to induce
apoptosis in tumor cells is mainly attributable to the molecular pathway’s modulation induced by
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heat (Table 1). Although it is evident that the effect of HT depends on and varies with temperature
(41–45 ◦C), it acts differently according to administered drugs and treated cell types.

Debes et al. demonstrated that HT at 43 ◦C, but not at 42 ◦C, influenced differently OS cell
viability, depending on OS aggressiveness, affecting strongly MG-63 and KHOS cell line and only
weakly U-2 OS and Saos2 cell line [105]. Moreover they showed also that HT was able to enhance
the cytotoxic effect of cisplatin, affecting cell viability at both temperatures, with a stronger effect at
43 ◦C [105]. Other studies showed that HT conditions sensitize OS cell line to paclitaxel and cisplatin
or etoposide combinations by upregulating Fas expression [110,111]. The combined use of HT with
b-lapachone (b-lap) or melphalan in OS resulted in the enhancement of antitumor activity upregulation
of NAD(P)H: quinone oxidoreductase (NQO1) [112] or by caspase-3 activation [113].

Recently, a clinical randomized phase III trial evaluating local progression-free survival of patients
with high-risk soft tissue sarcoma (including extraskeletal osteosarcoma) treated with chemotherapy
(neoadjuvant etoposide, ifosfamide, and doxorubicin) with or without regional HT (NCT00003052:
Combination Chemotherapy With or Without Hyperthermia Therapy in Treating Patients With Soft
Tissue Sarcoma) showed that adding regional HT improved survival and local progression-free
survival [45,114]. However, HT enhanced leukopenia and determined moderate adverse events such
as pain, bolus pressure, and skin burn [45].

5.1.2. HT and Radiotherapy

The HT capability to act as a radiosensitizer in combination with radiotherapy make it useful
in inoperable OS [47,48]. Tancredi et al. showed the efficacy of HT as adjuvant treatment of surgery
in a case report of a patient affected by an irradiation-induced recurrent OS [115] (Table 1). Indeed,
the post-irradiation OS seems to be an important field of application, because it is not possible (1) to
administer the typical chemotherapy used to treat primitive sarcomas to these patients when their
general conditions do not allow it, and (2) to expose them to radiation therapy due to its side effects on
a site that had already been irradiated [116,117].

5.1.3. HT and Nano- and Magnetic Nanoparticles

In recent years, a variety of nanostructures have been exploited in the areas of OS imaging,
diagnostics and treatment [118], such as magnetic nano-particles, implantable thermoseeds and gold
nanoparticles (Table 1). Shido et al. showed in an in vivo model of OS that magnetite cationic
liposomes (MCLs) associated to a magnetic field were able to reduce both local tumors and lung
metastasis [119]. Implantable thermoseeds such as N_glass–glass ceramic [120], ferrimagnetic
glass–ceramics biomaterial [121]; ferrite MNPs [122,123] or hydroxyapatite-coated iron oxide
(IO-HAp) [124], all activated by an external magnetic field, permit to focus the heat into the target
OS. In vitro studies showed that combined use of HT, gold nanoparticles and doxorubicin decreased
survival rate of Saos2 cell line in comparison with single treatment [54]. Finally, recent studies showed
the effect of the gold nanorods (folate-targeted nanorods: Au NRs@INU-LAPEG-FA/Nut and Au
NRs@PHEA-EDA-FA/Nut or polyacrylic acid-coated nanorods: GNRs@PAA), acting as imaging
contrast agents, effective drug delivery systems and hyperthermic agents, display a remarkable
anticancer activity on both OS bidimensional and tridimensional cell cultures [125,126].
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Table 1. Selected preclinical and clinical studies on HT treatment for osteosarcoma.

Study Cell/Animal Models Patients Treatment Mechanisms/Results Reference

In vitro

HOS85, MG-63 Saos2 HT 42 ◦C Cell viability reduction HSP70-dependent alkaline
phosphatase activity-dependent Trieb et al., 2007 [36]

HuO9 HT 41 ◦C Cell viability reduction Hsp27-dependent, AMF-dependent Nakajima et al., 2012 [107]

U-2 OS HT 43 ◦C ROS; apoptosis ER stress mitochondria, caspase mediated Hou et al., 2014 [32]

MG-63 HT 42 ◦C
HT 47 ◦C

Cell death at both temperatures.
Triggering of cell differentiation commitment even at 42 ◦C Moise et al., 2018 [108]

MG-63, KHOS, U-2 OS Saos2
HT 43 ◦C

HT 43 ◦C + Cisplatin
HT 43 ◦C + Etoposide

Cytotoxicity Debes et al., 2005 [105]

RD- ES (primary Ewing’s
sarcoma) HT 42 ◦C + Melphalan Apoptosis Caspase 3 dependent Krause et al., 2008 [113]

HOS HT 42 ◦C + β-lapachone Cytotoxicity NQO1-dependent Hori et al., 2011 [112]

OS732 HT 43 ◦C + Paclitaxel+ Etoposide Apoptosis Fas-dependent Huang et al., 2012 [110]

OS732, MG-63 HT 43 ◦C + Paclitaxel+ Cisplatin Apoptosis Fas-dependent Huang et al., 2013 [111]

LM8 subcutaneous in syngeneic
host mouse HT 45 ◦C (Alternating Magnetic Field) + MCLs Cytotoxicity Hsp70 Shido et al., 2010 [119]

Saos2 HT 41–43 ◦C (Alternating Magnetic Field) +
glass–glass ceramic thermoseeds Apoptosis Alcaide et al., 2012 [120]

HOS HT 45 ◦C (Magnetic field) +
magnesium–calcium ferrites nanoparticles Cytotoxicity Saldívar-Ramírez et al., 2014

[123]

Saos2 HT 45 ◦C (Magnetic Field) + ferrite magnetic
nanoparticles Cytotoxicity Makridis et al., 2016 [122]

Saos2 HT (Magnetic Field) + ferrimagnetic
glass–ceramics nanocomposites Cytotoxicity Gamal-Eldeen et al., 2017 [121]

MG-63 HT 45 ◦C (Magnetic field) + Hydroxyapatite
Coated Iron Oxide Nanoparticles Cytotoxicity Mondal et al., 2017 [124]

Saos2 HT 42 ◦C (Microwave) + gold nanoparticles
and doxorubicin Cytotoxicity Ghahremani et al., 2011 [54]

U-2 OS (2D and 3D cultures) HT (laser beam) Folate-targeted gold nanorods Cytotoxicity Li Volsi et al., 2017 [125]

MG-63 HT (laser beam) PAA- coated nanorods Cytotoxicity and apoptosis Pan et al., 2018 [126]
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Table 1. Cont.

Study Cell/Animal Models Patients Treatment Mechanisms/Results Reference

Clinical

Patients
Case report

Irradiation-induced recurrent
OS

Surgical resection followed by radiation
therapy combined with HT

Results: Five months after the surgery, the clinical and
instrumental control showed an effective consolidation of the
chest wall and good trophism of the flap without recurrence.

Tancredi et al., 2011 [115]

Patients
Retrospective study

79 patients with distal tibia OS
without metastasis

HT
52 patients were treated with

microwave-induced hyperthermia,
27 patients were treated with amputation

Results: Local recurrence and survival comparable with
amputation treatment. Function improvement compared with

transtibial amputation.
Complication: 6/52 patients hyperthermia treated

experienced same complications: 2 delayed union; 1 fracture;
2 superficial infections; 1 deep infection. 3/27 patients

undergoing amputation experienced complication: 2 wound
dehiscence; 1 superficial infection.

Han et al., 2017 [109]

Patients
Clinical trial
Randomized

phase 3
340 patients with soft tumor

sarcoma

HT + etoposide, ifosfamide, and doxorubicin

Results: Compared with neoadjuvant
chemotherapy alone, adding regional hyperthermia improved

local progression-free survival and 5-year survival rate
of 62.7% vs. 51.3% and 10-year

survival of 52.6% vs. 42.7%

Issels et al., 2010, 2018 [45,114]

Abbreviation; HIFU High Intensity Focused Ultrasound; US Ultrasound.
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5.2. HIFU

The use of HIFU as an alternative treatment to surgery in OS has been debated and not thoroughly
accepted [127–129] (Table 2). Li et al. reported for the first time in 2009 the use of HIFU as an alternative
treatment in seven OS patients (perspective study) rejecting amputation or where the surgery may
cause serious wounds, complications, and disabilities because of tumor location [129,130]. They found
no severe complications to HIFU treatment and disappearing of preexisting severe pain in all patients.
A complete response to HIFU treatment was achieved in three patients and a partial one in other
three patients; the last patients developed a pulmonary metastasis 5 months after HIFU treatment.
The median survival time was 68 months and the five-year survival rate was 71.4% [130]. In 2010,
again Li et al. showed the advantages of HIFU treatment in a further group of 12 patients with
OS [129]; patients underwent neoadjuvant chemotherapy before HIFU (4–6 weeks), followed by 2 to 4
weeks of adjuvant chemotherapy, 10 to 20 days after HIFU using high-dose methotrexate/vincristine
and doxorubicin and cisplatin. In treating all patients with HIFU until complete tumor ablation,
they demonstrated a significant pain reduction and improvement in alkaline phosphatase and lactate
dehydrogenase markers, with an overall survival rate of 100.0%, 84.6%, 69.2% and 38.5% at 1-, 2-, 3-
and 5-year, respectively [129]. They suggest that a possible related mechanism for pain relief may
be the thermal periosteal denervation or the thermal ablation of the tumor tissue mass itself that
could reduce the pressure on adjacent healthy tissues or a combination of these mechanisms [129].
They concluded that HIFU seems to be a safe and noninvasive technique, appearing to be successful in
the treatment of OS, which cannot be surgically removed. The chemotherapy administration before and
after HIFU treatment not only inhibited growth of subclinical metastatic foci, preventing recurrence,
but also minimized tumor size, suggesting a synergistic effect with chemotherapy [129]. In response to
the Li study, Bielack et al. [127], highlighted various concerns regarding the combined use of HIFU
with chemotherapy as an alternative to surgery, which is considered the gold standard, and above
all, they pointed out that newly diagnosed patients with OS were not treated with surgery in favor
of a purely experimental approach [65,129,130]. In addition, Bielack et al. stated that no sufficient
information about the local control rate of HIFU in primary malignant bone tumors was reported [127].

Other studies in favour of the use of HIFU for unresectable OS are Chen et al. Orgera et al. and
Yu et al. [65,131,132]. Chen et al., carried out a prospective study from 1997 to 2004 on 80 patients
with bone tumors of which 63 were affected by OS and refused to undergo surgery or were not
candidates for surgery [65]. Patients underwent neoadjuvant chemotherapy (three to five cycles) and
adjuvant chemotherapy (four to six cycles) before and after HIFU ablation, respectively, with cisplatin,
doxorubicin, methotrexate and ifosfamide. They reported overall survival rates for all patients at 1, 2,
3, 4 and 5 years that were 89.8%, 72.3%, 60.5%, 50.5% and 50.5%, respectively [65]. Orgera et al. treated
with HIFU 22 patients with different solid tumors who were deemed not to be candidates for surgery
because of comorbidities. One of 22 patients was affected by OS and HIFU treatment determined a
pain reduction and tumor response [131]. Yu et al., performed a retrospective analysis of 27 OS patients
who had local unresectable recurrence or refused to undergo surgery or who were not candidates for
surgery, which were treated with HIFU from 2006 to 2010 [132]. They concluded that HIFU might be
considered a safe and noninvasive treatment for local unresectable recurrence of OS, with good local
control and without severe complications, achieving an overall survival rate of 59.2%, 40.7% and 33.1%
at 1-, 2-, 3-year, respectively [132].
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Table 2. Selected clinical studies on HIFU treatment for osteosarcoma.

Clinical Study Treatment Mechanisms/Results Reference

Patients: 7 HIFU

Results: Complete response in three patients
Partial response in three patients
Pulmonary metastasis after 5 months in one patient
five-year survival rate was 71.4%
Severe pain disappeared
Complications: No severe complications were observed

Li et al., 2009 [130]

Patients: 25 patients with malignant
bone tumors; 12 with OS HIFU + chemotherapy

Results: Tumor ablation
The response rate based on MRI or PET/CT for patients with primary
bone tumors was 84.6%; for patients with metastatic bone tumors,
response rate was 75.0%.
Pain was significantly alleviated
Complications: 12 patients had first-degree burns
Two patients had second-degree burns.

Li et al., 2010 [129]

Patients: Retrospective study on 80
patients with a primary bone malignancy
and 60 with OS

US-HIFU + chemotherapy in 62 patients
with OS, 1 with periosteal osteosarcoma,

and 3 with Ewing sarcoma.
US-HIFU alone in 14 patients with

chondrosarcoma, giant cell bone cancer,
periosteal sarcoma, or an unknown

malignancy

Results: Tumor ablation in 69 patients malignant bone tumors resulted
completely ablated and the remaining 11 patients showed greater than
50% tumor ablation
For all patients the overall survival rates at 1, 2, 3, 4 and 5 years that
were 89.8%, 72.3%, 60.5%, 50.5% and 50.5%, respectively
Complications: Mild local pain and local edema after treatment; skin
toxicity 17 of the 80 study patients
Bone fracture was observed in six patients, ligamentous laxity occurred
in three, and epiphysiolysis or secondary infection occurred in two.

Chen et al., 2010 [65]

Patients: 22 patients with solid tumors, 1
with OS US-HIFU Results: Tumor ablation, pain reduction

Complications: No complications detected in the patient with OS
Orgera et al., 2011

[131]

Patients: Retrospective study on 27
patients with local unresectable
recurrence of OS previously subjected to
multi-agent chemotherapy

HIFU

Results: Tumor ablation; Pain reduction
Follow up: For all patients, the 1-, 2- and 3-year local disease control
rates were 59.2%, 40.7% and 33.1%, respectively
Complications: Low grade fever in six patients.

Yu et al., 2015 [132]

Abbreviation; LIPUS Low Intensity Pulsed Ultrasound, HMME Hematoporphyrin Monomethyl Ether, ALA 5-Aminolevulinic acid, ROS Reactive Oxygen Species.
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According to these few non randomized trials, the advantage of HIFU treatment are numerous:
(a) noninvasive; (b) a real-time treatment is possible by monitoring the beam by US or MRI; (c) an
uniform distribution of therapeutic dose, employing the destroying treatment only on the target
area [129]. On the contrary, the main complications of HIFU therapy in malignant bone tumors included
skin burns in the therapy area and local nerve injury. Moreover, other potential complications are the
fracture of the tumor-affected bone, the functional loss of nearby joints and the hemorrhagic infection
of the tumor. Additionally, HIFU was considered inappropriate in same conditions: (a) pathological
fractures; (b) tumors located in the spine or skull; (c) when the distance between tumor and skin
is < 0.5 cm; (d) when tumor crosses a joint; or (e) tumor crosses/surrounds a nerve or blood
vessel [65,129,130].

Currently, there are three ongoing nonrandomized phase 1 studies evaluating HIFU safety alone
or in combination with chemotherapeutic agents:

(1) NCT02076906—MRg-HIFU on pediatric solid tumors, whose purpose is to determine if MRgFUS
ablative therapy is safe and feasible for children with refractory or relapsed solid tumors;

(2) NCT02557854—HIFU hyperthermia with liposomal doxorubicin (DOXIL) for relapsed or
refractory pediatric and young adult solid tumors, which aims at evaluating whether Doxil
given prior to MR-HIFU hyperthermia (50 mg Doxil i.v. followed by MR-HIFU 42 ◦C for 30 min
every four weeks) is safe for the treatment of pediatric and young adult patients with recurrent
and refractory solid tumors;

(3) NCT02536183 A phase I study of lyso-thermosensitive liposomal doxorubicin and MR-HIFU for
pediatric refractory solid tumors, which evaluates the maximum tolerated dose and recommended
phase 2 dose of lyso-thermosensitive liposomal doxorubicin (LTLD) administered in combination
with MR-HIFU in children with relapsed/refractory solid tumors. LTLD is administered i.v. in
combination with MR-HIFU ablation on day 1 of every 21-day cycle, receiving up to six cycles.

5.3. LIPUS and SDT

Preclinical studies on LIPUS treatment in OS concern their effect on molecular pathways and,
above all, their action in SDT. Matsuo et al. in an in vitro study showed that LIPUS treatment alone
was able to directly cause apoptosis mitochondrial pathway dependent and necrosis in OS cells [133].
Furthermore in vitro and in vivo studies demonstrated that LIPUS treatment alone showed a cytotoxic
effect on OS cell line via ROS and Ca2+ and that LIPUS stimulation was able to inhibit tumor growth
in OS xenograft model (Table 3). In both cases, the combined use of sonosensitizer Hematoporphyrin
monomethyl ether (HMME) enhanced these effects [82,83]. Indeed, the combined use of LIPUS and
SDT is the most investigated and promising application in OS treatment. In vitro and in vivo studies
for OS treatment showed that two sonosensitizer are able to inhibit tumor growth: HMME [82,83,134]
and 5-Aminolevulinic acid (ALA) [5,135].

5.4. PDT

Several preclinical in vitro and in vivo studies in OS showed that PDT is able to induce apoptosis
(activation of mitochondrial and/or caspase pathways, and/or ROS increase), autophagy (activation
of ROS-Jnk signaling pathway) and/or to arrest cells at the G2/M phase, depending on PS employed
(Table 4) [136–148]. In addition, PDT can be employed in combination with other biophysical stimuli:
low-level light therapy (LLLT) combined with N-aspartyl chlorin e6-PDT (NPe6-PDT) to enhance the
cytotoxicity in MG-63 cells by increasing ROS and ATP [149]. The association of HT with PDT may
increase its effectiveness in cells that do not respond to PDT alone [150].
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Table 3. Selected preclinical studies on LIPUS treatment for osteosarcoma.

Study Cell/Animal Models Patients Treatment Mechanisms/Results Reference

In vitro/in vivo

In vitro (MG-63 cells) LIPUS + HMME Apoptosis Caspase dependent Liu et al., 2015 [134]

In vitro (UMR-106 cells) LIPUS alone
LIPUS + HMME

Cytotoxicity ROS and Ca2+

dependent
Tian et al., 2010 [83]

In vitro (LM8 cells) LIPUS Apoptosis and necrosis Matsuo et al., 2017 [133]

In vitro (UMR-106 cells) LIPUS + 5-ALA Apoptosis mitochondrial
pathway dependent Li et al., 2015 [135]

In vitro (UMR-106 cells)
In vivo (mouse) LIPUS + 5-ALA Apoptosis ROS mitochondrial

pathway dependent Li et al., 2015 [5]

In vivo (mouse) LIPUS alone
LIPUS + HMME Apoptosis Tian et al., 2009 [82]

Abbreviation; LIPUS Low Intensity Pulsed Ultrasound, HMME Hematoporphyrin Monomethyl Ether, ALA 5-Aminolevulinic acid, ROS Reactive Oxygen Species.

Table 4. Selected preclinical and clinical studies on PDT treatment for osteosarcoma.

Study Cell/Animal Models Patients Treatment Mechanisms/Results Reference

In vitro

In vitro
MOS/ADR1 AO-PDT Cytotoxic effect on OS MDR cells Kusuzaki et al., 2000 [157]

In vitro
HOSM-1, HOSM-2

Aminolevulinic acid hexyl
ester-PDT (hALA-PDT)

hALA-PDT + HT (43.5 ◦C)

hALA-PDT + HT treatment enhances the
reduction of cell viability in cells
insensitive to hALA-PDT alone

Yanase et al., 2009 [150]

In vitro
143B mTHPC-PDT Apoptosis caspases- dependent in

metastatic cell line Reidy et al., 2012 [143]

In vitro
UMR106 Methylene blue-PDT Apoptosis mitochondrial pathway induced Guan et al., 2014 [137]

In vitro
Hu09 na-pheophorbide-PDT Apoptosis mitochondrial and caspase

pathways dependent Nagai et al., 2014 [142]

In vitro
MG-63 NPe6-PDT + LLLT Cytotoxicity ROS and apoptosis dependent Tsai et al., 2015 [149]

In vitro
MG-63 ALA-PDT Cytotoxicity Li et al., 2016 [140]
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Table 4. Cont.

Study Cell/Animal Models Patients Treatment Mechanisms/Results Reference

In vitro
MG-63

Pyropheophorbide-α
methyl ester-PDT

Apoptosis mitochondrial pathway induced
Autophagy ROS-Jnk dependent Huang et al., 2016 [138]

In vitro
MG-63 Aloe-emodin-PDT Autophagy, apoptosis ROS-JNK induced Tu et al., 2016 [146]

In vitro
MG-63 ALA-PDT Cytotoxicity White et al., 2016 [147]

In vitro
MG-63 TiO2 @xGd NBs-PDT Cytotoxicity ROS induced Imani et al., 2017 [139]

In vitro
MG-63, U2OS, Saos2, Saos2/DX580 PTX-Ce6@Ker-PDT Increase of cell death both 2D and 3D cell

model systems, and in MDR Saos2 cell line Martella et al., 2018 [158]

In vitro
and In vivo

In vitro
LM-8

In vivo (mouse)
Methylene blue-PDT Apoptosis

Necrosis Matsubara et al., 2008 [141]

In vitro
LM8

In vivo (mouse)
AO-PDT Cell invasion and pulmonary metastases

inhibition Satonaka et al., 2011 [152]

In vitro
LM8

In vivo (mouse)
BCDP-17-PDT Apoptosis

Local recurrence reduction Gong et al., 2013 [136]

In vitro
LM8, MG-63, Saos2, TC-71

In vivo (mouse)
HMME-PDT Apoptosis caspase-dependent Zeng et al., 2013 [148]

In vitro
DLM-8, Saos2, HOS, 143B, U-2 OS

In vivo (mouse)
Hiporfin-PDT Inhibition of proliferation by G2M arrest,

ROS increase, Apoptosis and necrosis Sun et al., 2015 [144]

In vitro
TC-71

In vivo (mouse)
BCDP-18-PDT Inhibition of proliferation by G2M arrest;

apoptosis Sun et al., 2016 [145]
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Table 4. Cont.

Study Cell/Animal Models Patients Treatment Mechanisms/Results Reference

In vitro
143B, K7M2L2

In vivo (mouse)
Foscan or Foslip-PDT Apoptosis

Pulmonary metastasis inhibition Meier et al., 2017 [155]

In vitro
MNNG, MG63
In vivo(mouse)

Magnetic calcium
silicate/chitosan porous

-PDT

Cytotoxicity
Reduction of tumor size

Lu et al. 2018 [159], Yang et al.,
2018 [160]

In vitro
MNNG/HOS, U-2OS, MG63, Saos2

In vivo(mouse)
PPZ-PDT

Ros increase, Apoptosis, reduction of cell
invasion capacity.

Tumor size reduction
Yu et al., 2018 [153]

In vitro
MNNG/HOS, MG63, K7M2

In vivo(mouse)
ZnPc/BSA-PDT

Ros increase, Autophagy, Apoptosis,
reduction of cell invasion capacity.

Inhibition of tumor growth after surgery
Yu et al., 2019 [154]

In vivo

In vivo (dog) verteporfin-PDT Necrosis Burch et al., 2009 [151]

In vivo (mouse)
5,15-bis(2-bromo-5-

hydroxyphenyl)
porphyrin-PDT

Tumor size reduction.
Increase of tumor necrosis areas and

osteoid matrix volumes
De Miguel et al., 2018 [156]

Clinical trial

10 patients with primary
musculoskeletal sarcomas: six with

primary malignant soft tissue
sarcoma and four with primary
malignant bone tumor (two OS)

AO-PDT
AO-PDT + irradiation

Results:
AO-PDT + irradiation: no recurrence

development AO-PDT alone: 1/5 case of
recurrence after 21 months

Complications:
None of the patients clinically showed local
or systemic complications caused by AO

administration.

Kusuzaki et al., 2005 [161]

Abbreviation: PDT Photodynamic Therapy, AO Acridine Orange, hALA Aminolevulinic acid hexyl ester, mTHPC 5,10,15,20-tetrakis(meta-hydroxyphenyl)chlorine, NPe6 N-aspartylchlorin
e6, LLLT Low-Level Light Therapy, ALA 5-Aminolevulinic acid, TiO2 @xGd NBs Gd-doped TiO2 nanobeads, PTX-Ce6@Ker paclitaxel loaded in keratine nanoparticles functionalized with
the photosensitizer chlorin-e6, BCDP benzochloroporphyrin derivative, HMME Hematoporphyrin Monomethyl Ether, PPZ Zinc Phthalocyanine, ZnPc/BSA Zinc Phthalocyanine Bovine
Serum Albumin conjugated.
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Several in vivo studies have shown the effects of PDT in association with different PS on OS.
Burch et al. tested in a pilot study, the use of PDT in canine osseous tumor showing the capability
of PDT to induce necrosis in a large tumor tissue. In particular, they showed the possibility to place
in the center of the tumor the fiber optic without compromising the native tissue, demonstrating
that the skeleton could be an ideal place for PDT [151]. Acridine Orange-PDT (AO-PDT) was able
to inhibit both cell invasion and pulmonary metastases in mouse OS [152]. The PDT capability to
affect OS tumor size by apoptosis was demonstrated also by Sun’s studies with hiporfin-PDT in
OS [144], and benzochloroporphyrin derivative 18-PDT (BCPD18-PDT) on Ewing sarcoma [145] and
by Zeng’s studies on hematoporphyrin monomethyl ether-PDT (HMME-PDT) combination in mouse
models [148]. Furthermore, the association of PDT with BCPD-17 suppresses local recurrence after
tumor resection [136]. The effects of PDT combined with different photosensitizer are confirmed by
Yu et al. [153,154] studies, showing that ZnPc/BSA-PDT (zinc phthalocyanine BSA conjugated) and
PPZ-PDT (PEG-PMAN/ZnPC) were able to reduce tumor size when used intraoperatively; moreover
they were able to reduce cell invasiveness in vitro. suggesting their potential effect on tumor recurrence.
Meier et al. demonstrated the tumor suppressive effects in two clinically relevant intra tibial mouse
models of OS of 5,10,15,20-tetrakis (meta-hydroxyphenyl)chlorine-PDT (mTHPC-PDT), using both
mTHPC (Foscan) and a liposomal mTHPC formulation (Foslip) [155]. The authors also confirmed the
potential of PDT to inhibit lung metastatic growth in animals with an intact immune system, validating
the pioneering Korbelik’s studies on the importance of an intact immune system for the efficacy of
PDT. De Miguel et al. showed that 5,15-bis(3-hydroxyphenyl) porphyrin-PDT was able to reduce
cranial and vertebral osteosarcoma in a mouse model, suggesting that PDT is a potential antitumoral
treatment for surgically inoperable osteosarcoma [156].

An important advantage of PDT that might be fundamental in OS therapy is its ability to bypass
MDR, which is one of the main unresolved problems in OS. Kusuzaki et al. showed that AO-PDT
has a strong cytocidal effect, not only on chemosensitive mouse OS cells, but also on MDR mouse OS
cells [157]. This effects on MDR were confirmed by Martella et al. [158] in vitro study demonstrating
that the combination of PTX-Ce6@Ker (paclitaxel loaded in keratine nanoparticles functionalized
with the photosensitizer Chlorin-e6) and PDT was highly effective on MDR Saos2 cells. A recent
interesting application of PDT is its combination with doxorubicin engineered osteogenic scaffold
that would allow to act simultaneously destroying the tumor by increasing the temperature and
the release of doxorubicin (after laser stimulation), and promoting bone regeneration thanks to the
osteoinductive characteristics of the scaffold [159,160]. A clinical trial on 10 patients affected by primary
musculoskeletal sarcomas (two with OS), treated after limb salvage surgery with PDT using AO-PDT,
showed that: (a) the limb function recovered to the level before surgery, except for one patient; and (b)
no patients showed local or systemic complications, suggesting that AO-PDT may be a promising new
limb salvage modality for preservation of excellent limb function in patients with musculoskeletal
sarcoma [161]. By considering that PDT has a relatively low systemic toxicity, repetitive application is
possible making PDT an interesting novel option for the treatment of OS, especially in combination
with current standards of care including neoadjuvant chemotherapy.

6. Conclusions

The current review highlighted how, during the last decade, the technological development
of biophysical therapies might represent an adjuvant role and, in some cases, an alternative role
to the surgery, radio and chemotherapy treatment of OS. Among reported biophysical therapies,
the most promising as adjuvant therapies are HIFUs and HT, which are already employed in OS
patient treatment, while LIPUS/SDT and PDT seem to be particularly interesting for their low toxicity.
However, all studies for their use in OS are still at the pre-clinical level. An important advantage
of SDT and PDT is their use in target therapy that limits non-specific toxicities because of directing
against cancer-specific molecules and signaling pathways, but until now, sono- and photo-sensitizers
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research, as well as the lack of technology, limited their clinical application, although recent studies in
the field of PDT have had a strong increase, suggesting its use particularly in intraoperative phase.

On the contrary, the use of biophysical therapies as alternatives to surgery in OS has been widely
debated. The prognosis of OS patients have improved markedly following the introduction of effective
chemotherapy, but the prognosis for unresectable primary OS arising in the axial skeleton or with
distant metastases still remains poor [162,163].

The prospects of adjuvant biophysical therapies in OS might be different according to the type
of physical stimuli. Thanks to randomized clinical trials, which might provide evidence of HIFU
and HT efficacy as alternative therapies to surgery in OS, these treatments in combination with
chemotherapeutic agents could represent a treatment solution for inoperable lesions and in cases of
recurrence due to MDR acquisition. Regarding SDT and PDT, these are relatively new technologies,
which need further improvements to overcome their limited clinical application. They have the
important advantage of being able to use them in target therapy that limits non-specific toxicities,
because of directing against cancer-specific molecules and signaling pathways. After having improved
these technologies, they should be investigated in clinical trials of phase 0–2, to first provide
information on their safety. Although, recent studies in the field of PDT have had a strong increase,
suggesting its use particularly in intraoperative phase, further extensively investigations on PS and
their activation in deep tumors are mandatory in order to translate these technologies from bench to
bedside and to start clinical trials.
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