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Abstract 
Pathogenic mutations can have a large impact on the conformational ensemble of intrinsically disordered proteins, but 
revealing those effects and their physiological relevance can be challenging. We used large-scale all-atom explicit-solvent 
molecular dynamics simulations and single-molecule Förster resonance energy transfer (smFRET) experiments to in-
vestigate the conformational dynamics of the chaperone protein HSPB8 and its K141E mutant that is linked to motor 
neuropathies. Our findings revealed that the HSPB8-K141E mutant exhibits increased conformational flexibility compared 
to the wild-type protein, particularly at high physiological ionic strengths, leading to a more extended conformational 
ensemble. Bayesian maximum entropy reweighting was applied to improve agreement between simulated and experimental 
smFRET data, further emphasizing the mutation’s influence on protein dynamics. While both WT and K141E showed 
similar primary smFRET peaks after reweighting, the mutant displayed a higher occurrence of a secondary peak at lower 
FRET, indicative of an unfolded state. Additionally, differences in salt bridge networks between the variants highlighted the 
role of ionic interactions in modulating protein structure and suggest a possible connection between rapid dynamics and 
conformational stability. These results suggest that the pathogenicity of the K141E mutation may be, at least in part, due to 
the enhanced conformational variability that negatively influences the protein function. The study underscores the sig-
nificance of ionic strength in the structural dynamics of intrinsically disordered proteins like HSPB8, providing insights into 
the functional implications of these changes and how stability changes can manifest across different timescales. 
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Introduction 

Heat shock protein B8 (HSPB8) belongs to the family of 
small HSPs (HSPBs), which are classified as molecular 
chaperones and participate in the maintenance of cellular 
proteostasis.1 HSPB8 forms a stoichiometric complex with 
the cochaperone BAG3 and the master chaperone HSP70. 
The complex is expressed in different cell types, including 
skeletal muscle cells and neurons, where it promotes the 
autophagic removal of mutated and misfolded proteins,2–4 

whose aggregation is associated with neuromuscular and 
neurodegenerative diseases.2,5 In contrast to Adenosine 
triphosphate (ATP)-dependent chaperones such as HSP70 
that hydrolyzes ATP to assist protein refolding and are 
classified as “foldase,” HSPB8 and the other HSPB family 
members are ATP-independent chaperones that lack re-
folding activity and are, as such, classified as “holdases.”1 

Recent studies using Optical Tweezers have shown that 
HSPB8 prevents protein aggregation without affecting 
native protein folding, acting as a "holder" that halts the 
progression of misfolded conformations.6 

Structurally, HSPB8, as well as the other HSPB family 
members, comprises a conserved α-crystallin domain 
(ACD), along with intrinsically disordered N-terminal 
(NTD) and C-terminal (CTD) regions and exist as an 
ensemble of oligomers of different sizes, ranging from 
dimers to 4-mer, up to 24-mer.1 The α-crystallin domain 
is required for the chaperone activity of the HSPBs, 
while the disordered N-terminal and C-terminal regions 
are involved in dimer and oligomer formation.1 While 
the functional role of HSPB8 in preventing protein ag-
gregation and promoting autophagy-mediated clearance 
of misfolded and mutated substrates7 is gradually be-
coming clearer,2,4,8–10 detailed atomistic insights into its 
structure remain elusive, as no experimental 3D struc-
ture of HSPB8 has yet been determined. The structural 
characterization of its intrinsically disordered NTD and 
CTD regions poses significant challenges, as most ex-
perimental techniques are optimized for structured 
proteins. Consequently, computational simulations 
have become an invaluable complement to experi-
mental methods, offering insights into the conforma-
tional ensembles of intrinsically disordered proteins 
(IDPs) and regions (IDRs). Concerning HSPB8 and 
small heat shock proteins in general, their highly flex-
ible IDRs shape the protein’s free energy landscape, 
resulting in multiple shallow minima and enabling the 
existence of a broad ensemble of conformations under 
physiological conditions. Molecular simulations, cou-
pled with dimensionality reduction techniques, have 
provided insights into the interplay between these do-
mains, particularly the functional contributions of the 
disordered regions.11 

As mentioned above, ATP-dependent and ATP-in-
dependent chaperones play an important role in the 
maintenance of protein homeostasis, whose loss is as-
sociated with aging and neurodegeneration.12 An in-
creasing number of mutations in genes coding for 
chaperones is associated with neurodegenerative dis-
orders, especially neuromuscular and muscular dis-
orders. These include mutations in genes coding for 
members of the HSP40/DNAJ family and the HSPB8 
family, including HSPB8 itself and its stoichiometric 
partner BAG3.13–15 Understanding how these mutations 
alter the stability and function of these chaperones is 
instrumental for the design of future therapeutic ap-
proaches. We recently characterized the K141E variant 
within the α-crystallin domain of HSPB8, which is as-
sociated with distal hereditary motor neuropathy, 
Charcot–Marie–Tooth neuropathy type 2L16 and distal 
myopathy17 (Figure 1). Despite maintaining the native 
folding propensity, the K141E substitution negatively 
impacts the protein’s antiaggregation activity in vitro, as 
well as in cellular and animal model characterized by 
protein aggregation,8,18 The reduced chaperone-activity 
of HSPB8 K141E compared to the WT protein can be at 
least in part be ascribed to a decreased interaction with 
the partner BAG3, an impaired HSPB8 dimerization, 
and a reduced binding affinity to non-native pro-
teins.4,18 

To gain further insight into how the K141E mutation 
induces structural changes under varying ionic strengths, 
we combined experimental techniques, such as single- 
molecule Förster resonance energy transfer (smFRET) and 
fluorescence lifetime measurements, with atomistic mo-
lecular dynamics (MD) simulations to compute smFRET 
efficiencies. Site-specific fluorophore labeling was 
achieved by replacing selected cysteine residues with 
donor and acceptor dyes, enabling precise measurement of 
intramolecular distances. Using smFRET and lifetime 
analysis, we measured distances and dynamics between 
selected amino acid residues in both HSPB8 and its K141E 
variant, examining how these distances change across a 
range of ionic strengths, from low to high. We then in-
tegrated single-molecule spectroscopy with large-scale all- 
atom explicit-solvent MD simulations to gain insight into 
the intramolecular distance distributions at nanometer 
scales and dynamics down to nanosecond timescales. 
Using explicit solvent and ions, we performed unbiased 
molecular large-scale simulations with IDP-specific force 
field parameters and ion models of HSPB8 and the mu-
tation K141E. Our analyses revealed that the protein chain 
undergoes different degrees of compaction or expansion in 
response to ionic strength variations, due to favorable ion 
interactions with the protein backbone and specific in-
teractions with various residue side-chains. 
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We applied the new FRETpredict algorithm,19 using 
a rotamer library approach, to estimate the accessible 
volume of FRET probes (Figure S1) and predict the 
mean dye distance for each simulated protein structure. 
FRETpredict places donor and acceptor dyes in-
dependently at specified sites, computes distances and 
relative orientations for all rotamer combinations, and 
evaluates nonbonded interaction energies within 
1.0 nm. The statistical weights of each rotamer pair are 
combined to calculate the average FRET efficiency. In-
tegrating FRETpredict with smFRET data provides a 
robust framework for correlating experimental and 
computational findings. By calculating FRET effi-
ciencies and applying Bayesian maximum entropy 
(BME) reweighting, we confirmed that the K141E mu-
tation impacts protein dynamics. 

Our findings revealed different structural variability 
between HSPB8 WT and the K141E mutation, which 
promoted increased conformational variability, parti-
cularly under physiological ionic strength. Elevated 
ionic strength promotes more extended conformations, 
with the K141E mutant exhibiting increased con-
formational variability with respect to WT. This heigh-
tened structural flexibility may contribute to the 
observed destabilization from smFRET measurements, 
and functional impairments and pathogenicity asso-
ciated with the K141E mutation, highlighting a poten-
tial connection between conformational dynamics and 

disease progression. The insights gained here can 
readily extend to other IDPs, including other chaper-
ones associated with neuromuscular and muscular dis-
eases, potentially advancing the understanding of the 
pathogenic effects of mutations. 

Results and discussion 

K141E pathogenic mutation increases conformational sensitivity 
to ionic strength 

The K141E mutation lies in the very conserved alpha- 
crystallin domain of the protein (Figure 1). To explore the 
physiological implications of the K141E mutation, which 
involves a reversal of the residue charge state, it is es-
sential to perform simulations and experiments across a 
range of ionic strengths, from an “ideally” low 0 mM to 
165 mM, mimicking the physiological concentration. 

The simulated data were collected and analyzed to 
study the effects of the K141E mutation in the HSPB8 
protein under different ionic conditions. Five replicas of 
1 μs all-atom MD simulations were performed for both 
the WT and the K141E mutant protein. For each var-
iant, simulations were repeated at two ionic strengths, 
namely 0 mM and 165 mM. 

The purpose of these simulations was to investigate 
the impact of the K141E mutation on the structure and 

Fig. 1 A graphical overview of human small heat shock protein B8 (HSPB8) and its K141E mutant: (a) 3D structure prediction of 
HSPB8 obtained with Alphafold3, highlighting the K141E single-point mutation in a licorice representation, and (b) a schematic 
diagram of HSPB8 domains. The diagram identifies the variable N-terminal (NTD) in blue and C-terminal (CTD) domain in red, as 
well as the conserved alpha-crystallin domain (ACD) in yellow. The purple box shows the conserved RLFDQxFG sequence. The 
green hexagon indicates the K141E mutation site. 
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dynamics of HSPB8, particularly under different ionic 
strengths. EncoderMap20 was utilized to analyze and 
visualize the large dataset generated. In Figures 2 and  
S7, the data were processed using the EncoderMap 2D 
kernel density estimate (KDE), which reveals the 
structural dynamics of both the wild-type (WT) protein 
and the K141E variant of HSPB8 at ionic strengths of 
0 mM and 165 mM. These plots, created from con-
catenated MD trajectories, utilize dimensionality re-
duction with EncoderMap,20 a neural network-based 
algorithm for decreasing dimensionality. This approach 
provides a clear visualization of how each protein var-
iant explores the conformational space under varying 
environmental conditions. 

Thicker contours in the KDE plots correspond to the 
conformations most frequently sampled during the si-
mulations. Qualitatively, we can see notable differences 
in how the WT and K141E variants cover the con-
formational space at different ionic strengths. For ex-
ample, in Figure 2(a), the WT protein at 0 mM exhibits 
fewer, more concentrated conformational "islands" (as 
enclosed by rectangles), indicating a restricted range of 
conformations. In contrast, at 165 mM, the protein ex-
plores a broader and more diverse set of conformations. 
In Figure 2(b), the K141E variant shows distinct beha-
vior, with wider or more scattered conformational is-
lands at both ionic strengths, suggesting a more 
dynamic or flexible conformational behavior. 

Fig. 2 Encodermap: 2D kernel density estimate (KDE) plots illustrating the molecular dynamics (MD) trajectories of HSPB8 variants 
under varying ionic strengths. Analysis was performed on concatenated trajectories, meaning that for each system, the five 
independent replica simulations (each 1 μs long) were combined into a single 5 μs trajectory. (a) The trajectories of the wild type (wt) 
at 0 mM (violet) and 165 mM (blue) ionic strength. (b) The K141E variant at the same ionic strengths, represented in brown (0 mM) 
and orange (165 mM). (c) The wt (violet) and K141E (light brown) at 0 mM, while (d) contrasts the two variants at 165 mM, with wt 
in blue and K141E in orange. The x-axis and y-axis represent coordinates assigned to the structures in the trajectories by the 
EncoderMap algorithm. Darker colors indicate regions of the plot that were more frequently visited during the trajectories, 
highlighting the dynamic behavior of the proteins under different ionic conditions. Red crosses correspond to the common MD 
starting structures. 
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In Figure 2(c) and (d), the visual differences in the 
plots highlight how the mutation (K141E) and changes 
in ionic strength affect the structural dynamics of 
HSPB8, underscoring the mutation’s potential impact 
on protein function under physiological and stress 
conditions. 

In Figure 2(d), the comparison between WT and 
K141E at 165 mM ionic strength shows that the con-
formational rectangle area for K141E is larger than that 
for WT, while the covered area is smaller (as detailed in  
Table S1). This leads to a lower covered area density for 
K141E. The rectangle is defined by the minimum and 
maximum x and y coordinates of the nonempty bins in 
the 2D conformational space. 

The rectangular area provides an estimate of the total 
conformational space accessible to the protein, while 
the covered area reflects the extent of that space that is 
actually sampled by the protein. If a protein has low 
conformational variability, it is likely to stay within a 
confined region of its conformational space, resulting in 
a well-sampled intermediate region between its most 
frequently visited structures. This is indicated by a high 
coverage area. Conversely, high conformational varia-
bility implies sampling of a wider array of structures, 
with less focus on any one intermediate region, thus 
resulting in a lower covered area. 

These distinctions are visually noticeable: areas of 
low coverage tend to feature elongated, thin "con-
formational islands" on the plot, while areas of high 
coverage appear as dense, dark islands. The combina-
tion of rectangle and covered areas produces the “cov-
ered area density,” which measures how extensively the 
2D conformational space is sampled. 

Overall, K141E consistently shows lower covered 
areas than WT at both 0 mM and 165 mM. Notably, the 
K141E rectangle area is 10% smaller than WT at 0 mM 
but 24% larger at 165 mM, underscoring its increased 
conformational flexibility at higher, more physiologi-
cally relevant ionic strength. 

Considering the common area values and overall 
overlap in the EncoderMap plots (Figure S7), it appears 
that both WT and K141E undergo greater structural 
changes with the shift from 0 mM to 165 mM than when 
comparing the two variants at the same ionic strength. 
The common area values more than double when 
comparing the same variant across different ionic 
strengths, as opposed to comparing the two variants at 
identical ionic strengths, underscoring the influence of 
ionic conditions on structural dynamics. The En-
coderMap plots (Figures 2 and 3(d)) structural simula-
tion data (Figure 3) reveal no significant differences in 
conformational variability between the K141E mutant 
and WT HSPB8 under 0 mM conditions. Overall, the 

results suggest that WT and mutant populate similar 
structures, but the mutant has more frequent inter-
conversions between structural states. 

Further root-mean-square fluctuations analysis has 
revealed that the increased conformational variability 
of HSPB8 K141E at 0 mM, compared to the WT 
(Figure S8). The most pronounced difference in mobility 
is observed in the NTD. This increased mobility is fur-
ther reflected in the larger conformational states of 
K141E illustrated in Figure 3. 

Single-molecule FRET insights into HSPB8 structural dynamics 

To test the computational predictions on HSPB8 at 
physiological ionic strengths, we turned to smFRET, 
which is a powerful technique to study the structure 
and dynamics of IDRs.21 We took advantage of three 
native cysteine residues in the polypeptide sequence for 
labeling. We made three variants for both WT and 
mutant, each with one of the three cysteines (Cys10, 
Cys99, and Cys195) individually removed, and chemi-
cally modified the two remaining cysteines with the 
fluorophores Cy3B and CF660R. This allowed us to then 

Fig. 3 Representative HSPB8 structures obtained from 
clustering the conformational islands in the EncoderMap for 
wild-type low ionic strenght (0 mM), K141E (0 mM), and high 
ionic strength wild type (165 mM) and K141E (165 mM), where 
the α-crystallin domains have been superimposed. The 
structures illustrate the main conformational states sampled at 
each condition, with the N-terminal in blue, the α-crystallin 
domain in yellow, and the C-terminal in red. Darker structures 
indicate regions corresponding to minima in the EncoderMap, 
highlighting the most stable conformations observed. 
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probe three distinct intramolecular distances (between 
positions 10–99, 10–195, and 99–195) by measuring 
the mean transfer efficiency, E, for each variant 
(Figure 4(a)). The smFRET data, recorded on thousands 
of individual molecules for both the WT and K141E 
variant, highlight the correlation between FRET effi-
ciencies and conformational changes upon single-point 
mutation. For both the WT and mutant, a major po-
pulation is observed with an additional well-defined 
minor population at lower FRET. However, the relative 
sizes of the major and minor populations are different 
between the WT and mutant. The distinctive behavior 
of the HSPB8 K141E variant with respect to WT is 
especially evident in the smFRET data for the 10–195 
pair, which essentially reflects the conformation of the 
entire protein. While the mean E-values for the WT and 
K141E are similar (0.38 and 0.40, respectively), the 
secondary peak frequency is significantly higher for 
K141E than for the WT. Conversely, we observe that the 
secondary peak E-values for the 99–195 dye pair (re-
presenting the ACD + CTD regions) are nearly identical 
for both variants (0.42 for WT and 0.40 for K141E), with 
similar frequencies, although K141E has a slightly 
higher ratio between major and minor populations 
(Figure 4). For the Cys 10–99 pair (representing the 
NTD region), the secondary peak frequencies at 165 mM 

are similar between WT and K141E, but the E-value of 
the peak decreases from ∼0.6 in the WT to ∼0.5 in the 
K141E mutant. This lower E-value for K141E suggests a 
larger distance between the fluorophores, indicating 
that the NTD of the mutated protein generally adopts 
more extended conformations than the WT, potentially 
expanding its 3D conformational space. 

To probe rapid fluctuations in interdye distance and 
detect potential changes between wild type and variant, 
we analyzed relative fluorescence lifetimes of donor 
(Figures 4 and S9). Sub-µs dynamics can be detected in a 
plot of transfer efficiency (E) as a function of relative 
donor lifetimes (τD/DA) as a deviation from the static 
line toward the dynamic line which describes the 
maximum of such dynamics in the case of a gaussian 
chain22 As expected, a strong deviation is observed for 
the variants probing the full-length protein (10–195) 
and the disordered NTD (10–99), whereas the lifetimes 
of the variant probing mostly the crystallin domain are 
much closer to the static line. The K141E mutant shows 
very similar behavior but has notably increased dy-
namics in the NTD, which can be visualized as a shift 
upwards, away from the static line. This indicates that 
the mutation causes increased distance dynamics in the 
NTD on a sub-µs timescale. This timescale can be 
compared with the timescale of the simulations, which 

Fig. 4 Single-molecule FRET (smFRET) experimental data obtained at 165 mM. Förster resonance energy transfer efficiency 
distributions for HSPB8 labeled at (a) 10–99, (b) 10–195, and (c) 99–195. The wild type is shown in blue and the K141E mutant in 
green, with E values for each peak shown in the corresponding panel. The lower panels show the corresponding relative donor 
fluorescence lifetimes. The distributions illustrate the conformational dynamics and variations in Förster resonance energy transfer 
efficiency between the wild type and K141E mutant under the same experimental conditions. The number of molecules (n) is 
indicated for each histogram. Abbreviation used: HSPB8, heat shock protein B8. 
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shows good agreement and a greater tendency for the 
mutant to populate more extended states within the 
simulation timescale of nanoseconds. 

We wondered whether the minor peak in the 
Förster resonance energy transfer (FRET) efficiency 
histograms corresponded to the unfolded state of 
HSPB8. To probe conformational changes in more de-
tail, we performed chemical denaturation experiments 
using both urea and guanidinium chloride (GdmCl) on 
the variant probing the full-length protein. In Figure 5, 
we have plotted denaturation curves for HSPB8 wild- 
type (WT) and K141E mutant labeled at Cys 10-195, 
while in Figure 6, we have plotted denaturation curves 
for HSPB8 WT and K141E mutant labeled at Cys 99-195. 
In urea, there is a more pronounced difference in the 

unfolding response with respect to GdmCl. We used the 
areas of the peaks in the transfer efficiency histograms 
to calculate the fraction of folded protein as a function 
of denaturant. By fitting the denaturation data to a two- 
state unfolding model, we could extract the free energy 
of unfolding, ΔGu

H2O. The free energy difference due to 
the mutation is almost two-fold, reduced from 
∼1.0 kcal/mol to 0.5 kcal/mol (Table S2). 

Importantly, the minor peak shows a smooth expansion 
as a function of denaturant for all labeling variants, 
whereas the major population resists denaturation at low 
denaturant concentrations for those labeling variants that 
probe the crystallin domain (Figure S10). 

Finally, we measured the effect of denaturants on 
only the NTD (Figure 7). The main population shifts to 

Fig. 5 Denaturation curves for HSPB8 wild type (WT) and K141E mutant labeled at Cys 10–195. (a) and (b) Transfer efficiency 
histograms at different (a) GdmCl or (b) urea concentrations for HSPB8 wt (blue/red) and K141E (green/red). (c) and (d) Fraction of 
the folded population as a function of (c) GdmCl or (d) urea. The solid lines are fits to a two-state unfolding model (see Materials 
and methods). Shaded regions represent 95% confidence intervals of the fits. Abbreviations used: GdmCl, guanidinium chloride; 
HSPB8, heat shock protein B8. 
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lower FRET efficiency at low denaturant concentra-
tions, indicating expansion of the disordered region, and 
it quickly merges with the minor unfolded state popu-
lation. We thus converted the mean E-values to root- 
mean-square distance, which allows us to estimate an 
apparent radius of gyration (Rg) using a self-avoiding 
walk (SAW) polymer model (see Materials and 
methods) (Figure 7). 

Interestingly, this region resists changes in Rg at low 
urea concentrations, indicating that even though this 
region is dynamic (as observed from the fluorescence 
lifetimes in Figure 4) it is held in a compact state pre-
sumably by interactions with other parts of the protein. 

Given the overall charge of the disordered regions and 
the reversal of charge state due to the mutation, we ex-
amined the influence of ionic strength on protein 

structure by conducting FRET experiments at different 
concentrations of KCl (Figure 8). These experiments fo-
cused on the effect of ionic strength on the ratio of the 
secondary to the primary peak in FRET efficiency dis-
tributions, based on the concept that mutations affecting 
the protein’s charge might also impact its overall dimen-
sions and conformation.23 Interestingly, the ratio of the 
secondary peak for the WT remains relatively stable as 
KCl concentration increases (Figure 8(a)). In contrast, the 
K141E mutant shows a significant shift in this ratio with 
varying KCl concentrations, with the most pronounced 
change occurring at physiological ionic strength, around 
100–200 mM (Figure 8(c)). smFRET data across different 
KCl concentrations reveal a decrease in E-values for both 
the main and secondary peaks for both variants. Specifi-
cally, the WT main peak E-value decreases from 0.68 to 

Fig. 6 Denaturation curves for HSPB8 wild type (WT) and K141E mutant labeled at Cys 99–195. (a) and (b) Transfer efficiency 
histograms at different (a) GdmCl or (b) urea concentrations for HSPB8 WT (blue/red) and K141E (green/red), (c) and (d) Fraction 
of the folded population as a function of (c) GdmCl or (d) urea. The solid lines are fits to a two-state unfolding model (see Materials 
and methods). Shaded regions represent 95% confidence intervals of the fits. Abbreviations used: GdmCl, guanidinium 
chloride; HSPB8, heat shock protein B8. 
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0.60, while for K141E, it decreases from 0.65 to 0.59. Si-
milarly, the secondary peak E-values also drop, from 0.38 
to 0.33 for WT, and from 0.41 to 0.34 for K141E. Moreover, 
the height of the secondary peak, corresponding to the 
unfolded state, increases with increasing ionic strength, 
particularly for K141E. This suggests that higher ionic 
strength destabilizes the folded state more significantly in 
K141E compared to the WT. 

This finding aligns with simulation results that 
highlight the role of salt bridge network disruption in 
the K141E mutant.5 In Figure S11, the salt bridge net-
works for both WT and K141E variant were analyzed at 
0 mM and 165 mM ionic strength. In Figure S11, protein 
residues are depicted in a circular arrangement, con-
nected by lines where salt bridges are present during the 

simulation. The line thickness represents the frequency 
of each salt bridge formation, with thicker lines in-
dicating more frequent interactions. 

This structural extension observed at higher ionic 
strength is likely driven by salt bridge rearrangements 
(Figure S11). Increased ion concentrations alter the 
electrostatic interactions among HSPB8′s charged re-
sidues, disrupting intraprotein salt bridges and facil-
itating the formation of salt bridges with surrounding 
ions. This phenomenon is not unique to HSPB8, as it 
has been observed in other IDPs.24 The balance between 
intraprotein and protein–ion electrostatic interactions 
may explain the distinct conformational behaviors of 
the WT and K141E variants under varying ionic con-
ditions.25,26 

Fig. 7 Denaturation of HSPB8 wild type (WT) and K141E mutant labeled at Cys 10–99. (a) and (b) Transfer efficiency histograms at 
different (a) GdmCl or (b) urea concentrations for HSPB8 WT (blue/red) and K141E (green/red), (c) and (d) Rg as a function of (c) 
GdmCl or (d) urea. The solid lines are fits to a weak denaturant binding model (see Materials and methods). Shaded regions 
represent 95% confidence intervals of the fits. In (d), only data points after 0.5 M urea are used for the fit. Abbreviations 
used: GdmCl, guanidinium chloride; HSPB8, heat shock protein B8. 
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In contrast, the "roll-over" effect shows only slight 
differences between the WT and the K141E mutant, as 
both demonstrate a similar pattern in the variation of 
the Rg at each ionic strength (Figure 8(b)). This ob-
servation aligns with the Rg values obtained from ato-
mistic simulations (Figure S3). 

FRET efficiency and BME reweighting 

Large-scale all-atom explicit-solvent molecular simula-
tions of both HSPB8 and the K141E mutant were vali-
dated by comparing the simulated data to experimental 
results (a schematic overview of the integrative work-
flow is depicted in Figure S12). According to a study by 
Aznauryan et al.27 the end-to-end distance re-
configuration times for IDPs and unfolded proteins ty-
pically range between 50 and 150 nanoseconds. In our 
MD simulations, we assessed the convergence of sam-
pling by analyzing the autocorrelation times (Figure S4), 
which indicate whether the simulation has sufficiently 
explored the protein’s conformational space. Since the 
autocorrelation times are less than one-tenth of the total 
simulation duration, this suggests that the simulations 
have likely achieved convergence, meaning they have 
captured the key conformational states necessary for 
analysis. 

To improve agreement between the simulation and 
experimental results, BME reweighting was applied to 
the simulated data, reported in Figure 9. This method 
refines the simulated FRET efficiencies, a critical metric 

for measuring intramolecular distances and comparing 
different protein conformations. 

When analyzing MD simulation data, FRET effi-
ciencies can be reweighted using the BME method to 
better align with experimental FRET measurements.28 

This reweighting process assigns varying weights to si-
mulated conformations, ensuring that the average FRET 
efficiency of the weighted sample matches the experi-
mental values. Reweighting improves the agreement 
between simulations and experimental data, even if 
some difference arises because enhanced sampling MD 
simulations typically capture shorter timescales com-
pared to those accessible in experiments. 

Starting with our microsecond-scale all-atom explicit 
solvent MD simulations, we applied reweighting to ex-
amine and compare additional structural properties of the 
proteins, such as salt bridges (Figure S6), EncoderMap 
plots (Figure 2), and Rg (Figure S3). This method allows 
for a more detailed understanding of the conformational 
landscapes of HSPB8 and the K141E variant. 

Figure 9 shows the FRET efficiency values predicted 
by FRETpredict using rotamer libraries at the physio-
logical ionic strength of 165 mM for HSPB8 WT (top 
panel) and K141E mutant (bottom panel) labeled at Cys 
10–99, 10–195, and 99–195. In Figure S13, we also report 
a comparison with the values obtained at 0 mM. Cal-
culated values of FRET efficiencies compared with ex-
perimental values indicate convergence. Notably, upon 
BME reweighting, the alignment between simulated 
and experimental FRET efficiencies for all the pairs of 

c

Fig. 8 KCl titration curves for HSPB8 WT and K141E mutant labeled at Cys 10–195. (a) Transfer efficiency histograms at different 
concentrations of KCl, for HSPB8 WT (left, blue) and the K141E mutant (right, green). (b) Apparent Rg as a function of KCl 
concentration for WT (blue) and K141E variant (green). (c) Fraction of folded protein as a function of KCl concentration for WT 
(blue) and K141E variant (green). Abbreviations used: GdmCl, guanidinium chloride; HSPB8, heat shock protein B8. 
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labeled residues of HSPB8 WT and K141E mutant is 
refined, providing better agreement. 

Conclusion 

This study elucidates the impact of ionic strength on the 
conformational dynamics of HSPB8 WT and the dis-
ease-linked K141E mutation and demonstrates that 
variations in ionic strength significantly influence the 
conformational ensemble of the protein, due to the 
structural characteristics of its disordered regions. 

Utilizing 2D KDE plots and EncoderMap analysis, we 
observed distinct differences in the conformational ex-
ploration of the WT and K141E variant under varying 
ionic conditions. While the WT exhibited concentrated 
conformational islands at low ionic strength, indicating 
limited structural diversity, the K141E mutant showed 
broader and more scattered islands, suggesting a heigh-
tened conformational flexibility, particularly at physiolo-
gical salt concentrations. Notably, the K141E variant 
demonstrated a marked shift in structural sampling be-
tween the two ionic strengths, in contrast to the WT, 
which displayed more stability across conditions. 

smFRET experiments further supported these find-
ings, revealing a correlation between FRET efficiencies 
and the conformational dynamics of both variants. 
Fluorescence lifetime analysis indicated increased in-
terdye distance fluctuations on the sub-µs timescale. 
The elevated secondary peak frequency in the K141E 
variant at physiological ionic strength suggests a desta-
bilization of the folded state, which may be linked to its 
propensity to populate extended conformations. It will 
be important to resolve whether these structural and 
dynamical changes correlate with the functional im-
plications due to the mutation. Additionally, the pre-
sence of distinct differences in computed salt bridge 
networks between WT and K141E further underscores 
the role of ionic interactions in modulating conforma-
tional landscapes. 

Our findings indicate that the K141E mutation in WT 
HSPB8 enhances conformational variability. This aligns 
with experimental data from flies, cellular studies, and 
in vitro assays, which demonstrate reduced chaperone 
and antiaggregation activity associated with this muta-
tion.6,8,11,18 Importantly, this study highlights parallels 
with other disease-linked chaperones that harbor 
IDRs and their associated mutations, emphasizing the 

Fig. 9 (a) HSPB8 wild-type (WT) protein resides predominantly in a stable, compact state, while the K141E variant exhibits an 
increased population of extended conformations, as indicated by MD simulations and smFRET experiments. These extended 
conformations are associated with greater instability, promoting unfolding and aggregation, which may contribute to functional 
inactivation. (b) Comparison of FRET efficiency distributions at 165 mM salt concentration, for HSPB8 WT (top panel) and K141E 
mutant (bottom panel) labeled at Cys 10–99, 10–195, and 99–195, respectively. The figure shows the experimental FRET distribution 
alongside the simulated data before and after Bayesian maximum entropy (BME) reweighting (blue dashed line). The reweighting 
procedure (red dashed line) adjusts the simulated FRET efficiencies to better match experimental values (light green). The plots 
demonstrate the differences between the original simulated distributions, reweighted distributions, and the experimental data for 
both the WT and K141E variant. Abbreviation used: HSPB8, heat shock protein B8. 
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broader impact of such alterations on protein function 
and pathogenicity. By shedding light on the structural 
dynamics of chaperones like HSPB8, our work provides 
a framework for understanding how mutations influ-
ence chaperone conformational states and their func-
tional consequences in cellular physiology, and it 
provides a possible link to mutations in folded regions 
having global and long-range effects on IDRs, 
which may result in global destabilization. 

Materials and methods 

smFRET experiments 

Mutagenesis, expression, and purification 

A pGEX-4T-GST vector containing the gene for human 
HSPB8 was used to generate a vector library of three 
dual-Cys variants of both HSPB8 and HSPB8-K141E. 
Mutants were made with the QuikChange Lightning kit 
from Agilent using primers from Integrated DNA 
Technologies and verified by Sanger sequencing 
(Azenta). All variants were expressed in BL21 compe-
tent Escherichia coli cells (NEB) and grown in LB media 
(0.1 mg/mL ampicillin). Expression was induced at 
OD600 0.5–0.7 with 0.4 mM Isopropyl β-d-1-thioga-
lactopyranoside (IPTG) and cells grown for 4 h after 
induction at 30 °C. Cells were harvested by centrifuga-
tion at 4500g and 4 °C and kept at −20 °C until further 
use. Cell pellets were lysed by resuspending the pellet in 
a lysis-PBS (phosphate buffered saline) buffer (11.8 mM 
phosphate, 137 mM NaCl, 2.7 mM KCl, 1 mM ethyle-
nediaminetetraacetic acid (EDTA), 1 µg/mL DNase, 
1 mg/mL lysozyme, 1 cOmplete inhibitor tablet and 
1 mM PMSF, pH 7.4). The pellet was resuspended by 
gentle shaking at 4 °C for 2 h prior to sonication. 
Sonication was performed on ice with 5 s bursts and 15 s 
cooling time for a total of 5 min burst time. 

The cell lysate was centrifuged at 40,000g for 45 min 
at 4 °C to remove cell debris, and the supernatant was 
collected. The supernatant was passed through a 
0.45 µm syringe filter (Whatman) prior to being loaded 
onto a 5 mL GSTrap column (Cytiva) equilibrated with a 
PBS buffer containing 1 mM dithiothreitol (DTT) and 
1 mM EDTA (wash buffer). After loading the sample, 
the column was washed with 10 column volumes (CV) 
of wash buffer, and the sample was eluted with a PBS 
buffer containing 1 mM DTT, 1 mM EDTA, and 20 mM 
reduced glutathione. The GST-tag of the HSPB8 con-
struct was removed by adding 200 units of Human 
Rhinovirus 3C protease (HRV 3C) to the eluted sample 

while dialyzing overnight at 4 °C against PBS buffer 
containing 1 DTT and 1 mM EDTA. The GST-tag was 
removed from the solution by heating the sample to 
72 °C for 10 min, resulting in the precipitation of the tag, 
followed by a centrifugation step at room temperature 
(RT) at 5000 g, keeping the supernatant. 

The sample was then concentrated using Amicon 
Ultracentrifugal filters (Merck), reduced with 100 mM 
DTT and purified by reversed-phase high-performance 
liquid chromatography (RP-HPLC) using a ZORBAX 
300SB-C3 column (Agilent) with flow rate of 2.5 mL/ 
min starting at 95% solvent A (99.9% H20, 0.1% tri-
fluoroacetic acid (Sigma) and 5% solvent B (99.9% 
acetonitrile, 0.1% trifluoroacetic acid) and going to 100% 
solvent B over 95 min. Protein purity was confirmed by 
SDS-PAGE, and samples were lyophilized and stored 
at −20 °C. 

Protein labeling 

Prior to maleimide–thiol conjugation, lyophilized pro-
tein samples were resuspended in a degassed 100 mM 
potassium phosphate labeling buffer at pH 7.0 and la-
beled overnight at 4 °C using Cy3B maleimide (donor) 
(Cytiva) (0.85:1 dye to protein ratio) dissolved in anhy-
drous Dimethyl sulfoxide. The fluorophores were 
covalently attached to cysteine residues introduced by 
site-directed mutagenesis to enable site-specific la-
beling. The reaction was quenched using 100 mM 
DTT, and RP-HPLC was then used to remove unreacted 
dye and separate unlabeled and double donor-labeled 
proteins, using the same protocol as in the purification 
process. The protein aliquots were lyophilized and re-
suspended in the labeling buffer and labeled overnight 
at 4 °C using CF660R maleimide (acceptor) (Sigma) 
dissolved in anhydrous Dimethyl sulfoxide. The reac-
tion was quenched using 100 mM DTT, and RP-HPLC 
was then used to remove unreacted dye and separate 
donor-donor doubly labeled and acceptor-acceptor 
doubly labeled proteins. Aliquots of labeled proteins 
were lyophilized, resuspended in 8 M GdmCl, frozen in 
liquid N2, and stored at −80 °C. 

Single-molecule spectroscopy 

Single-molecule fluorescence experiments were conducted 
at RT using a MicroTime 200 (PicoQuant) connected to an 
Olympus IX73 inverted microscope. The donor dye was 
excited using a 520 nm diode laser (LDH-D-C-520, 
PicoQuant) using pulsed interleaved excitation29 with a 
640 nm diode laser (LDH-D-C-640, PicoQuant) to alternate 
excitation of donor and acceptor dyes with a repetition rate 
of 40 MHz. The laser intensities were adjusted to 40 µW at 
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520 nm and 20 µW at 640 nm, measured with a handheld 
optical power and energy meter (PM100D, Thorlabs). Ex-
citation and emission light were focused and collected using 
60× water objective (UPLSAPO60XW, Olympus). Emitted 
fluorescence was focused through a 100 µm pinhole before 
being separated first by polarization and then by donor 
(582/64 BrightLine HC, Semrock) and acceptor (690/70 H 
Bandpass, AHF) emission wavelengths, into four detection 
channels. Detection of photons took place using single- 
photon avalanche diodes (SPCM-AQRG-TR, Excelitas 
Technologies). Arrival time of detected photons was re-
corded with a MultiHarp 150P time-correlated single- 
photon counting module (PicoQuant). Experiments were 
performed in µ-Slide sample chambers (Ibidi) at RT in a TE 
buffer (10 mM Tris, 0.1 mM EDTA, pH 7.4) with varying 
KCl concentrations. For photoprotection 143 mM 2-mer-
captoethanol (Sigma) was added, along with 0.01% (v/v) 
Tween-20 (AppliChem) to reduce surface adhesion. In ex-
periments using denaturants, the exact concentration of 
denaturant was determined from measurement of the so-
lution refractive index.30 

Transfer efficiency histograms were collected from 50 
to 100 pM of freely diffusing double-labeled proteins. Data 
were analyzed using the Mathematica scripting package 
“Fretica” (https://schuler.bioc.uzh.ch/programs/) devel-
oped by Daniel Nettels and Ben Schuler. Fluorescence 
bursts were first identified by combining all detected 
photons with less than 100 µs interphoton times. Transfer 
efficiencies within each fluorescence burst were calculated 
according to 

= +E n n n/( )A A D

where n′A and n′D are the number of acceptor and donor 
photons, respectively. The number of photons were cor-
rected for background, direct acceptor excitation, channel 
crosstalk, differences in dye quantum yields and photon 
detection efficiencies.31 The resulting bursts were then 
filtered to remove bursts where the acceptor bleaches 
during the transit of the molecule through the confocal 
volume,32 which would otherwise cause a bias to-
ward lower FRET. Fluorescence bursts with photon 
counts exceeding three times the mean signal, binned at 
1 s, corresponding to oligomeric states or aggregates, were 
removed before data analysis. The labeling stoichiometry 
ratio (S) was determined according to 
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where nD A
D

/ is the number of detected donor or ac-
ceptor photons after donor excitation and nA

A is the 
number of detected acceptor photons after acceptor 
excitation. To construct the final transfer efficiency 
histograms, bursts that had =S 0.3 – 0.7 were kept, 

filtering out bursts that originate from molecules that 
are without an active acceptor. 

Mean FRET efficiencies E were extracted from 
histograms by fitting to an appropriate number of 
Gaussian distribution functions, corresponding to one 
or two populations. 

Fluorescence anisotropy values were determined for 
fluorescently labeled variants using polarization-sensi-
tive detection in the single-molecule instrument,33 and 
values for all variants were between 0.00 and 0.16. Si-
milar values ( ± 0.03) for anisotropy were obtained at 
0 M and 7 M GdmCl, indicating sufficiently rapid or-
ientational averaging of the fluorophores to justify the 
approximation κ2 ≈ 2/3 used in Förster theory.34 

Fluorescence lifetime analysis 

Fluorescence lifetimes were estimated as the mean de-
tection time of donor photons tD after their excitation 
pulse. In the case of a fixed distance between donor and 
acceptor, the ratio between the mean donor lifetime in 
the presence of acceptor /DA D is equal E1 , 
whereas in a system that rapidly samples a broad dis-
tance distribution, this ratio can significantly deviate 
from E1 . A rapidly fluctuating distance can be de-
scribed by a Gaussian chain probability density function 
PGauss(r)35 of the interdye distance r, given as 
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where r2 is the mean squared end-to-end distance of 
the region probed. The distribution of distances affects 
the average fluorescence lifetime DA according to 

= +E
E
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1
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The variance 2 given by 
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Thus, fluorescence lifetimes were plotted against 
their corresponding transfer efficiencies in two-dimen-
sional scatter plots, where = t/ /DA D D D was calcu-
lated for each burst for an intrinsic donor lifetime D
and plotted along with the static distance line and the 
Gaussian chain probability density function (diagonal 
line and a curved line, respectively). 

Analysis of smFRET denaturation experiments 

Prior to measurements, samples were incubated at RT 
in TEK buffer (10 mM Tris, 165 mM KCl, 0.1 mM 
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EDTA, pH 7.4) containing varying concentrations of 
either urea or GdmCl for at least 30 min, allowing 
samples to reach equilibrium. For samples that showed 
apparent two-state unfolding, the ratios between the 
areas under the curve of the two different populations 
were used to calculate the fraction of folded protein. 
Data sets were normalized by using the absolute ratios 
between the two peaks. The resulting sigmodal curve 
was fitted with36 

=
+ + +

+

( )
( )f

a b denaturant a b denaturant( [ ]) ( [ ])

1

G m denaturant
RT

G m denaturant
RT

1 1 2 2
[ ]

[ ]

u eq

u eq

where f is the fraction folded, a1 (set to 1) and a2 are the 
signals of the folded and the unfolded states, respec-
tively; b1 and b2 are the slopes of the pretransition and 
post-transition lines both set to 0, respectively; Gu is 
the free energy of unfolding; and meq is the equilibrium 
m-value. 

Samples where unfolding did not result in state 
change (smooth, uniform unfolding), mean transfer ef-
ficiencies E were converted to root-mean-square end- 
to-end distances =R r2 , numerically solving the 
transcendental equation: 

=E drE r P r( ) ( ).SAW
0

Here, P r( )SAW denotes the distance probability 
density function of the SAW- ,35 given by 

=
+

P r A
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where and ( 1.1615) are critical exponents. The 
constants A and are determined by requiring 
P r( )SAW to be normalized and to satisfy =r R2 2, 
respectively. The dependency on in P r( )SAW is re-
moved by assuming that a scaling law =R bN holds 
and by substituting = ( ) N/ln ( )R

b into the expression 

for P r( )SAW , where b 0.55 nm for proteins and N
denotes the number of residues between the fluorescent 

groups. The radius of gyration Rg can then be approxi-
mated as 

+
+ + +
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In all denaturant experiments, the Förster radius R( )0
of the Cy3B/CF6660R dye pair (6 nm) was corrected for 
changes in refractive index R c( ( ))D0 according to26 
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where n0 denotes the refractive index without dena-
turant, and n(cD) denotes the refractive index of the 
sample at denaturant concentration cD. The resulting 
radius of gyration (R )g c( )D values were then fitted to a 
weak denaturant binding model with the form37,38 
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where cD is the denaturant concentration, Ka is the as-
sociation constant of denaturants to the polypeptide 
chain, using a simple binding model that assumes 
identical independent binding sites, Rg is the total 
change of Rg upon saturation of denaturant, and Rg,0 is 
the Rg value at zero denaturant. 

MD simulations 

Five replicas of 1 μs all-atom explicit solvent MD si-
mulations of wt and K141E HSPB8 at 0 mM and 
165 mM NaCl concentration were performed in explicit 
water solvent with Amber99sb-disp + TIP4PD as force 
field and water model,39,40 using GROMACS 2022.3 as 
simulation software41 (see Table 1). To ensure in-
dependence, each of the five replicas for every system 
was initiated using a different random seed during the 
velocity assignment step at the beginning of the MD 
simulations. 

Although the experimental ionic strength is due to 
KCl, NaCl was used in the simulations to reproduce 

Table 1 
Summary of the simulated systems, including the relative ionic strengths (IOS), number of replicas per system, simulation 
length per replica, and total simulation time per system.         

MD Replica 1 Replica 2 Replica 3 Replica 4 Replica 5 Total time  

IOS 0 mM       
WT 1 μs 1 μs 1 μs 1 μs 1 μs 5 μs 
K141E 1 μs 1 μs 1 μs 1 μs 1 μs 5 μs 

IOS 165 mM       
WT 1 μs 1 μs 1 μs 1 μs 1 μs 5 μs 
K141E 1 μs 1 μs 1 μs 1 μs 1 μs 5 μs   
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ionic strength, a common and widely accepted practice 
in MD studies due to the similar ionic properties of Na⁺ 
and K⁺ in this context. The starting structures used for 
both ionic strengths correspond to the I-TASSER 
homology models.11 These models were selected as the 
initial structure for MD simulations because the Al-
phaFold3 prediction, although generally considered re-
liable and comparable to other homology modeling 
tools, was found to be inconsistent with the low in-
trinsic disorder predicted for HSPB8 by the IUPRED3 
web server. Specifically, AlphaFold3 overestimated the 
presence of IDRs, whereas the I-TASSER models 
showed a much better agreement with the IUPRED3 
prediction. Notably, the structure of the ordered ACD 
was similarly well predicted by both I-TASSER and 
AlphaFold3, but the overall consistency with experi-
mentally informed disorder profiles favored the use of I- 
TASSER-derived models. All MD simulations were 
carried out using periodic boundary conditions in cubic 
boxes centered on the protein center of mass, with side 
lengths equal to the protein diameter plus 1.1 nm, to 
avoid protein self-interactions during the simulation. 
For the 0 mM simulations, counterions were added after 
solvation to obtain neutral systems, considering a neu-
tral protonation state for Histidine residues. 6 Na+ ions 
were added for the wt and 8 for the K141E mutant. 64 or 
66 Na+ and 57 Cl-ions were added to the simulation box 
for simulations at experimental ionic strengths to obtain 
165 mM concentration for the wt and K141E variants, 
respectively. Initially, the systems were minimized 
using the steepest descent algorithm to remove van der 
Waals contacts of high potential energy, with the max-
imum force threshold value set at 1000 kJ/mol/nm. 
Minimization was followed by a 100 ps relaxation of the 
solvent around the position-restrained protein and a 
100 ps NPT equilibration with isotropic Berendsen 
pressure coupling at 1 bar.42 The temperature was kept 
at 298.15 K using a velocity rescaling thermostat.43 The 
1 μs full MD simulations of the systems were performed 
using the leap-frog algorithm with a 2 fs time step, the 
Verlet cutoff scheme for Van der Waals interactions, 
and the Particle Mesh Ewald method for the treatment 
of electrostatic interactions with 1.0 nm cutoff was 
adopted. The temperature coupling method used was 
velocity rescale, with a time coupling constant of 0.1 ps. 
Covalent bonds involving hydrogen atoms were con-
strained using the LINCS algorithm. Positions and co-
ordinates were saved every 20 ps. The total number of 
frames was 10,001 for each replica simulation. Standard 
structural analysis on each MD trajectories as root- 
mean-square deviation (Figure S2) was performed. The 
radius of gyration (Rg) (Figure S3) was performed using 
GROMACS. Trajectories and structures were visualized 

using VMD44 and PyMol.45 KDE plots were realized 
from custom Python scripts using the seaborn Python 
package.46 Throughout the work, we employed Python 
version 3.8.10. 

The root-mean-square deviation autocorrelation 
curves, Figure S4, for each MD simulation were com-
puted with the Python package statsmodels.47 Auto-
correlation times were extrapolated from the 
intersection between the autocorrelation curve and the 
shaded area representing 95% confidence in Figure S4 
and plotted as vertical dashed lines. The resulting au-
tocorrelation times vary between 37 ns and 84 ns. 

FRETpredict calculations 

We used the recently developed FRETpredict19 to cal-
culate the FRET efficiency distributions from the 
fluorophore-free HSPB8 trajectories. This Python-based 
software uses a rotamer library approach to describe the 
FRET probes covalently bound to the protein. The 
software is available for download from GitHub.48 

We used the pre-calculated rotamer libraries of Cy3b 
and CF660R from Klose et al.,49 aligning them on the 
backbone of the labeled Cys residue pairs (10–195, 
99–195, 10–99) on HSPB8 and the mutant. The Forster 
radius was fixed at the experimental value of 6.0 nm 
(according to ensemble spectroscopic measurements), 
by setting in FRETpredict fixed_R0 = True and r0 = 6.0. 

To address the inherent inversion symmetry during the 
synthesis of protein-fluorophore complexes, specifically the 
inability to control whether Cy3b and CF660R bind to 
Cys10 and Cys195 or vice versa, FRET efficiencies were 
calculated for both possible binding configurations. Final 
FRET values and distributions were derived from the 
combined data. An example of the Python code used to 
compute FRETpredict efficiencies is reported in Figure S5. 

The experimentally observed behavior of freely rotating 
dyes where the rotational correlation time is significantly 
faster than both the FRET rate constant and the diffusion 
rate constant,50 are expressed by the dynamic relationship 
kR >  > kFT >  > kD where kFT is the FRET rate constant, 
kR is the rotational correlation time of the fluorophore, 
and kD is the diffusion rate constant. This "dynamic re-
lationship" ensures that the rotational motion of the 
fluorophores occurs much faster than the FRET energy 
transfer process, which itself is faster than molecular dif-
fusion. This means that, during the timescale of FRET, the 
dyes are able to freely and rapidly rotate, effectively sam-
pling all possible orientations. As a result, the orientation 
factor averages out to its dynamic isotropic value, typically 
2/3. This dynamic averaging justifies the use of Förster 
theory, allowing FRET efficiency to depend primarily on 
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the distance between donor and acceptor, rather than 
their specific orientations.6 

Thus, we have considered the following formula for 
per-frame E Dynamic: = +E Dynamic

R
R Ri

0
6

0
6 6 , with 

=R R R| |i D i A i( ) ( ) where the Donor and Acceptor dye 
positions given by the vectors RD and RA. 

Protein conformations that exhibit steric clashes were 
excluded in all averaging regimes, while the remaining 
conformations were treated with equal weighting. 

With FRETpredict, it is possible to calculate per- 
frame weights based on dye–protein interactions 
through the reweight function. 

The reweight function assigns a continuous weight to 
each frame in the MD trajectory, based on how favorable 
the dye–protein interactions are within that frame. These 
weights reflect the likelihood that a given dye conforma-
tion avoids steric clashes or unfavorable contacts with the 
protein. Frames where the dye is in close proximity to the 
protein surface, potentially resulting in steric hindrance, 
receive lower weights, while conformations where the dye 
can freely sample space receive higher weights. This is 
implemented using a Boltzmann-like scheme, where in-
teraction energies are translated into probabilities. All 
frames remain part of the analysis, but their contributions 
to the final FRET efficiency or distance distributions are 
scaled accordingly. In systems like HSPB8, where the 
protein adopts highly extended conformations and the 
dyes do not come into close contact with the protein, most 
frames are similarly favorable, and thus reweighting has a 
negligible effect. For this reason, the weighted and un-
weighted FRET distributions are nearly identical, and we 
decided not to apply the reweight function in this case. 

To compare the FRET efficiency distributions from 
FRETpredict with the experimental results, we excluded 
values of FRET efficiency below 0.2 (indicating donor- 
only signal within one standard deviation σ of the 
Gaussian peak fitting the experimental data and mole-
cules lacking or having inactive acceptor molecules) and 
above 1.0 (indicating proteins with two acceptor mole-
cules), as they correspond to experimental artifacts. The 
experimental mean FRET efficiency values were calcu-
lated by averaging the resulting distributions. 

Reweighting calculations with Bayesian/MaxEnt approach (BME) 

Simulated ensembles often do not accurately reflect true 
biological ensembles due to differences in experimental 
and simulated conditions, the complex nature of con-
formational space in IDP, and limitations in the energy 
functions used in MD simulations. To enhance the fi-
delity of simulated ensembles, it is beneficial to refine 
them based on experimental data.51 

The BME approach uses experimental results to ad-
just the simulations a posteriori, ensuring that (1) the 
new calculated averages closely match experimental 
values, accounting for uncertainty, and (2) it maximizes 
the relative Shannon entropy compared to the original 
simulation ensemble.35 

In more detail, if the simulation model is a reason-
ably good approximation and only a small shift in the 
distribution of configurations is needed, the observed 
conformations xi are reweighted each by a corre-
sponding weight wi to give a reweighted efficiency 

=w({ })rw i
w x

w
( )i i i i

i i
. In this expression, x( )i is the 

FRET efficiency computed for a single conformation xi. 
This can be optimized to match the experiment by 
minimizing the 2 function. 
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2 , with the mean 
efficiency and experimental uncertainty of observation k
given by k( )exp and k( )2 , respectively. 

To ensure that the new set of weights deviates 
minimally from the original uniform distribution, an 
additional term is incorporated into the optimization 
function52 
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2

where the Shannon entropy of the weight set measures 
the deviation from uniform weights: 

=S w w w({ }) ln ( )i
i
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The factor controls the relative importance of the 
penalty (i.e., regularization) term. It is chosen to be as 
large as possible, thereby maintaining the weights as 
uniform as possible without causing a significant 2

increase.35 A practical approach to balance this trade-off 
between and 2 is to identify the “elbow” of the curve: 
this involves testing different values, starting with a 
high number, until a further decrease in does lead to a 
significant reduction in the associated 2.53 

To compute BME weights, we used the Python library 
BME, available for download on the github.54 The BME 
Python library refines molecular simulation ensembles by 
incorporating experimental data. Given a simulated con-
formational ensemble, which do not perfectly match ex-
perimental measurements. BME adjusts the statistical 
weights of each frame in the ensemble using a Bayesian/ 
maximum entropy approach, maximizing the relative 
Shannon entropy, so the reweighted ensemble better fits 
the experimental data while remaining as close as possible 
to the original distribution. The output is a new set of 
weights that can be used to compute ensemble-averaged 
properties in better agreement with experiments. 
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In our work, the uncertainty associated with each 
experimental mean FRET efficiency value ( k( )2 ) for 
HSPB8 variants was 0.02. 

For each protein variant and ionic strength, the 
average FRET efficiencies for the pairs (10–195, 99–195, 
10–99) were used as experimental restraints for BME 
reweighting. The mean FRET efficiency for the MD 
distributions was determined using linear averaging. 

The newly computed optimized weights were applied 
to reweight the computational distributions EDynamic, 
including the radius of gyration distributions, the 
EncoderMap plots, and the salt bridge frequencies. 
Detailed analysis of each aspect are provided in the 
following sections. 

Radius of gyration 

In addition to obtaining FRET efficiency distributions, 
we would often like to know the radius of gyration: 

=R r m( )g ij i j m
1
2

2
, , , here defined in terms of the 

average distances r m( )ij over all atom pairs i j, and all 
conformations m. From the SAW-ν model, we have that 

= +
+ + +

R RMSg
( 1)

2( 2 )( 2 1)
, with =RMS R( )DA E

2 , 
= 1.1615, and =b nm0.55 25. The SAW-ν model de-

scribes the size of a flexible polymer, like an IDP, ac-
counting for excluded volume effects. It relates the 
radius of gyration to the root-mean-square distance 
between atom pairs. RMS is the root mean square of the 
average inter-residue distances over all conformations, 
is a geometric constant, is the Flory scaling exponent, 
and b is the effective segment length, used when esti-
mating RMS distances. 

Here, RDA E is the FRET-averaged distance between 
the dyes. It is determined from time-averaged fluores-
cence intensity measurements on the single-molecule or 
ensemble level =R R E( 1)DA E 0 1 1/6, where R0 is 
6.0 nm for our chromophore pair.55 The E values for the 
experimental RDA E distributions were taken from 
the experimental FRET efficiency data, while the com-
putational RDA E values were obtained from the 
FRETpredict EDynamic distributions, with the correct 
BME weights applied. 

EncoderMap 

EncoderMap56 is a dimensionality reduction algorithm 
that combines multidimensional scaling with a varia-
tional autoencoder, extracting and optimizing essential 
features from a large trajectory dataset and representing 
them with minimal loss of information. The result is a 
2D map that provides global information about the 
conformational ensembles visited during a trajectory.5 

The point density on the map is related to the free en-
ergy of the corresponding conformations. The En-
coderMap code was downloaded from github.57 

In this work, the EncoderMap training set comprised 
the five 1 μs replicas for wt and K141E MD trajectories 
at 0 mM and 165 mM NaCl concentrations, 10,001 
frames each, setting the initial frame of wt at 0 mM as 
the reference structure for the pairwise distance calcu-
lations. The pairwise distances were calculated for every 
500 input frames. The Sketchmap Cartesian sigmoid 
parameters were selected according to the Sketch-map 
literature58 and are reported in Table S1. The total 
number of training steps was set to 50,000, with the first 
45,000 conducted without the Cα cost, and the final 
5000 steps incorporating the Cα cost. The architecture 
of the EncoderMap neural network followed the same 
parametrization used in a recent paper.5 The En-
coderMap 2D plot in Figure 2 has been realized with the 
kdeplot function of the seaborn Python package,46 con-
sidering the per-frame weights obtained with BME. In  
Figure 2, the x-axis and y-axis correspond to abstract 
coordinates in a reduced-dimensional space learned 
from the input structural data. These variables, X and Y, 
do not represent specific physical quantities but instead 
reflect major collective differences in conformations 
across the simulation trajectories. Similar structures are 
placed close together, while dissimilar ones are posi-
tioned further apart. The area covered by each trajectory 
plotted in the 2D map is determined by counting the 
number of nonempty bins in a 250 × 250 bin 2D histo-
gram generated using the histogram2d function of the 
NumPy Python package. The density of the covered area 
is calculated as the ratio of the covered area to the area 
of the smallest rectangle that encompasses the trajec-
tory, where the rectangle’s dimensions correspond to 
the extreme x and y values of the nonempty bins. 

Salt bridges 

A salt bridge refers to the electrostatic interaction be-
tween two nearby residues with opposite charges. In 
this study, a salt bridge was considered to be present 
between two oppositely charged residues (such as Asp, 
Glu, Arg, and Lys) if the distance between their oxygen 
and nitrogen atoms was less than 4.5 Å. The VMD Salt 
Bridges tool was used to compute these interactions, 
and the results are illustrated in Figure S6 using the 
Inkscape software.59 The frequency of salt bridges be-
tween two protein residues is calculated as the percen-
tage of the trajectory frames in which the salt bridge is 
observed, adjusted by the corresponding BME weight 
for each frame. 
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