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Abstract
Background: Nitric oxide (NO) is generally increased during inflammatory airway diseases. This increased NO
stimulates the secretion of mucin from the goblet cell and submucosal glands but the mechanism is still unknown
precisely. In this study, we investigated potential signaling pathways involving protein kinase C (PKC) and mitogen-
activated protein kinase (MAPK) in the NO-induced MUC5AC mucin gene and protein expression in A549 cells.

Methods: Nitric oxide was donated to the A549 cells by NOR-1. MUC5AC mucin levels were assayed by
enzyme-linked immunosorbent assay (ELISA). MUC5AC promoter activity was determined by measuring
luciferase activity after the lysing the transfected cells. Activation of PKC isoforms were measured by assessing
the distribution of the enzyme between cytosolic and membrane fractions using immunoblotting. Immunoblotting
experiments using a monoclonal antibody specific to PKC isoforms were performed in the cytosol and membrane
fractions from A549 cells. Western blot analysis for pERK and p38 were performed using the corresponding
antibodies from the cell lysates after donating NO to the A549 cells by NOR-1.

Results: The transcriptional activity of MUC5AC promoter was maximal at the concentration of 0.1 mM NOR-
1 for 1 hour incubation in transfected A549 cells. (±)-(E)-methyl-2-((E)-hydroxyimino)-5-nitro-6-methoxy-3-
hexenamide (NOR-1) markedly displaced the protein kinase C (PKC)α and PKCδ from the cytosol to the
membrane. Furthermore, the PKC-α,βinhibitors, GÖ6976 (10 nM) and PKCδ inhibitors, rottlerin (4 μM)
inhibited the NOR-1 induced migration of PKCα and PKCδ respectively. NOR-1 also markedly increased the
MUC5AC promoter activity and mRNA expression, mucin synthesis and ERK1/2 phosphorylation. The PKC
inhibitors also inhibited the NOR-1 induced MUC5AC mRNA and MUC5AC protein synthesis by inhibiting the
activation of PKCα and PKCδ with ERK1/2 pathways.

Conclusion: Exogenous NO induced the MUC5AC mucin gene and protein through the PKCα and PKCδ – ERK
pathways in A549 cells. Inhibition of PKC attenuated NO-mediated MUC5AC mucin synthesis. In view of this
findings, PKC inhibitors might be useful in the treatment of bronchial asthma and chronic bronchitis patients
where NO and mucus are increased in the bronchial airways.
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Background
Production of NO is generally increased during inflamma-
tory airway diseases such as asthma or bronchiectasis, or
after exposure to irritant gases such as ozone [1]. NO is
produced by the action of NO synthase (NOS) on L-
arginine and has many physiological and pathological
roles. In chronic lower airway disease, the role of NO
include pulmonary vasodilation, brochodilation, regula-
tion of ciliary beat frequency and mucus production [2,3]
and NOS is found in raised quantities in the airway epi-
thelium of asthmatic patients[4].

Goblet cell hyperplasia and metaplasia are well estab-
lished hallmarks of the airways of cigarette smokers, with
and without chronic obstructive pulmonary disease
(COPD). Enhanced epithelial mucin expression is
believed to be the rate limiting step for goblet cell meta-
plasia [5]. Four gel forming mucins (MUC2, MUC5AC,
MUC5B, and MUC19) are found in the lung. Of these,
MUC5AC and MUC5B are the major respiratory mucins
present in secretions from goblet cells and sub-mucosal
glands, respectively [6]. MUC5AC has been shown to be
stimulated by a wide variety of stimuli, including pro-
inflammatory cytokines such as IL-9, IL-1β and tumor
necrosis factor (TNF)-α [7,8], neutrophil elastase [9], epi-
dermal growth factor receptor (EGFR) ligands [10], air
pollutants [11] and bacterial products [12]. Oxidants in
cigarette smoke and generated from asbestos fibers acti-
vate mitogen-activated protein kinase (MAPK) signalling
cascades in lung epithelial cells [13]. Airway MUC5AC
mucin is transcriptionally upregulated by cigarette smoke
and is mediated by an AP-1 containing response element
binding JunD and Fra-1 [14]. Furthermore, it is reported
that PKC is involved in TNF-α or bacterial components
induced MUC2 and MUC5AC overexpression in airway
and middle ear epithelial cells or goblet cells [15].

NO donation by isosorbide dinitrate increased MUC5AC
mucin secretion in the goblet cell line HT29-MTX [16] but
suppressed chemokine production in keratinocytes [17].
There have been only a few studies investigating the role
of NO in airway mucus secretion and much is still
unknown about the role of PKC and MAPK pathways dur-
ing upregulation of MUC5AC mucin secretion after dona-
tion of NO to the bronchial epithelial cells. In this study,
we evaluated the effect of NO release on MUC5AC mucin
production and the cell-signaling pathways involved in its
regulation in the cell line A549. A549, a lung adenocarci-
noma cell line, which has been used extensively as a
model of respiratory epithelium and expresses both
MUC5AC mRNA and glycoprotein [18].

In this study, we examined effects of NO on MUC5AC
mucin synthesis and PKC-mediated second messenger
pathways that may be involved in physiological functions

of airway epithelium. Our results suggest that the PKC
inhibitors inhibit the MUC5AC mRNA expression and
mucin synthesis through inhibiting the PKCα and PKCδ-
ERK1/2-MUC5AC promoter pathways during donation of
NO to the A549 cells.

Materials and methods
Cell culture
Human lung adenocarcinoma-derived A549 cells were
cultured in Roswell Park Memorial Institute (RPMI1640)
media supplemented with 10% fetal bovine serum (FBS),
penicillin 100 U/ml and streptomycin 100μg/ml. Cells
were maintained in a humidified incubator at 37°C with
95% air (vol/vol) and 5% (vol/vol) CO2. The cells were
replenished with fresh media every 2–3 days. The cell via-
bility was periodically determined by trypan blue exclu-
sion method.

Agonists and inhibitors
NOR-1 (Calbiochem, Darmstadt, Germany) was used as a
NO donor. For control experiment, NG-nitro-L-arginine
methyl ester (L-NAME) was used as a nitric oxide synthase
inhibitor. Phorbol 12-myristate 13-acetate (PMA) was
used as a protein kinase C (PKC) activator and inhibitors
of PKC isoforms were used such as GÖ6976 (PKCα/β
inhibitor), rottlerin (PKCδ inhibitor) and calphostin C (a
ubiquitous PKC inhibitor) which were purchased from
Calbiochem (Darmstadt, Germany).

MUC5AC protein measurement by ELISA
MUC5AC protein was measured as described previously
[19]. Briefly, 50 μl of A549 cell lysate and 50 μl of 2 × car-
bonate/bicarbonate buffer were loaded into the 96-well
ELISA plates and dried at 44°C. The plates were washed
three times with phosphate buffered saline (PBS) and
blocked with 2% bovine serum albumin (BSA) for 1 h at
room temperature. Then, it was incubated with 50 μl of
mouse anti-human MUC5AC Ab (1:100 Neomarker, Fre-
mont, CA) for 1 h. Plates were washed as above. Mucin
detection was accomplished by addition of 100 μl/well of
a 1:2,500 dilution of peroxidase-conjugated goat anti-
mouse IgG in PBS containing 15% FBS and incubation for
1 h. Plates were washed as above. Colorimetric reaction
was developed with 100 μl/well peroxidase substrate.
Optical density (OD) measurements were obtained from
an ELISA reader (BIO-TEK Instruments, Winooski, VT) at
405 nm, with 450 nm serving as the reference wavelength.
Results were calculated by dividing the OD reading for
mucin during the experimental period by the OD reading
for the L-NAME-treated baseline mucin. Results were
expressed as percent of baseline control.
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Measurement of nitrate and nitrite contents by Greiss 
assay
Nitrate and nitrite were measured via the Greiss assay in
the culture media. 1 × 105 of A549 cells were seeded on
100 mm dish and incubated until 80–90% confluency.
After adapted in serum-free medium for 24 h, cells were
stimulated by NOR-1 for 3 h and supernatant was col-
lected for Greiss assay. For Nitrate, 200 μl of culture media
and 200 μl of nitrate reductase buffer that contained 50
μM NADPH, 40 mM KH2PO4 and 50 mU nitrate reductase
were mixed and incubated at room temperature for 2 h.
200 μl of 0.8% N-1-naphthyl-ethylene diamine was
added to same amounts of 2% sulfanilamide in 0.2 N
HCl. After incubation at room temperature for 10 min-
utes, the absorbance was measured on a spectrophotome-
try at 540 nm. Nitrite of cell supernatant was determined
using a mixture of 50 μl of 2% sulfanilamide in 0.2 N HCl
and 50 μl of 0.8% N-1-naphthyl-ethylene diamine.
Sodium nitrite was used as the standard.

Transient Transfection
In size of 1.3 Kb fragment MUC5AC promoter which was
cloned into the pGL3-Basic luciferase vector was gener-
ously provided by Carol Basbaum (University of Califor-
nia, San Fransisco). A549 cells were seeded on 6-well
plates (2 × 105cells/well) and incubated for 48 h in serum
free medium. Before transfection, the pGL3-MUC5AC-
3752pro luciferase reporter plasmid and control pGL3-
Basic vector were adjusted to 200 ng/μl, and β-galactosi-
dase was adjusted to 100 ng/μl. The tube designated 'A'
contained 300 μl of serum media, 5 μl of pGL3-MUC5AC-
3752pro luciferase reporter plasmid, 5 μl of Plus reagent
(GIBCO BRL), and 3 μl of β-galactosidase, while 'B' tube
contained 300 μl of serum free media and 4 μl of LIPO-
FECTAMINEβ REAGENT (GIBCO BRL). Each tube was
mixed well in room temperature and 200 μl of the mixture
was added to the wells containing A549 cells. After 5h, 1
ml of 20% FBS was added to the wells and further incu-
bated for 24 h.

Luciferase assay
In order to investigate the dose-dependency of NO on the
MUC5AC promoter transcriptional activity, A549 cells
were stimulated with 0.1, 0.5, 1 and 1.5 mM of NOR-1 for
1h. To examine the time-dependency, A549 cells were
incubated with 0.1 mM of NOR-1 for 30 min, 1, 3, 5 and
24 h or PKC inhibitors for 30 min. MUC5AC promoter
activity was determined by measuring luciferase activity
after the lysing the transfected cells and normalizing by
co-transfection with the β-galactosidase expression plas-
mid, pβ-gal control vector (Clontech). β-galactosidase
activity was measured in the luminometer (Turner
Designs, San Jose, CA) in accordance with the manufac-
turer's instructions. All transfections were performed in

triplicate wells; results were reported as emitted light per
well (mean ± SD).

RT-PCR
Total RNA was isolated using TRIzol® reagent (guanidium
isothiocyanate-phenol mixture; Invitrogen, Charlsbad,
CA) and chloroform from A549 cells. The RNA was incu-
bated with 10 mM dNTP, 0.1 M DTT, 1 μl random hex-
amer (1 pmole) and 1 μl SuperScript II (200 U/μl
Invitrogen, Charlsbad, CA) at 42°C for 50 min, and then
heat-inactivated at 70°C for 15 min. After reverse tran-
scription, PCR was performed with specific primer pairs
for the MUC5AC and β-actin genes in a thermocycler
(Bio-Rad, Hercules, CA) with an initial denaturation step
of 94°C for 4 min, followed by 28 cycles of 1 min at 94°C,
1 min at 60°C, 1 min at 72°C, with a final extension at
72°C for 7 min. The following primer pairs were used for
the PCR: MUC5AC, 5-TCC GGC CTC ATC TTC TCC-3
(forward) and 5-ACT TGG GCA CTG GTG CTG-3
(reverse); β-actin, 5-CAA GAG ATG GCC ACG GCT GCT
TCC-3 (forward) and 5-TCC TTC TGC ATC CTG TCG GCA
ATG-3 (reverse). The amplified PCR products were visual-
ized on a 1% agarose gel by ethidium bromide staining.

Separation of cytosol and membrane fractions and 
analysis of PKC isoforms
A549 cells (1 × 105) were seeded on 100 mm dishes and
cultured in 10 ml until 80–90% confluency. After PKC
inhibitors were treated for 30 min, cells were washed and
incubated with NOR-1 for 3 h. Cells were harvested by
centrifugation (1,000 rpm, 5 min) and pumped by 1 ml
syringe for destruction. For cytosol and membrane frac-
tion, destroyed cells were centrifuged at 50,000 rpm
(200,500 g, rotor type 100Ti, Beckman Coulter, CA, USA)
for 1 h at 4°C, and then supernatant (cytosol fraction)
was collected. After RIPA buffer (20 mM Tris-HCl, pH 7.4,
137 mM NaCl, 1 % Nonidet P-40, 0.25 % sodium deoxy-
cholate, 0.1 % SDS, 1 mM EDTA, 10 ug/ml aprotinin, 1
mM PMSF, 0.1 mM sodium vanadate and 10 mM sodium
fluoride) was added into the pellet (membrane fraction),
it was sonicated about 5 s. Both fractions were quantitated
by Bradford method and equal amount of protein (20 §P)
were resolved separately on 7.5% of SDS polyacrylamide
gradient gels and transferred to polyvinylidene difluoride
(PVDF) membrane. After blocking, membranes were
incubated with anti-PKC antibodies (PKC sampler kit, BD
Biosciences, CA, USA) followed by horseradish peroxi-
dase (HRP)-conjugated antibodies. The detection was per-
formed using a chemiluminescence method (Amersham
Life Science). The density of signals was quantified using
a densitometer.

Western blot for MAPK
Cultured A549 cells were washed 3 times with cold PBS.
After detached from the plates using scrapping, the cells
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were harvested by centrifugation (12,000 rpm for 20 min-
utes, 4°C). Cells were destroyed by RIPA buffer on ice for
20 minutes. After destroyed cells were centrifuged, pro-
teins were collected from supernatant and determined by
Bradford method. 50 §P of protein were separated on a
discontinuous 10 % and 4% PAGE gel and then the pro-
teins were transferred to a PVDF membrane at 80 V for 1
h. The membrane was blocked with 5 % skim milk in TBS
buffer (10 mM Tris-Hcl, 150 mM NaCl, pH 7.5) for 1 h,
and then incubated with the mouse anti-human p-ERK
antibody (1:1000 Santa Cruz Biotechnology, Santa Cruz,
CA) or rabbit anti-human p-p38MAPK antibody (1:1000
Cell signaling, Danvers, MA) at 4°C overnight. The mem-
brane was washed 3 times with TBST buffer (TBS + 0.1%
Tween20) and incubated with HRP-conjugated secondary
antibody (1:2000) at room temperature for 1 h. The target
protein was detected by ECL Kit (Amersham Pharmacia
Biotech, Little Chalfont, Buckinghamshire, UK) using X-
ray film.

Statistical analysis
All data are presented as means ± SE. Data obtained from
all the experiments was analyzed by Kruskal-Wallis one-
way non-parametric analysis of variance with post hoc
evaluations by Mann-Whitney's rank sum test (SAS Insti-
tute, Cary, NC). A level of significance was considered at p
< 0.05.

Results
NO concentration in A549 cells culture media
The concentrations of NO in the culture medium of A549
cells after incubation with the synthetic NO donors, NOR-
1 for 3 hours were well correlated the concentrations of
NOR-1 (Fig. 1). The NO concentrations in the culture
medium were quantified by measuring nitrite and nitrate
concentrations using the Greiss reaction [20].

Effect of NO donation on MUC5AC promoter activity
To determine whether NO was regulating MUC5AC tran-
scription, we transfected A549 cells with a luciferase
reporter pGL3-basic vector containing the 3.7 kb 5' flank-
ing region from the transcription start site of the human
MUC5AC promoter. NOR-1 increased the transcriptional
activity of MUC5AC promoter most markedly at the con-
centration of 0.1 mM (Figure 2) and 60 minute incuba-
tion (Figure 3). MUC5AC transcriptional activity was
increased after stimulation with NOR-1 for one hour
between 0.1 mM and 1 mM concentrations (Figure 2).

Activation of PKC isoforms by NOR-1
To confirm the role of PKC activation in the effect of NO
on MUC5AC mucin synthesis in A549 cells, we assessed
the effects of NOR-1 on PKCα. Activation of PKCα was
measured by assessing the distribution of the enzyme
between cytosolic and membrane fractions using immu-
noblotting, because translocation of the enzyme from the

Effects of the NO donor, NOR-1 on nitric oxide secretion from the A549 cellsFigure 1
Effects of the NO donor, NOR-1 on nitric oxide secretion from the A549 cells. The nitrite and nitrate concentrations were 
measured at 540 nm by Griess reagent method after stimulation with different concentrations of NOR-1 for 3 hours.
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NOR-1 increased the transcriptional activity of MUC5AC promoterFigure 2
NOR-1 increased the transcriptional activity of MUC5AC promoter. A549 cells were transfected with MUC5AC promoter. 
The transfected cells were treated with vehicle or different concentrations of NOR-1 for 1 hr and then harvested for measure-
ment of luciferase activities. ** significantly different, p < 0.01, from MUC5AC promoter-alone transfection group.

Time course of the effect of NOR-1 on MUC5AC promoter activityFigure 3
Time course of the effect of NOR-1 on MUC5AC promoter activity. A549 cells were transfected with vehicle or MUC5AC 
promoter. Transfected cells were stimulated with 0.1 mM of NOR-1 and the transcriptional activity of MUC5AC promoter 
was measured at 10, 20, 40, 60 and 120 min. after exposure. ** significantly different, p < 0.01, from MUC5AC promoter-alone 
transfection group.
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cytosolic fraction to the membrane fraction correlates
with activation of the enzyme. As shown in Figure 4, incu-
bation with NOR-1 for one hour resulted in significant
translocation of PKCα from the cytosolic fraction to mem-
brane fraction. The translocation of PKCα was more
prominent during incubation with 1 μM phorbol 12-myr-
istate 13-acetate (PMA), a PKC activator. Next, we tested
the effect of NOR-1 on PKC isoforms expression in A549
cells. As shown in figure 5, 0.5 mM NOR-1 induced migra-
tion of PKCα and PKCδ from the cytosol to the mem-
brane. The coincubation with PKCα,βinhibitors, GÖ6976
(10 nM) and PKCδ inhibitors, rottlerin (4 μM) inhibited
the NOR-1 induced migration of PKCα and PKCδ respec-
tively. NOR-1 induced migration of PKCα and PKCδ were
also inhibited by 0.5 uM calphostin C, a general PKC
inhibitor.

Effect of NOR-1 and PKC inhibitors on mucin secretion
As illustrated in Figure 6, NOR-1 stimulated MUC5AC
mucin synthesis by A549 cells. The increased mucin syn-
thesis elicited by the NOR-1 was reversed with the prein-
cubation with GÖ6976, rottlerin and calphostin-C. No
cytotoxic effects were observed.

NOR-1 phosphorylated ERK1/2 but not P38 MAPK
As illustrated in Figure 7, exposure of A549 cells to NOR-
1 caused a phosphorylation of ERK1/2 and this increased

phosphorylation was inhibited with PD98059 (a specific
MEK inhibitor), and PKC inhibitors (GÖ6976, rottlerin
and calphostin C). However, the effects of NOR-1 on P38
MAPK phosphorylation was not noted.

Effect of NOR-1 and PKC inhibitors on MUC5AC mRNA 
expression
NOR-1 increased the MUC5AC mRNA expression and the
PKC inhibitors (GÖ6976, rottlerin and calphostin C)
inhibited NOR-1 induced MUC5AC mRNA expression
(Figure 8).

Discussion
The present study clearly demonstrates a potent stimula-
tory effects of NO donor on MUC5AC mucin secretion
from A549 cells. Activation of the PKCα and PKCδ with
ERK1/2 mediated NO donor induced MUC5AC mucin
gene expression and mucin synthesis. We used NOR-1 as
a NO donor which releases NO with a more rapid kinetics
[21]. NO donors suppress chemokine production by
inhibiting nuclear factor-kB and STAT-1 [22]. The role of
NO in the regulation of inflammatory responses has been
extensively investigated. However, there have been only a
few studies investigating the role of NO in mucus secre-
tion with conflicting results. On the one hand, NO inhib-
ited mucus secretion in ferret trachea in vitro [23] and on
the other hand, it had a stimulatory role in the mucus

Effects of NO donor and PMA on the distribution of PKCα in A549 cellsFigure 4
Effects of NO donor and PMA on the distribution of PKCα in A549 cells. A549 cells were exposed to NOR-1 (0.5 mM) or 
PMA (1 μM) for one hour and then fractionated. Proteins of equal amounts were separated by SDS-PAGE, transferred, incu-
bated with anti-PKCα antibodies, and detected using a chemiluminescence method. The results were expressed as means ± SE 
of three independent experiments. * p < 0.01 versus control membrane. † p < 0.01 versus control cytosol.
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secretion in isolated submucosal gland from feline tra-
chea [24] or it had no effect on the mucus secretion in the
rat trachea [25].

Protein kinase C (PKC) is a family of serine/threonine-
specific protein kinases with at least 10 different isoforms
[21]. The PKC family contains three types of isoforms;
classical (cPKCs: α, β1, β2, γ), novel (nPKCs: δ, ε, η, θ, μ),
and atypical (aPKCs: ξ, ι/λ). The classical isoforms are cal-
cium and phorbol ester-activated, the novel are calcium-
insensitive but activated by phorbol esters, and the atypi-
cal isoforms are both calcium and phorbol ester-insensi-
tive, with all isofoms activated by phosphatidyl
serine[26].

The interaction between NO and PKC has been the subject
of many studies, with most focused on the role of PKC in
the regulation of NO production [27,28]. With regard to
effects of NO on PKC, controversial results exist. NO inac-
tivates PKC in a macrophage cell line [29]. On the other
hand, NO activates PKC in hepatocytes [30], smooth mus-

cle cells [31], and kidney cells [32]. In addition, NO was
shown to mediate the stimulation of phospholipase C
(PLC), a typical upstream step for PKC activation, by oxi-
dant stress [33]. In a lot of inflammatory airway diseases,
tumor necrosis factor (TNF)-α is involved in bronchocon-
striction, pulmonary edema, and production of cytokines
and lipid mediators. TNF-α stimulates mucin secretion via
an intracellular pathway that appears to involve endog-
enously produced NO [34]. NO mediates many of its
intracellular effects through activation of soluble guanyl
cyclase with subsequent increased cyclic guanosine
monophosphate (cGMP) production [35]. Recently NO
has also been demonstrated in goblet cells to upregulate
MUC5AC production [16].

In this study, NOR-1 directly increased the transcriptional
activity of transfected MUC5AC promoter, indicating that
NO-induced upregulation of MUC5AC mRNA occurs at
the transcriptional level. NOR-1 also moved the PKCα
and PKCδ from the cytosol to the membrane and this

Effects of NOR-1 on PKC isoforms expression in A549 cellsFigure 5
Effects of NOR-1 on PKC isoforms expression in A549 cells. Cell extracts were portioned into cytosol (C) and membrane (M) 
fractions as described under "Materials and Methods." PKC isoforms were detected by Western blotting. NOR-1 (0.5 mM) 
induced migration of PKCα and PKCδ but not PKCγ and PKCε from the cytosol to the membrane. PKC-α,β inhibitors, 
GÖ6976 (10 nM) and PKCδ inhibitors, rottlerin (4 μM) inhibited the NOR-1 induced migration of PKCα and PKCδ respec-
tively. NOR-1 induced migration of PKCα and PKCδ were also inhibited by calphostin C (0.5 μM).
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intracellular activation of PKC was inhibited by PKCα
inhibitor and PKCδ inhibitor.

Involvement of PKC in secretion of airway mucin in
response to various stimuli has been indicated previously
[35-38]. The specific PKC isoenzymes that contribute to
PKC-induced mucin secretion have not been determined,
although PKCξ and PKCδ have been suggested as poten-
tial candidates [36,38,39]. Recently human neutrophil
elastase has been found to induce mucin secretion
through a PKCδ-mediated mechanism in human bron-
chial epithelial cells [40]. In this paper, we also found that
the MUC5AC mucin synthesis by NOR-1 was inhibited by
PKC inhibitors. As illustrated in figure 8, NOR-1 increased
the MUC5AC mRNA expression and this increased expres-
sion was nearly completely inhibited by PKC inhibitors.
The calphostin C; a specific PKC inhibitor, rottlerin; a
PKCδ/θ inhibitor, GÖ6976; a PKCα/β inhibitor all inhib-
ited the NOR-1 induced MUC5AC mRNA expression,
MUC5AC mucin synthesis and extracellular signal-regu-
lated kinases (ERKs) phosphorylations. Calphostin C is a

specific PKC inhibitor that binds to the diacylglycerol
(DAG) binding site of the enzyme to block its activity
[41]. Our findings suggested that NO activated both α and
δ forms of PKC which in turn involved in MUC5AC mucin
synthesis in A549 cells. When we examined the transloca-
tion of PKC isoforms in response to NOR-1, NOR-1 acti-
vated the PKCα and PKCδ but not PKCγ and PKCε (figure
5). As expected, the activation of PKCα by NOR-1 was
inhibited by GÖ6976 and the activation of PKCδ by NOR-
1 was inhibited by rottlerin. Calphostin C inhibited the
NOR-1 induced activation of both PKCα and PKCδ.

Phorbol esters, such as phorbol 12-myristate 13-acetate
(PMA), are important inflammatory stimuli that have
been shown to modulate diverse cellular events through
PKC activation [42]. PMA induced an increase in MUC2
gene expression and this induction involved PKC, was Ras
and Raf dependent, required activation of mitogen-acti-
vated protein/ERK kinase (MEK) and extracellular regu-
lated kinase (ERK) pathways, and led to the activation of
the cis-acting transcription factor, NF-kB [43]. MUC5AC

Effects of NOR-1 and PKC inhibitors on the MUC5AC mucin synthesis from the A549 cellsFigure 6
Effects of NOR-1 and PKC inhibitors on the MUC5AC mucin synthesis from the A549 cells. A549 cells were exposed to 
NOR-1 (0.5 mM) in the presence of ERK-inhibitor, PD98059 (40 μM) or PKC-α,β inhibitors, GÖ6976 (10 nM) or PKC-δ inhib-
itors, rottlerin (4 μM) or specific PKC inhibitors, Calphostin C (0.5 μM). The results were expressed as means ± SE of eight 
different experiments. * p < 0.05 versus control, † p < 0.05 versus NOR-1 stimulated cells.
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mucin was also induced by PMA through the Ras-Raf-
MEK/ERK and specificity protein (Sp) 1 transcription fac-
tor dependent pathways [44].

The mitogen-activated protein kinase (MAPK) cascades
consist of serine threonine kinases that are sequentially
phosphorylated by upstream kinases (MAPKKK, MAPKK)
and subdivided into three major pathways: ERKs, c-Jun-
NH2-terminal kinases (JNKs 1, 2, and 3) (also referred to
as stress-activated protein kinases), and p38 kinases

[45,46]. MAPK cascades can be initiated by activation of
receptor tyrosine kinases such as the epidermal growth
factor receptor (EGFR) or other factors stimulating phos-
phorylation of upstream MAPKKK and MAPKK (MEK).
Oxidative stress causes activation of EGFR-MEK-ERK1/2
pathways, resulting in mucin synthesis [47]. Recent stud-
ies have demonstrated cross-talk between p38 MAP kinase
and ERK [48,49]. p38 MAP kinases are activated by a vari-
ety of agents, including environmental stress (e.g., reactive
oxygen species, UV radiation), cytokines (e.g., interleukin

Effects of NOR-1 and PKC inhibitors on the expression of phosphorylated p38 and ERK1/2 protein in A549 cellsFigure 7
Effects of NOR-1 and PKC inhibitors on the expression of phosphorylated p38 and ERK1/2 protein in A549 cells. NOR-1 
phosphorylated ERK1/2 but not p38 and PKC inhibitors, GÖ6976 (10 nM), rottlerin (4 μM), and Calphostin C (0.5 μM) inhib-
ited the ERK1/2 phosphorylation.
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[IL]-1β, tumor necrosis factor [TNF]-α), or growth factors
such as EGF and platelet-derived growth factor (PDGF)
[50,51].

In this study, we found that NO donation by NOR-1 acti-
vated ERK1/2 but not p38 and this ERK1/2 activation was
inhibited by several types of PKC inhibitors and by MEK
inhibitor, PD98059 (figure 7). These findings suggest that
NO induced MUC5AC mucin through the PKC-MEK-
ERK1/2 pathways in A549 cells. According to previous
reports on respiratory tract and colon epithelial cells, pro-
duction of mucin induced by gram-positive or gram-neg-
ative bacteria is dependent on tyrosine kinase such as the
MEK1/2-MAPK signalling pathway [52-55]. This tyrosine
kinase signal results in the activation of NF-kB in respira-

tory tract epithelial cells, which are involved in the over-
production of mucin induced by Psudomonas aeruginosa
[54].

Today, it is widely accepted that NO plays an important
role in airway function. NO is an important mediator in
the lung and has been shown to be associated with
inflammatory lung diseases such as asthma and chronic
bronchitis [56-58]. In addition, overproduction of mucus
with altered rheologic properties is an important factor in
the morbidity and mortality of asthma and chronic bron-
chitis [59,60]. Our results suggest that PKC inhibitors may
be a promising new agents for the treatment of mucin
hypersecretion in inflammatory airway diseases where
NO is highly produced.

RT-PCR analysis of MUC5AC mRNA expression from A549 cellsFigure 8
RT-PCR analysis of MUC5AC mRNA expression from A549 cells. Total RNA was extracted from confluent cultures and ana-
lyzed for the presence of MUC5AC and GAPDH transcripts by RT-PCR. The amplified products were run on 1% agarose-
ethidium bromide gels. The results were expressed as means ± SE of six different experiments. * p < 0.01 versus control, † < 
0.05 versus NOR-1 stimulated cells.
Page 10 of 12
(page number not for citation purposes)



Respiratory Research 2007, 8:28 http://respiratory-research.com/content/8/1/28
Abbreviations
NOR1 = (±)-(E)-methyl-2-((E)-hydroxyimino)-5-nitro-6-
methoxy-3-hexenamide; NO = nitric oxide; PKC = protein
kinase C; ELISA = enzyme linked immunosorbent assay;
TNF-α = tumor necrosis factor α; EGFR = epidermal
growth factor receptor; ERK = extracellular signal-regu-
lated kinase; PMA = Phorbol 12-myristate 13-acetate
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