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Sleep stage classification is essential in diagnosing and treating sleep disorders. Many deep learning models have been proposed to
classify sleep stages by automatic learning features and temporal context information.0ese temporal context features come from
the intra-epoch temporal features, which represent the overall morphology of an epoch, and temporal features of adjacent epochs
and long epochs, which represent the influence between epochs. However, most existing methods do not fully use the com-
plementarity of the three-level temporal features, resulting in incomplete extracted temporal features. To solve this problem, we
propose a multilevel temporal context network (MLTCN) to learn the temporal features from intra-epoch, adjacent epochs, and
long epochs, which utilizes the complete temporal features to improve classification accuracy. We evaluate the performance of the
proposed model on the Sleep-EDF datasets published in 2013 and 2018. 0e experimental results show that our MLTCN can
achieve an overall accuracy of 84.2% and a kappa coefficient of 0.78 on the Sleep-EDF-2013 dataset. On the larger Sleep-EDF-2018
dataset, the overall accuracy is 81.0%, and a kappa coefficient is 0.74. Our model can better assist sleep experts in diagnosing
sleep disorders.

1. Introduction

Sleep disorder is a common sleep disease, mainly including
drowsiness, insomnia, and sleep apnea. According to the
World Health Organization, the global sleep disorder rate is
27%. In 2016, the sleep survey results of the China Sleep
Research Association showed that the insomnia rate of
Chinese adults was as high as 38.2%, and more than 300
million Chinese people had sleep disorders. Sleep disorders
can increase the risk of heart disease, hypertension, Alz-
heimer’s disease, depression, anxiety disorders, and other
diseases, which seriously affect human health and quality of
life [1].

Sleep stage classification is the basic research for the
diagnosis of sleep disorders. Sleep specialists classify the
sleep stages via polysomnography (PSG), the gold standard
of sleep scoring. PSG collects physiological signals recorded

from various sensors counting electroencephalography
(EEG), electrooculography (EOG), electromyography
(EMG), pulse oximetry, and respiration. 0ese signals are
divided into 30-second epochs, and sleep specialists man-
ually label each epoch according to some standard criteria,
such as the American Academy of Sleep Medicine (AASM)
rules [2] or Rechtschaffen and Kales rules [3]. According to
the AASM rules, each epoch is classified into one of the five
stages: Wake, REM, N1, N2, and N3. Manual sleep stage
classification is time-consuming, tedious, and exhaustive.
0us, automatic sleep stage classification methods have
developed rapidly recently. Many researchers analyze the
changes in various physiological signals to classify sleep
stages and perform better. However, the multichannel
physiological signal acquisition process increases the sleep
monitoring cost and affects the subjects’ sleep. Many re-
searches used single-channel signals to classify sleep stages.
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EEG can well reflect the brain wave activity during sleep,
which has recently become attractive for sleep stage
classification.

At present, many researchers use deep learning methods
to classify sleep stages by automatic learning features
combined with temporal context information. 0ese tem-
poral features can be learned from three levels: intra-epoch,
adjacent epochs, and long epochs. As shown in Figure 1,
Level_0 represents the temporal features within an epoch.
Level_1 represents the temporal features of adjacent epochs,
including left and right neighbor epochs. Level_2 describes
the temporal features of long epochs whose length is greater
than 3. Each level of temporal features provides information
from a different granularity. 0ese temporal features are
complementary to the sleep stage classification. For example,
Level_0 represents the overall morphology of an epoch. It is
worth noting that sleep experts often determine the sleep
stage according to the morphology of EEG signals. However,
the overall morphology of EEG signals in some stages is
similar and difficult to distinguish, such as Wake and REM.
Level_1 utilizes the temporal relationship of adjacent epochs
and improves the distinguishability of Wake and REM.
Level_1 only considers the context information of short-
term epochs, which includes left and right neighbor epochs.
Sleep stage transitions follow certain transition rules and are
not stochastic processing. Level_2 is used to learn sleep
transition rules from long epochs. It further complements
temporal context information by fine-tuning the abnormal
sleep epoch in the long epochs.

During the sleep stage classification, the functions of
Level_0, Level_1, and Level_2 are different, but the existing
studies only use one or two kinds of temporal features. 0ey
do not utilize the complementarity of the different-level
temporal features. To solve this problem, we propose a
multilevel temporal context network for sleep stage classi-
fication, which learns temporal features through three
temporal context learning blocks to improve the classifi-
cation performance. 0e main contributions of this paper
are as follows:

(i) We propose a multilevel temporal context network
(MLTCN), which learns the temporal features from
three levels: intra-epoch, adjacent epochs, and long
epochs. MLTCN fully utilizes the complementarity
of multilevel temporal features to improve classi-
fication performance.

(ii) We deploy intra-epoch temporal context learning
block to efficiently capture the morphology features

from the raw signals and time-frequency images.
Moreover, the dilated causal convolution is used to
learn the temporal features of an epoch from the raw
signals.

(iii) We apply weighted fusion classification and pre-
diction to capture the temporal features of adjacent
epochs. Different weights are given according to the
different functions of classification and prediction
so that the model can better reflect the influence
between adjacent epochs.

(iv) To further supplement the temporal features of long
epochs, we fine-tune the classification results
according to the transition probability between
epochs.

2. Related Work

According to feature acquisition methods, automatic sleep
stage classification can be divided into handcrafted feature
extraction and automatic feature learning. Handcrafted
feature extraction methods need to extract the time-do-
main, frequency-domain, and nonlinear features according
to prior knowledge. 0en, feature selection is carried out to
remove redundant features, and support vector machine
(SVM), k-nearest neighbor (k-NN), and random forest
(RF) are used to classify [4–6]. Although these traditional
machine learning methods have achieved a reasonable
performance, they need the prior knowledge of sleep ex-
perts. 0e classification performance depends on the
extracted features and the selected classifier. To solve the
problem of complexity in the feature extraction, re-
searchers have applied the deep learning model for sleep
stage classification.

0e deep learningmodel can automatically learn features
without prior knowledge. Several studies have designed
convolutional neural network (CNN) for learning features
from raw EEG signals [7–13] and time-frequency images
[14, 15]. Tsinalis et al. [7] used the raw EEG signals to learn
features and the relationship between features by two-layer
convolutions and pooling. Sokolovsky et al. [12] designed
the deep CNN and proved that the classification perfor-
mance depends on the network depth rather than the
number of channels. Phan et al. [14] transformed the raw
EEG signals into two-dimensional time-frequency images
using short-time Fourier transformation and learned fea-
tures through multiple small-scale convolution kernels.

Level_0 Level_0

Level_1 Level_1

Level_2

Level_1

Level_0 Level_0 Level_0 Level_0 Level_0 Level_0 Level_0

Figure 1: 0e multilevel temporal context of EEG. Level_0 represents the temporal features within an epoch, and Level_1 and Level_2
represent the temporal features of adjacent epochs and long epochs, respectively.
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Zhang et al. [16] designed dual CNN to learn features from
the time-frequency images and raw EEG signals to learn
more abundant features.

Although the above CNN learns time-domain or fre-
quency-domain features within an epoch, it is weak in learning
the temporal context information. To learn the temporal
features within an epoch, many researchers integrated new
methods into CNN or used recurrent neural network (RNN)
[17]. Khalili and Mohammadzadeh Asl [9] used CNN to learn
time-domain and frequency-domain features, and then used
the temporal convolution model and conditional random field
to learn the temporal context information between these
features. Eldele et al. [18] used multiresolution convolutional
neural network and adaptive feature recalibration to extract
features and then captured the temporal dependencies among
the extracted features by using a multihead attention mecha-
nism. Zhu et al. [13] extracted features by convolution on
different windows, embedded position information, calibrated
features by attentionmodule, and learned the temporal context
information within an epoch.

0ere are not only temporal features within an epoch, but
also certain temporal dependence between sleep stages [19, 20].
For example, the number of adjacent epochs with the same label
accounts for 89.7% of the total, and there is also a state transition
probability between different stages on the Sleep-EDF-2013
dataset. Many studies usemany-to-one or one-to-many to learn
the temporal features of adjacent epochs [7, 8, 11, 21, 22, 23].
Sors et al. [8] took five successive epochs as input and used 12
convolutional layers and two fully connected layers to learn the
features. Seo et al. [22] took 4 or 10 consecutive epochs as input,
used ResNet-50 to learn the features, and input these features
into bidirectional long short-term memory (Bi-LSTM) to learn
the temporal features. Vilamala et al. [23] used the time-fre-
quency images of five consecutive epochs to learn the temporal
features between epochs. 0ese many-to-one modes need to
input some epochs, the computational complexity of the model
is high, and it is easy to produce model ambiguity. Phan et al.
[14] used a one-to-many model to learn temporal context
features between adjacent epochs. A single time-frequency
image was used as input and obtained the probability of
classification and prediction. 0e classification results were
obtained by fusing these probabilities. 0ese studies have
achieved good results in learning the temporal features of
adjacent epochs, but for long epochs, the performance will
decline due to the increase in the number of input epochs.

To learn the temporal features of long epochs, many studies
used the RNN, which can store all past information of time
series in the hidden units. Michielli et al. [24] proposed the
cascaded long short-term memory (LSTM) to classify sleep
stages. 0e first network performed multiclass classification by
merging into a single class the stage N1 and REM, while the
second one performed the binary classification. Phan et al. [17]
adopted the dual RNN to learn the temporal features within an
epoch and long epochs. First, they used the Bi-RNN with at-
tention to learn the temporal features within an epoch and then
used the Bi-RNN to obtain the temporal features of long epochs.

0e combination of CNN and RNN can also be used for
sleep stage classification [25–28]. Supratak et al. [25] utilized
the convolution kernels of different sizes to learn time-

domain and frequency-domain features and then adopted
RNN to learn the transition rules between sleep stages.
Mousavi et al. [26] adopted the dual CNN to learn the intra-
epoch features and used the encoding and decoding RNN
with attention to learn the most relevant part of these
features. Although these sequence-to-sequence models can
learn the long-term temporal features fully by using RNN,
the model needs more epochs as input, which makes the
model more complicated and the training time longer. To
reduce the number of input epochs and shorten the training
time, a simple postprocessing method can be considered.

Most deep learning models only consider one or two
kinds of temporal features of intra-epoch, adjacent epochs,
and long epochs. 0ey do not fully use the complementarity
of different-level temporal context information. Besides,
many models learn temporal features with multiple epochs
as input or RNN, which are high computational overhead
and difficult to train. To improve the accuracy, we propose
the MLTCN to learn the temporal context information from
three levels.

3. Proposed Method

3.1. Overview of MLTCN. MLTCN consists of four blocks,
namely, (1) preprocessing block, (2) intra-epoch temporal
context learning block, (3) adjacent epoch temporal context
learning block, and (4) long epoch temporal context fine-
tuning block. 0e preprocessing block prepares data for the
network model, including standardized EEG signals and
time-frequency images of EEG signals. Intra-epoch temporal
context learning block learns the temporal features within an
epoch and is used to enrich the features extracted from the
time-frequency images. 0en, the features extracted from
EEG signals and time-frequency images are input into ad-
jacent epoch temporal context learning block to learn the
transition rules between short-term epochs. Finally, the long
epoch temporal context fine-tuning block is used to fine-
tune the abnormal sleep stages and output the sleep stage
classification.

0e overall framework of MLTCN is shown in Figure 2.
Firstly, a 30 s EEG signal is input into the preprocessing
block, and this block outputs standardized EEG signals and
time-frequency images. Secondly, we utilize a temporal
convolutional network (TCN) to learn the intra-epoch
temporal features from the raw EEG signal and adopt the 1-
max pooling CNN to learn the frequency-domain features
from the time-frequency image. 0irdly, three outputs are
generated results of the adjacent epochs and the classifica-
tion result of the current epoch. According to the accuracy of
prediction and classification, the output of each task is given
different weights, and the classification result is obtained by
weighted fusion. Finally, the fused classification results are
used as the observation sequence of the hidden Markov
model (HMM), and the most likely hidden state sequence is
obtained by the Viterbi algorithm. 0e classification results
are fine-tuned using the hidden state sequences to learn the
temporal features of the long epochs. In the following
subsection, we will introduce each block in detail.
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3.2. Preprocessing Block. To extract the temporal and fre-
quency-domain features within an epoch, the preprocessing
block needs to output standardized EEG signals and time-
frequency images. 0e standardized EEG signals are used to
learn the temporal features within the epoch, and the time-
frequency images are used to learn the frequency-domain
features. Various forms of signals can improve sleep clas-
sification performance. 0e standardized EEG signals are
obtained by subtracting the mean value and dividing the
standard deviation. We calculated the standardized EEG
signals as follows:

Si
′ �

Si − μ
δ

, (1)

where Si represents the i-th epoch EEG signal and μ
represents the mean value of EEG signals. σ represents the
standard deviation. EEG time-frequency images are ob-
tained by short-time Fourier transform (STFT). Ham-
ming window and 256-point fast Fourier transform (FFT)
are used for transformation. 0e window size is 2 s and
50% overlap. Logarithmic operation is carried out on the
time-frequency images to generate log-power spectrum.
0e size of the log-power spectrum is 29 ×129. Fre-
quency-domain filter banks are used to smooth frequency
and reduce the dimension [28]. 0e new size of spectrum
is 29 × 20.

3.3. Intra-Epoch Temporal Context Learning Block. To learn
the temporal features within an epoch, we design the intra-
epoch temporal context learning block. 0is block includes
two sub-modules: TCN and 1-max pooling CNN. 0e TCN
is used to learn the temporal features instead of LSTM to
shorten the training time. 0e 1-max pooling CNN [14] is
used to extract frequency-domain features from time-fre-
quency images.

0e 1-max pooling CNN consists of three layers: one
convolutional layer, one pooling layer, and one multitask
softmax layer. Its convolutional layer simultaneously ac-
commodates convolutional kernels with varying sizes. We
use 400 filters, and the size of kernel is (20, 3), (20, 5), and
(20, 7). 0e pooling layer adopts a 1-max pooling strategy to

retain the most prominent feature. 0e multitask softmax
layer is adapted to fuse prediction and classification. 0e
module is described as follows:

P
G

� 1 − maxpoolingCNN x
G
n , (2)

where xG
n represents the time-frequency image of the n-th

epoch as the input. PG represents the outputs probability:
P(yG

n−1|x
G
n ), P(yG

n+1|x
G
n ), and P(yG

n |xG
n ) which represent the

prediction probability of the forward epoch, the prediction
probability of the backward epoch, and the classification
probability of the current epoch, respectively.

For the temporal features within an epoch, we utilize a
modulus described as follows:

P
R

� TCN x
R
n , (3)

where the n-th epoch xR
n �(xn1, xn2, . . ., xn3000) represents the

input and the corresponding output is PR, which includes the
probability of predictions and classification. yn �{Wake,
REM, N1, N2, N3} indicating five sleep stages. TCN has been
introduced by recent research [29]. 0e structure of TCN is
shown in Figure 3. It is composed of 5 temporal block layers.
Each temporal block layer includes two dilated causal con-
volutions, two dropouts, and a residual connection. 0e
dropouts are used to prevent overfitting.

0e residual connection solves the problem of network
degradation. Compared with traditional convolution, di-
lated causal convolution can extract global temporal features
with less layers using dilation factor. To ensure that the
output depends on all input data, we need to consider several
parameters and the relationship between them. Firstly, we
need to select a constant b as the dilation factor and use it to
calculate the expansion distance of the i-th layer as d, where
d� bi. Secondly, the receptive field width w is calculated as
follows:

w � 1 + 
n−1

i�0
(k − 1) · b

i
� 1 +(k − 1)

b
n

− 1
b − 1

, (4)

where k is the size of the convolution kernel, n is the number
of convolution layers, and b is the dilation factor. To make

Intra-epoch temporal
context learning block

Adajent epochs temporal
context learning block

Long epochs temporal
context fine-tuning blockHMM

Fusion Fusion Fusion Fusion

…

…

…

TCN TCNCNN CNN TCN TCN CNN

Preprocessing block
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X1 X2 X3

yn

Xn

CNN

Figure 2: Overall framework of the proposed MLTCN model for sleep stage classification.
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the receptive field with no holes, the size of the convolution
kernel should be at least as large as the dilation factor, that is,
k≥ b. Moreover, zero fillings are required for convolution
operation in each layer, which can ensure the equal length of
input and output sequences. In extracting the temporal
features of each sleep stage, to cover 3000 data points within
an epoch, the receptive field w≥ 3000 must be met.

n � ⌈logb

(l − 1) ×(b − 1)

(k − 1)
+ 1 ⌉. (5)

3.4. Adjacent Epoch Temporal Context Learning Block. In the
proposed one-to-many setting, the network should be pe-
nalized for both misclassification and misprediction on a
training epoch. 0e network model input an epoch, which is
represented as xn. 0e truth one-hot encoding vectors are
(yn−1, yn, yn+1). 0e corresponding classification labels are
(yn−1, yn, yn+1).0e loss is computed as the sum of the cross-
entropy errors on the individual subtasks:

E
i
(θ) � 

n+1

n−1
yilog yi(θ)( . (6)

Here, θ denotes the network parameters.
0e network is trained to minimize the multitask cross-

entropy loss over N training samples:

E(θ) � −
1
N



N

i�1
E

i
(θ) +

λ
2

‖θ‖
2
, (7)

where θ denotes the hyper-parameter that trades off the
error terms and the L2-norm regularization term.

To improve the classification accuracy, we adopt the one-
to-many model with weighted fusion to learn the adjacent
epoch temporal features. 0is process is shown in Figure 4.
Both TCN and 1-max pooling CNN output two prediction
probabilities and one classification probability. 0ese two
groups of probabilities use the same fusion operation. Here,
we only express the fusion of one group, and the other group
is similar. 0e n-th epoch EEG signal xn inputs intra-epoch
temporal context learning block, which outputs forward
prediction probability P(yn−1|xn), backward prediction
probability P(yn+1|xn), and classification probability
P(yn|xn), respectively, as shown by the purple line. To de-
termine the sleep stage of xn, the prediction probability
P(yn|xn−1), P(yn|xn+1) and classification probability
P(yn|xn) need to be considered at the same time. We utilize

Temporal Block

Temporal Block

Temporal Block

Temporal Block

Temporal Block

P(yn-1|xn) P(yn|xn) P(yn+1|xn)

y1
yn

x1

xn
R

xn

d = bi

d = b1

d = b0

Dropout

Dilated Causal Conv.

Dilated Causal Conv.

Dilated Causal Conv.

Dropout

+ … … …

… … …

Figure 3: 0e architecture of the temporal convolutional network. TCN is composed of 5 temporal block layers. Each temporal block layer
includes two dilated causal convolutions, two dropouts, and a residual connection. In the dilated causal convolutions, the yellow circle
represents the zero fillings.

Classification
Backward
prediction

Forward
prediction

P(yn-1|xn-2) P(yn-1|xn-1) P(yn-1|xn) P(yn|xn-1) P(yn|xn) P(yn|xn+1) P(yn+1|xn) P(yn+1|xn) P(yn+1|xn+1)

yn+1
ynyn-1

xn-1

αn-1 αn αn+1

xn+1xn

Figure 4: 0e weighted fusion process of adjacent epoch temporal context learning block. 0e yellow line indicates the output of the
previous epoch xn−1, the purple line represents the output of the current epoch xn, and the blue line represents the output of the next epoch
xn+1. αnrepresents the weight of classification and prediction of adjacent epochs.
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the weighted fusion to obtain the new probability. According
to the ratio of prediction accuracy of adjacent epochs to
classification accuracy of current epoch, we calculated the
fusion the probability and weights. 0ey are defined as
follows:

P yn(  �
1
3



n+1

i�n−1
αiP yn|xi( ,

αi �
PreACC xi( 

ACC xn( 
 

2

.

(8)

Here, αi represents the prediction weight of the i-th
epoch and PreACC(xi) is the prediction accuracy of xi,
namely, the accuracy of xi as input and yn as output.
ACC(xn) is the classification accuracy of xn. Eventually, the
classification label yn is determined by likelihood
maximization:

yn � argmax P yn( ( . (9)

3.5. Long Epoch Temporal Context Fine-Tuning. We utilize
HMM to fine-tune the classification results and modify the
abnormal sleep stage of the long epochs. 0e structure of the
long epoch temporal context fine-tuning block is shown in
Figure 5, which is composed of the state sequence Si and the
observation sequenceOi.0e state sequence is the sleep stage
labeled by the sleep expert, and the observation sequence is
the fusion classification result.

0e HMM includes two parameters: state transition
probability Ptr and emission probability Pem. Ptr is obtained
by statistics of the real labels in the training set, and Pem is
obtained by using the confusion matrix of the training set.
0e fusion results are taken as the observation sequence, and
the state sequence is unknown. 0e most likely sleep stage
sequence is obtained by Viterbi algorithm [30]. Using the
parameters obtained from the training set to automatically

fine-tune the fusion results, those abnormal sleep stage
sequences can be corrected. 0e length of sleep sequence
affects the result of fine-tuning. 0e sequence length is too
short, and the long temporal features are insufficient, which
leads to some sleep stages that cannot be corrected. 0e
sequence length is too long, and the time dependence be-
tween sleep stages decreases. To avoid insufficient or ex-
cessive correction, we enumerate the sequence lengths
within a specific range and select the best sequence length to
fine-tune the sleep stage.

4. Experiment

4.1. Datasets. In our experiments, we utilize two versions
Sleep-EDF datasets, namely, Sleep-EDF-2013 and Sleep-
EDF-2018 [31]. 0ey are obtained from the PhysioBank.0e
participants are involved in two studies: sleep cassette (SC)
and sleep telemetry (ST). SC does not take any other
medication, and ST consists of Caucasian subjects for study
temazepam effects on sleep. We adopted the data from SC.
0e Sleep-EDF-2013 dataset contains data files for 20 sub-
jects aged 25–34. Each subject contains two day-night PSG
recordings except subject 13 who has only one-night data.
Each PSG recording includes various physiological signals
from EOG, Fpz-Cz and Pz-Oz EEG, and EMG. In our ex-
periment, we use the Fpz-Cz EEG with a sampling rate of
100Hz. 0is channel is close to the eyes and can capture the
electrical activities of the eye movement. Sleep-EDF-2018
dataset contains data files for 78 subjects aged 25–101. Each
subject contains two day-night PSG recordings except
subjects 13, 36, and 52.

Each 30 s epoch was manually labeled by sleep expert
classifications {Wake, N1, N2, N3, N4, REM, Movement,
Unknown}. N3 and N4 were merged into a single-stage N3.
Movement and Unknown were excluded. A large number of
Wake b during the day affect the evaluation of performance.
0erefore, only the EEG signals at night are used. We just
selected 30 minutes of these periods, the start and the end of
the sleep periods. 0e number of epochs for each sleep stage
is shown in Table 1.

4.2. Experimental Settings. In our experiment, we perform
leave-one-subject-out cross validation. With the Sleep-EDF-
2013 dataset, we conduct 20-fold cross validation. Each cross
validation selects the records of one subject as the test set, the
records of 4 subjects as the validation set, and the records of
the other 15 subjects as the training set. 0e training set,
verification set, and test set of each fold are not repeated to
ensure that test set is independent. And the test data of 20
folds cover the whole dataset.0e performance evaluation of
sleep stage classification is calculated based on predicted
results and actual labels of all test sets. With the Sleep-EDF-
2018 dataset, we conduct 10-fold cross validation to assess
the performance of the network. It means that with each
fold, 90% of the subjects is used for training and 10% as an
independent test set. Furthermore, 10% of the training set is
used as the validation set. We also conduct the experiments
on cross datasets, namely, the Sleep-EDF-2018 as the

Observation
Sequence

State Sequence
Ptr

Pem

On-1 On+1
On OLO1

S1 Sn-1 Sn Sn+1 SL

Pem
Pem Pem Pem

Ptr Ptr Ptr

Figure 5: 0e hidden Markov model for long epoch temporal
context fine-tuning block.
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training set and the Sleep-EDF-2013 as the test set. Since the
Sleep-EDF-2018 dataset is an extension of the Sleep-EDF-
2013 dataset, we removed these 20 subjects in the Sleep-
EDF-2013 dataset from the Sleep-EDF-2018 dataset to make
the test set independent.

0e network is implemented using the TensorFlow
framework, and the GPU is NVIDIA GTX 2080 Ti. 0e
network is trained with a batch size of 20.0e learning rate is
set to 1e− 4. 0e cross-entropy is used to calculate the loss
function, and Adam optimizer is adopted.0e parameters of
TCN affect the performance of the model. 0rough a large
number of experiments, we balanced the classification ac-
curacy and model training time and selected the best pa-
rameters.0e size of the convolution kernel is 7.0e number
of convolution layers is 5. 0e dilation factor is 5, and the
filter is 50. During training, the network that yields the best
overall accuracy on the validation set is retained for
evaluation.

4.3. Evaluation Metrics. To evaluate the classification per-
formance of the model, we utilized the overall accuracy
(ACC), macro-averaged F1-score (MF1), and Cohen’s kappa
coefficient (kappa). 0ey are defined as follows:

ACC �


S
i�1 TPi

M
,

MF1 �
1
S



K

i�1
F1i,

Kappa �
p0−pe

1 − pe

,

(10)

where TPi and F1i are the true positives and F1-score of the
class i, S is the total number of classes,M represents the total
number of epochs, p0 represents the sum of the number of
correctly classified samples divided by the total samples, pe

represents accidental consistency. For each sleep stage i, its
precision (Pre), recall (Rec), and F1-score (F1) are defined as
follows:

Pre �
TPi

TPi + FPi

,

Rec �
TPi

TPi + FNi

,

F1 �
2 × Pre × Rec
Pre + Rec

,

(11)

where FPi, TNi, and FNi are false positive, true negative,
and false negative of the class i, respectively.

5. Results

5.1. Performance of MLTCN. 0e classification results of
each sleep stage ofMLTCN from Sleep-EDF-2013 dataset are
shown in Table 2. In all the sleep stages, the classification
performance of Wake and N2 is better, the recall of Wake is
89.6%, and the precision of N2 is 88.2%. 0e classification
performance of N3 and REM is relatively poor, the precision
of REM is 79%, and F1-score of REM is 82.7%, mainly
because some REM is mistakenly classified as N2. 0e main
reason is that N2 is the adjacent REM stage, and the
waveform is similar. In addition, according to the charac-
teristic wave of each sleep stage, we found that the char-
acteristic waves of REM are rich, and there are overlapping
frequency bands with Wake, N1, and N2, which are prone to
misclassification. N1 has the lowest classification perfor-
mance, and the F1-score of N1 is 39.4%, because N1 belongs
to the transition sleep stage from Wake to REM or N2, and
the signal waveforms of N1 and REM stage are relatively
similar. 0e overall accuracy of MLTCN is 84.2%, MF1 is
77.0%, and kappa coefficient is 0.78.

0e classification results of each sleep stage from Sleep-
EDF-2018 dataset are shown in Table 3. 0e overall accuracy

Table 2: 0e confusion matrix and per-class result from Sleep-EDF-2013 dataset.

MLTCN output Per-class result (%)
Wake N 1 N 2 N 3 REM Pre Rec F1

Wake 7427 426 194 18 220 87.4 89.6 88.5
N 1 358 903 748 15 780 50.7 32.2 39.4
N 2 425 220 15531 843 780 88.2 87.3 87.7
N 3 59 1 577 5065 1 85.2 88.8 87.0
REM 226 230 555 4 6702 79.0 86.8 82.7

ACC� 84.2%; MF1� 77.0%; kappa� 0.78

Table 1: Epochs in each class of Sleep-EDF-2013 and Sleep-EDF-2018 datasets after data processing.

Dataset Subjects Wake REM N 1 N 2 N 3 Total

Sleep-EDF-2013 20 8285 7717 2804 17799 5703 4230819.6% 18.2% 6.6% 42.1% 13.5%

Sleep-EDF-2018 78 68745 21522 69132 13039 25835 19827334.7% 10.9% 34.9% 6.6% 13.0%
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is 81.0%, MF1 is 74.9%, and kappa coefficient is 0.74. In all
the sleep stages, the classification performance of Wake is
best, and the precision of Wake is 94.2%. 0e classification
performance ofN1 is lowest.0e classification results of each
sleep stage from cross datasets are shown in Table 4.
Compared with the experimental results from the Sleep-
EDF-2013 dataset, the detection accuracy ofWake andN1 on
the test set decreases with the increase of the training dataset.
0e number of Wakes misclassified as REM increases, and
some subjects may have similar waveforms in these two sleep

phases. N1 is a transitional sleep stage, and increasing the
training set leads to more abundant training waveforms,
easily misclassified as REM.

To more intuitively observe the classification results of
the MLTCN model, Figure 6 shows the hypnogram of the
first night of SC400 from Sleep-EDF-2013 dataset. 0e
overall accuracy of MLTCN is 88.4%, and kappa coefficient
is 0.85. It can be seen from the figure thatN1, as a transitional
stage, is misclassified as REM more, and there are a few
misclassifications between N3 and N2. Most of the other

REM
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N2

N1

Wake
0 250 500 750 1000 1250

Hypnogram of human expert

1500 20001750

(a)

REM

N3

N2

N1

Wake
0 250 500 750 1000 1250

Hypnogram of MLTCN ACC = 88.4% Kappa = 0.85

1500 20001750

(b)

Figure 6: 0e hypnograms of subject SC400 from Sleep-EDF-2013 dataset under the ground truth and MLTCN. (a) 0e histogram labeled
by experts; (b) the histogram generated by MLTCN. 0e x-axis represents the indices of epochs, and the y-axis represents five sleep stages.

Table 3: 0e confusion matrix and per-class result from Sleep-EDF-2018 dataset.

MLTCN output Per-class result (%)
Wake N 1 N 2 N 3 REM Pre Rec F1

Wake 62184 4395 885 69 1212 94.2 90.4 92.2
N 1 3045 8879 6256 128 3214 44.4 41.3 42.8
N 2 404 4629 57308 3655 3136 83.6 83.9 83.3
N 3 13 4 2043 10953 26 73.3 84.0 88.3
REM 356 2110 2019 136 21214 73.7 82.1 77.7

ACC� 81.0%; MF1� 74.9%; kappa� 0.74

Table 4: 0e confusion matrix and per-class result from the cross dataset.

MLTCN output Per-class result (%)
Wake N 1 N 2 N 3 REM Pre Rec F1

Wake 7119 498 179 17 472 95.8 85.9 90.6
N 1 216 618 755 13 1202 42.6 22.0 29.0
N 2 39 235 15613 999 913 86.8 87.7 87.3
N 3 21 2 490 5173 17 83.4 90.7 86.9
REM 36 98 953 3 6627 71.8 85.9 78.2

ACC� 83.1%; MF1� 74.4%; kappa� 0.77
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classification results are very close to the results labeled by
sleep experts, indicating that the model has good sleep stage
classification ability.

5.2. Ablation Experiments. MLTCN is composed of three-
level temporal context learning blocks: intra-epoch, adjacent
epochs, and long epochs. To analyze the effectiveness of each
block, we eliminate different components of the model to
form six variable models:

Variant 1 (no any temporary context information): it
only contains 1-max pooling CNN to extract features
from time-frequency images without considering any
temporal context information. Input and output use
one-to-one mode; that is, one epoch input corresponds
to one label output.
Variant 2 (only intra-epoch temporal context learning):
on the basis of Variant 1, an intra-epoch temporal
context learning block, namely, the TCN, is added,
which adopts one-to-one mode.
Variant 3 (intra-epoch +HMM): on the basis of Variant
2, HMM is added. 0is variable model considers the
temporal features of intra-epoch and long sequence of
epochs. It is used to verify the role of adjacent epoch
temporal features.
Variant 4 (intra-epoch + adjacent epoch temporal
context learning with balanced fusion): on the basis of
Variant 2, a one-to-three balanced fusion method is
added. Considering the context information between
adjacent epochs, the weights of classification and
prediction are 1.
Variant 5 (intra-epoch + adjacent epoch temporal
context learning with weighted fusion block): on the
basis of Variant 2, a one-to-three weighted fusion
method is added. According to the prediction accuracy
of adjacent epochs to the current epoch, the probability
of the forward epoch, the current epoch, and the
backward epoch are given weights of 0.96, 1, and 0.89,
respectively.
MLTCN (multilevel temporal context learning): on the
basis of Variant 5, HMM is added to fine-tune the long
epochs.

Table 5 shows the classification performance of different
variable models on the Sleep-EDF-2013 dataset. 0e accu-
racy of Variant 1 is 80.4%, and that of Variant 2 is 81.7%.0e
performance of Variant 2 is better than that of Variant 1.

Because the network structure of Variant 1 is relatively
simple, it only learns the features from the time-frequency
images and does not contain any level of temporal features.
On the basis of Variant 1, Variant 2 adds TCN module to
learn the temporal features within an epoch from raw sig-
nals, the accuracy is improved by 1.3%, and the MF1 score is
improved by 2%, indicating that the intra-epoch temporal
features can learn more useful features for classification. 0e
accuracy of Variant 3 is 83.5%. 0e accuracy is 1.8% higher
than that of Variant 2 and 0.7% lower than that of MLTCN.
0is variant model only considers the temporal features of
intra-epoch and long epochs. It verifies the effectiveness
from adjacent epoch temporal features.

Based on Variant 2, the balanced fusion and weighted
fusion are introduced to form Variant 4 and Variant 5. 0e
accuracy of Variant 4 is 2.1% higher than that of Variant 2,
and the kappa coefficient of Variant 5 is 2% higher than that
of Variant 2, mainly because the temporal features between
adjacent epochs are considered in the fusion strategy. 0e
performance of Variant 5 is slightly higher than that of
Variant 4, because Variant 5 considers the affection of
classification and prediction accuracy in the final decision.
For example, the accuracy of prediction with the previous
epoch is 78.27%, the accuracy of classification with the
current epoch is 80.02%, and the accuracy of prediction with
the latter epoch is 75.37%. During fusion, different weights
are given to the prediction and classification probability,
respectively. According to equation (5), the weights of
prediction and classification are given with 0.96, 1, and 0.89,
respectively. 0e accuracy of weighted fusion is 0.1% higher
than that of balanced fusion.

On the basis of Variant 5, MLTCN adds HMM block,
and the accuracy reaches 84.2%, which is 0.3% higher than
that of Variant 5. MF1 score and kappa coefficient are also
improved in varying degrees. 0e main reason is that the
HMM fine-tuned the long epochs in the test set by learning
the state transition matrix and emission matrix in the
training set. For example, the observation sequence output
by Variant 5 is 1,1,1,1,1,1,1,1,1,5,1,1,1,1,1,1,1. According to
the transition matrix of the training set, the most likely
hidden state output by Viterbi algorithm is
1,1,1,1,1,1,1,1,1,1,1,1, where 1 represents theWake stage and
5 represents the REM stage. 0e observation sequence is
modified by the hidden state, and the REM in the abnormal
sleep stage rarely seen in the long epochs is fine-tuned to
Wake. 0e sleep stages after fine-tuning are consistent with
the sleep expert labeled stages, which improves the classi-
fication performance.

Table 5: 0e result of the ablation experiments on the Sleep-EDF-2013 dataset.

CNN TCN Balanced fusion Weighted fusion HMM ACC MF1 Kappa
Variant 1 ✓ 80.4 72.9 0.73
Variant 2 ✓ ✓ 81.7 74.9 0.75
Variant 3 ✓ ✓ ✓ 83.5 76.6 0.77
Variant 4 ✓ ✓ ✓ 83.8 76.4 0.77
Variant 5 ✓ ✓ ✓ 83.9 76.6 0.77
MLTCN ✓ ✓ ✓ ✓ 84.2 77.1 0.78
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To better analyze the performance of each variant block,
Figure 7 shows the confusion matrix of each model.
Figure 7(a) shows the confusion matrix of Variant 1. 0e
accuracy of Wake, N2, N3, and REM is 80%–88%, which is
the lowest classification accuracy among all variable mod-
ules, and the accuracy of N1 is only 32%. 0e low

classification performance of Variant 1 is mainly since it
does not consider any temporal features and only learns the
features from the time-frequency image. Figure 7(b) rep-
resents the confusion matrix of Variant 2. 0e accuracy of
each classification is improved compared with that of
Variant 1. 0e accuracy of N1 is improved from 32% to 37%,
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Figure 7: 0e normalized confusion matrix of each variant block on Sleep-EDF-2013 dataset: (a) the confusion matrix of Variant 1, (b) the
confusion matrix of Variant 2, (c) the confusion matrix of Variant 3, (d) the confusion matrix of Variant 4, (e) the confusion matrix of
Variant 5, and (f) the confusion matrix of MLTCN. 0e numbers in the main diagonal indicate the normalized epochs which are correctly
classified. 0e darker the blue color of the blocks in confusion matrix represents the greater proportion of the data.
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the accuracy of Wake, N2, and REM is improved by 1%, and
N3 is improved by 2%. Variant 2 learns the intra-epoch
temporal context information, which reflects the global
temporal features within an epoch. It enriches the features
extracted from the time-frequency image and improves the
classification accuracy. Figure 7(c) shows the confusion
matrix of Variant 3. Compared with Variable 2, the accuracy
ofN2 and REM is improved by 3% and 4%, respectively.0is
result shows that HMM has fine-tuned the results of N2 and
REM. Compared with MLTCN, the accuracy of Wake and
REM is reduced by 2%. 0is comparison shows that the
temporal feature of adjacent epochs has an impact on the
accuracy of these two stages. Figures 7(d) and 7(e) show the
confusion matrices for Variant 4 and Variant 5, respectively.
Compared with the accuracy of Variant 2, the accuracy of
Wake andN2 is improved by 3%, and the accuracy of REM is
improved by 5%, but the accuracy of N1 and N3 is reduced.
0e accuracy improvement of Wake, N2, and REM is due to
considering the temporal context information of adjacent
epochs. 0e reduction of N1 classification accuracy may be
due to the small number of N1 samples, resulting in poor
prediction and classification. Figure 7(f) represents the
confusion matrix of MLTCN. Compared with the confusion
matrix of Figure 7(e), the accuracy of N1 and REM is im-
proved by 1%, and the accuracy of other stages has not
changed. It indicates that the HMM can fine-tune the REM
in the long epochs and adjust REM to N1 to improve the
accuracy. Compared with the confusion matrix of
Figure 7(a), the accuracy of Wake, N2, N3, and REM is
improved to different degrees. 0e improvement of these
sleep stages indicates that multilevel temporal features play a
role in detecting these classifications. In particular, the
correct classification of the sleep stages in which sleep ex-
perts are interested can better assist sleep experts in

diagnosing sleep problems. For example, the accurate
classification of the Wake can better diagnose insomnia. 0e
correct classification of REM can more correctly diagnose
sleep behavior disorder.

5.3. Efficiency of TCN. Most studies use LSTM to learn
temporal features, but LSTM takes a long time to train. To
improve the learning efficiency of temporal features within
an epoch, TCN is used to learn the intra-epoch temporal
context information. A comparative experiment is designed
to prove that MLTCNwith TCN can not only learn temporal
features well, but also has higher efficiency than MLTCN
with LSTM. In the MLTCN_TCN, the filter is 50, and the
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Figure 8: 0e performance of MLTCN with TCN and LSTM and training time. (a)0e performance of MLTCN with TCN and LSTM.0e
x-axis represents the models, and the y-axis represents accuracy of classification. (b) 0e training time of MLTCN with TCN and LSTM,
y-axis represents training time (seconds).
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hiding unit of the MLTCN with the LSTM model is 50 too.
0e experimental results are shown in Figure 8. Figure 8(a)
represents the classification performance of MLTCN with
TCN and LSTM. 0e accuracy of MLTCN with TCN
classification is 80.8%, which is 0.7% higher than that of
MLTCN with LSTM. 0e MF1 of MLTCN_TCN and
MLTCN_LSTM is 73.3% and 72.2%, respectively.
Figure 8(b) shows the training time of the first fold. 0e
training time of the MLTCN with TCN is 3741 s and that
with LSTM is 36443 s, which is 9.7 times that of
MLTCN_TCN. 0e experimental results show that using
MLTCN_TCN to learn the intra-epoch temporal features
not only has higher performance, but also shortens the
model training time.

5.4. Influence of HMM Observation Sequence Length. 0e
length of HMM observation sequence affects the classifi-
cation performance. According to the discussion of sequence
length in literature [32], we tested the classification per-
formance under different lengths in a certain range. Figure 9
shows the accuracy, kappa, andMF1 of different observation
sequence lengths. It can be seen that with the increase of

sequence length, each performance increases slightly. 0e
accuracy before fine-tuning is 83.9%. With the sequence
length of 3, the accuracy is 83.8%, which is degraded by 0.1%
compared with that before fine-tuning. It shows that the
adjacent temporal context block has learned better temporal
features. With the sequence length of 17, the accuracy is
84.2%, MF1 is 77.1%, and kappa coefficient is 78.3%. 0e
accuracy is improved by 0.3% compared with that before
fine-tuning, which shows that HMM is effective for fine-
tuning long epochs.

5.5. Effectiveness of HMM Fine-Tuning Block. To evaluate
the effectiveness of the HMM fine-tuning block, a group of
comparative experiments are performed. 0e experiments
are carried out with and without HMM fine-tuning block.
0e HMM observation sequence length is 17. Figure 10
shows the hypnograms of subject SC407 from Sleep-EDF-
2013 dataset under different settings. Figure 10(a) shows the
hypnogram labeled by human expert. Figure 10(b) shows the
hypnogram labeled by the proposed network without HMM
fine-tuning block, the accuracy is 90.3%, and kappa is 0.86.
Figure 10(c) shows the hypnogram labeled by proposed
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Figure 10: 0e hypnograms of subject SC407 from Sleep-EDF-2013 dataset under different settings. (a) 0e hypnogram labeled by sleep
expert; (b) the hypnogram labeled by the MLTCN without HMM fine-tuning block; (c) the hypnogram labeled by the MLTCN with HMM
fine-tuning block. 0e fine-tuning labels are marked by the ★ symbol.
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network with HMM fine-tuning block, the accuracy is
90.7%, and kappa is 0.87. 0e accuracy is improved by 0.4%
compared with that before HMM fine-tuning. 0e fine-
tuning labels are marked by the★ symbol. It can be seen that
the output hypnogram of the MLTCN with HMM fine-
tuning block aligns very well with the corresponding human
expert labels. For the long epochs, according to the transition
probability and emission probability, the abnormal sleep
stage is fine-tuned. For example, some sleep stage REM is
fine-tuned to N1, and N2 is fine-tuned to REM.

6. Discussion

We evaluate the performance of our MLTCN against various
existing approaches and compare their performance in
terms of the overall accuracy, MF1 score, and κ on Sleep-
EDF-2013 and Sleep-EDF-2018 datasets. Table 6 shows the
performance comparison between the MLTCN and existing
approaches. 0e table includes the network structure, the
form of the input EEG signal, the corresponding relationship
between the number of input and output epochs, the
number of epochs, and performance. According to the
number of epochs from input to output, these models can be
divided into four modes: one-to-one, many-to-one, one-to-
many, and many-to-many. One-to-one mode does not learn
the temporal features of any epochs. 0e many-to-one and
one-to-many mode can learn the temporal features between
adjacent epochs and learn the sequential features of long
epochs from many-to-many mode.

On the Sleep-EDF-2013 dataset, Phan et al. [28] used a
simple CNN to learn features from the time-frequency
images and did not consider any level of temporal features,
and the accuracy was 79.1%. Tsinalis et al. [7] and Vilamala
et al. [23] adopted the CNN to learn the temporal features
from multiple epochs, and the accuracy was 74.8% and
81.3%, respectively. Seo et al. [22] applied Bi-LSTM to learn
the temporal features between adjacent epochs, and the
accuracy reached 83.6%. Because other levels of temporal
features were not considered, the accuracy was 0.6% lower
than that of the MLTCN model. Many-to-one mode needs
multiple epochs as input, so it is easy to cause model am-
biguity. 0e one-to-many mode proposed by Phan et al. [14]
learned the temporal features between adjacent epochs, and

the accuracy was 81.9%. On this basis, MLTCN adds the
temporal features of intra-epoch and long epochs.Moreover,
MLTCN uses the fusion method when learning the temporal
features of adjacent epochs. 0e accuracy is improved by
0.9%, the MF1 score is improved by 1.2%, and the kappa
coefficient is improved by 0.02.

Many-to-many models can learn the temporal features
of long epochs. On the Sleep-EDF-2013 dataset, Supratak
et al. [25] utilized RNN to learn the temporal features. Zhang
et al. [16] adopted dual CNN to learn the features from raw
EEG signals and time-frequency images. 0ese features are
used as the input of RNN to learn the temporal correlation of
successive epochs and fine-tune the final results using
HMM. Compared with the MLTCN model, this model
learns the temporal features of long epochs and lacks the
temporal features within and adjacent epochs. 0e accuracy
of this model is 83,8%, which is 0.4% lower than that of the
MLTCN model. Yang et al. [10] utilized HMM to learn the
temporal features of long epochs and obtained an accuracy
of 83.98%, but did not consider the intra-epoch temporal
features, and the performance was lower than that of
MLTCN. MLTCN learns the three-level temporal features
from intra-epoch, adjacent epochs, and long epochs at the
same time. 0e accuracy was 84.2%, the MF1 score was
77.1%, and the kappa coefficient was 0.78, which were higher
than other classification models. On larger Sleep-EDF-2018
dataset, the performance of our MLTCN model is better
than one-to-many network proposed by Phan et al. [14] and
many-to-many network proposed by Supratak et al. [25].

7. Conclusion

We propose a MLTCN for sleep stage classification, which
can learn the temporal features from three levels: intra-
epoch, adjacent epochs, and long epochs. MLTCN utilizes
multilevel temporal context learning blocks to obtain
complete temporal features and improve the classification
performance. 0e evaluation of the proposed model was
conducted on the Sleep-EDF-2013 and Sleep-EDF-2018
datasets and achieved stable and promising results, which
outperformed the existing approaches. Besides, the ablation
experiments are performed to verify the effectiveness of each
temporal feature learning block. 0rough the comparative

Table 6: Comparison between MLTCN and other existing approaches on Sleep-EDF-2013 and Sleep-EDF-2018 datasets.

Dataset Model Architecture Input Approach ACC MF1 Kappa

Sleep-EDF-2013

Phan et al. [28] CNN Spectrogram One-to-one 79.1 69.8 0.70
Tsinalis et al. [7] CNN Raw signal Many-to-one 74.8 69.8 0.65

Vilamala et al. [23] CNN Spectrogram Many-to-one 81.3 76.5 0.74
Seo et al. [22] CNN+Bi-LSTM Raw signal Many-to-one 83.6 76.5 0.77
Phan et al. [14] CNN Spectrogram One-to-many 81.9 73.8 0.74

Supratak et al. [25] CNN+RNN Raw signal Many-to-many 82.0 76.9 0.76
Zhang et al. [16] DCNN+RNN Spectrogram+ raw signal Many-to-many 83.8 — —
Yang et al. [10] 1D-CNN-HMM Raw signal Many-to-many 83.98 76.9 0.78
MLTCN (ours) CNN+TCN+HMM Spectrogram+ raw signal One-to-many 84.2 77.1 0.78

Sleep-EDF-2018
Phan et al. [14] CNN Spectrogram One-to-many 79.6 72.8 0.72

Supratak et al. [25] CNN+RNN Raw signal Many-to-many 77.8 71.8 0.70
MLTCN (ours) CNN+TCN+HMM Spectrogram+ raw signal One-to-many 81.0 74.9 0.74
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experiment between MLTCN_LSTM and MLTCN_TCN, it
is proved that MLTCN_TCN not only improves the clas-
sification performance but also shortens the training time.
0e sensitivity analysis of the HMM observation sequence
length shows that HMM has a good effect on fine-tuning the
long epochs. In our future work, we will try to apply this
model to other types of subjects, such as patients with sleep
apnea, and analyze the temporal features of sleep stages in
special populations.
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