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Abstract: Point-of-care applications rely on biomedical sensors to enable rapid detection with high
sensitivity and selectivity. Despite advances in sensor development, there are challenges in cancer
diagnostics. Detection of biomarkers, cell receptors, circulating tumor cells, gene identification,
and fluorescent tagging are time-consuming due to the sample preparation and response time
involved. Here, we present a novel approach to target the enhanced metabolism in breast cancers for
rapid detection using fluorescent imaging. Fluorescent analogs of fructose target the fructose-specific
transporter GLUT5 in breast cancers and have limited to no response from normal cells. These
analogs demonstrate a marked difference in adenocarcinoma and premalignant cells leading to a
novel detection approach. The vastly different uptake kinetics of the analogs yields two unique
signatures for each cell type. We used normal breast cells MCF10A, adenocarcinoma cells MCF7,
and premalignant cells MCF10AneoT, with hepatocellular carcinoma cells HepG2 as the negative
control. Our data indicated that MCF10AneoT and MCF7 cells had an observable difference in
response to only one of the analogs. The response, observed as fluorescence intensity, leads to a
two-point assessment of the cells in any sample. Since the treatment time is 10 min, there is potential
for use in rapid on-site high-throughput diagnostics.
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1. Introduction

Point-of-care (POC) and POC-healthcare technologies (POCHT) that monitor changes in the
intracellular mechanisms to report disease development have gained prominence in clinical and
consumer implementations owing to the ease of access to information, low cost, and self-management
of health and wellbeing [1–5]. The marked improvement in microfluidics, molecular diagnostics,
and nucleic acid chemistries [6–8] to identify cancer-relevant biomarkers [9] has led to an increased
interest in POC/POCHT for cancer. However, the relatively low concentration of the biomarkers
poses constraints on sensing, limiting the identification of the metastatic capability of the tumor,
when present. The diagnosis currently relies heavily on various radiological techniques. Despite the
advances to improve the resolution of radiological approaches, pathology reports of biopsy samples
remain the sole means to identify cancer type and stage [10]. There exist discrepancies in diagnosis
for the same sample owing to the highly heterogeneous nature of the tissue, subtle morphological
changes, and the interpretation by the observer, particularly when the sample deviates from key
criteria used to classify breast tumors [11]. Any approach capable of the identification of cancer cell
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populations in the heterogeneous environment of the tumor is expected to be based on error-free
cancer detection and diagnosis for development of cancer-relevant POC technologies. Within this
communication, a metabolism-driven approach for the detection and identification of breast cancers is
described. The difference in carbohydrate demands among different cells and cancer subpopulations
forms the basis for the approach presented here.

The long-recognized higher energy demands in cancer cells [12,13] have led to the development
of metabolism-based approaches to detect cancer, with 18F-2-deoxy-glucose being widely used as a
cancer-imaging agent in positron emission tomography (PET) [14]. Until recently, the major efforts
in identifying cancer through metabolism changes have focused on targeting glucose uptake and the
facilitative glucose transporter GLUT1 [15,16]. However, the global physiological need for glucose
and the ubiquitous presence of GLUT1 limits this strategy in sensitivity, selectivity, and specificity [17].
In particular, targeting glucose transport is limited in breast cancers, which are known to exhibit
insignificant changes in glucose uptake with respect to their normal counterparts [18–20]. Recently,
strong links between cancer and enhanced fructose uptake have been established, bringing forth
fructose transport as a promising target to identify cancer on the basis of fructose uptake and
metabolism [21]. For example, triple-negative breast cancer phenotypes have been reported to exhibit
8–10-fold higher fructose uptake than other phenotypes, with minimal fructose uptake measured for
normal breast cells [22–24]. Dependence on fructose for growth and progression identified for breast
cancers [25–27] has justified targeting fructose uptake as means to detect breast cancer. Moreover, it
is possible to achieve a high level of specificity by detecting the expression of the fructose-specific
transporter GLUT5 present in breast cancer cells, but not normal breast cells [28] using appropriate
detection tools.

Targeting GLUTs specifically has led to only a few molecular probes with transporter specificity [16,29].
Fructose transporters have been specifically targeted with fluorescent 7-nitrobenzofurazan (NBD)
conjugates of fructose (NBDF) [30]. Aryl conjugates of 1-amino-2,5-deoxy-D-mannitol (1-AM) show high
affinity and specificity towards GLUT5 with NBD conjugate of 1-AM working as fluorescent GLUT5
reporter [31,32]. Interestingly, epimers or regio-isomers of NBDM were shown to gain uptake through
glucose GLUTs with loss of uptake through the fructose GLUTs [33,34]. While NBDM provided
feasibility for discriminating between normal and cancer cells on the basis of the uptake through
GLUT5 [32], the probe had limited accumulation in cells (uptake saturation was measured at 50 µM
concentration), resulting in the unfavorable background fluorescence. Recently, the family of GLUT5
reporters was extended with coumarin conjugates of 1-AM, providing access to fluorescent probes of
different colors [35]. Here we report GLUT5-targeting probes with improved cancer detection based
on metabolic profiles. The two probes described differ in their uptake profile and reflect the metabolic
capacity of the cell and GLUT5 activity. Considering the recognized differences between cells in their
metabolic efficiency as well as GLUT5 expression, the probes enable two-point characterization of cells
and allow for discrimination of premalignant cells from differentiated epithelial cells and normal cells
under an in vitro setting (Figure 1).

Figure 1. Fluorescence-based identification of breast cancer cells and discrimination of cancer phenotypes
through GLUT5 with fluorescent 1-AM-coumarin conjugates ManCou1 and ManCou2.
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2. Materials and Methods

2.1. Reagents and Techniques

All reagents were used as received, unless otherwise stated. The 7-aminocoumarin was synthesized
according to the reported literature [36] and 7-amino-4-(trifluoromethyl)coumarin was procured from
Alfa Aesar. Analytical thin layer chromatography (TLC) was carried out on commercial SiliCycle
SiliaPlate® (Ville de Québec, QC, Canada) 0.2 mm F254 plates. Preparative silica chromatography was
performed using SiliCycle SiliaFlash® (Ville de Québec, QC, Canada) F60 40–63 µm, 230–400 mesh.
Final purification of compounds was achieved with Agilent-1200 HPLC (high-pressure liquid
chromatography) using reversed phase semipreparative column (Phenomenex® (Torrance, CA, USA,
Luna® 10 µm C18(2) 100 Å, LC Column 100 × 10 mm, Ea)). 1H and 13C-NMR spectra were recorded at
room temperature with a Varian Unity Inova 400 MHz spectrometer. Deuterated methanol (CD3OD)
was used as a solvent and referenced to the corresponding residual solvent peaks (3.31 and 49.0 ppm,
respectively). The following abbreviations are used to indicate the multiplicity: s—singlet; d—doublet;
t—triplet; q—quartet; m—multiplet; b—broad signal; app—approximate. The coupling constants are
expressed in hertz (Hz). The high-resolution mass spectrometry analysis (HRMS) was carried out
with a Thermo Fisher Orbitrap Elite™ Hybrid Ion Trap-Orbitrap Mass Spectrometer at the Chemical
Advanced Resolution Methods (ChARM) Laboratory at Michigan Technological University. Analysis
of cell fluorescence was carried out with Victor3 fluorescence plate reader (excitation at 385 nm) in
a 96-well plate format. Confocal images were taken with Olympus FluoViewTM FV1000 using the
FluoView software. Fluorescence imaging was done with EVOS FL Auto inverted microscope.

2.2. Synthesis of ManCou Conjugates

General procedure: (2S,3S,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-carbaldehyde [32]
(up to 1 mmol) and the corresponding coumarin (0.8 equiv.) were dissolved in methanol (10 mL).
The pH of the solutions was adjusted to <6 by acetic acid (1 mL), and NaBH3CN was added portionwise
to the reaction mixture (3 × 0.8 equiv., every 20–30 min). The reaction solutions were stirred at room
temperature for up to 24 h. The mixtures were then concentrated to dryness under reduced pressure
and purified by column chromatography on silica gel using methanol in dichloromethane (0–10%)
mixtures. The final purification was achieved by semipreparative HPLC using a water–acetonitrile
(2–20%) gradient, with 30–40% average yield after final purification. Structures of ManCous were
verified through spectroscopic analysis.

7-((((2R,3S,4S,5R)-3,4-Dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)methyl)amino)-2H-chromen-2-one
(ManCou1): 1H-NMR (400 MHz, CD3OD): δ, 7.76–7.36 (d, J = 9.2, 1H), 7.32–7.30 (d, J = 8.4, 1H),
6.68–6.65 (dd, J1 = 2.4, J2 = 8.4, 1H), 6.53 (d, J = 2.4, 1H), 6.01–5.99 (d, J = 9.2, 1H), 4.02–3.98 (m, 2H),
3.95–3.92 (m, 1H), 3.88–3.85 (m, 1H), 3.73–3.69 (app dd, J1 = 3.2, J2 = 12.0, 1H), 3.66–3.61 (app dd,
J1 = 5.6, J2 = 12.0, 1H), 3.48–3.44 (app dd, J1 = 3.6, J2 = 13.6, 1H), 3.38–3.32 (app dd, J1 = 6.8, J2 = 13.6,
1H) ppm. 13C-NMR (100 MHz, CD3OD): δ, 164.7, 158.1, 154.5, 146.5, 130.2, 112.3, 110.6, 109.1, 98.0,
85.3, 83.2, 80.3, 78.9, 63.3, 46.2 ppm. HRMS (ESI): m/z [M + Na]+ calc’d for C15H17NNaO6: 330.09539;
found 330.09434.

7-((((2R,3S,4S,5R)-3,4-Dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)methyl)amino)-4-(trifluoromethyl)-
2H-chromen-2-one (ManCou2): 1H-NMR (400 MHz, CD3OD): δ, 7.44–7.41 (dd, J1 = 2.0, J2 = 9.2, 1H),
6.74–6.71 (dt, J1 = 2.4, J2 = 9.2, 1H), 6.60–6.59 (d, J = 2.4, 1H), 6.37 (s, 1H), 4.02–3.98 (m, 2H), 3.95–3.92
(m, 1H), 3.89–3.85 (m, 1H), 3.73–3.69 (app dd, J1 = 3.6, J2 = 11.6, 1H), 3.66–3.61 (app dd, J1 = 5.6,
J2 = 12.0, 1H), 3.50–3.46 (app dd, J1 = 3.6, J2 = 14.0, 1H), 3.40–3.35 (app dd, J1 = 6.4, J2 = 13.6, 1H) ppm.
13C-NMR (100 MHz, CD3OD): δ, 162.2, 158.6, 155.0, 143.3, 143.0, 124.8, 122.1, 112.8, 108.3, 104.1, 98.5,
85.4, 83.2, 80.2, 78.8, 63.3, 46.1 ppm. HRMS (ESI): m/z [M + H]+ calc’d for C16H17F3NO6: 376.10082;
found 376.09955.
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2.3. Tissue Culture

Normal breast cells (MCF 10A/ATCC® CRL-10317™), adenocarcinoma (MCF-7/ATCC®

HTB-22™) cells, and hepatocellular carcinoma (HepG2/ATCC® CRL-10317™) cells were procured
from American Type Cell Culture. The premalignant breast cancer cells MCF10AneoT was purchased
from the Animal Model and Therapeutics Evaluation Core (AMTEC) Karmanos Cancer Institute,
Wayne State University. All cells were maintained at 37 ◦C, at 65% relative humidity, and under 5%
CO2 in their respective culture mediums (see Appendix A). All cultures were supplemented with
10,000 I.U./mL penicillin and 10,000 µg/mL streptomycin to lower chances of bacterial contamination.

2.4. Microplate Uptake and Inhibition Assays

For microplate assays, cells at ~80% confluence were collected and plated in 96-well flat-bottom
plates (20,000 cells/well) and allowed to grow for 24 h. Cells were then washed with warm (37 ◦C) PBS
solution, treated with ManCou probes (concentration varies) in PBS and incubated at 37 ◦C and 5% CO2

for 10 min. After incubation, cells were carefully washed with warm PBS (3 × 100 µL). Fluorescent data
was immediately collected using the Victor3 plate reader and using WallacTM umbelliferone (excitation
355 nm, emission 460 nm, 1.0 s) protocol. All trials were done in triplicates. The corresponding errors
were derived as standard deviation.

Uptake inhibition studies were carried using 96-well plates. Fluorescence of ManCou probes in
cells was measured in the presence of varying concentrations of fructose and glucose. For this part,
PBS solution containing 20 µM ManCou and the specific concentration of a sugar was prepared and
introduced with the cells. In parallel, complete culture media was used to establish the impact of
nutrients on ManCou uptake. Cell incubation and data collection were conducted as stated above.

2.5. Immunostaining

The GLUT5 (Slc2a5) primary antibody (sc-271055) was obtained from Santa Cruz Biotechnology,
Inc. (Dallas, TX, USA) and the secondary antibody (ab6787) was obtained from Abcam (Cambridge,
MA, USA). The primary antibody was used with incubation buffer at a 1:200 dilution, while the
secondary antibody was used at a dilution of 1:1000, as recommended. All the cells were fixed in 4%
paraformaldehyde and blocked for 1 h at room temperature. Incubation for primary and secondary
antibodies was 2 h and 1 h, respectively, at room temperature. A PBS rinse was carried out between
each step. Imaging was carried out immediately.

2.6. Imaging

The individual cell lines in culture were incubated with ManCou1 and 2 for 10 min at a
concentration of 20 µM across all tests. The test concentration was established after evaluation of the
imaging efficiency within a range of concentrations (5–100 µM). 20-µM concentration was selected as
the lowest at which steady fluorescence readout was achieved using a confocal microscope (Olympus
FluoViewTM FV1000). Imaging was carried out using EVOS FL autoimaging with the EVOS software.
All images were taken at a constant gain setting. From the grayscale images, the corrected total cell
fluorescence (CTCF) was calculated as described in our previous work [37]. Briefly, using ImageJ,
comparing the average fluorescence with the background of the same image, the fluorescence signal
only in the region of interest was obtained as described previously [38]. The process was repeated five
times for each image captured to obtain an average fluorescence. The average CTCF obtained was then
normalized to the average CTCF obtained for the normal control sample. The normalized average
CTCF (with respect to MCF10A) was then plotted in Microsoft Excel. The advantage of using CTCF
for images obtained along a z-plane with best focus, as presented by McCloy et al. [38], demonstrates
that the information thus obtained eliminates errors due to localized higher levels.
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3. Results and Discussion

3.1. Design and Evaluation of Fluorescent Fructose Mimics as GLUT5-Specific Probes

Two blue-fluorescent GLUT5 probes were designed and synthesized (Figure 2) on the basis of
the established GLUT5 preference for 1-amino-2,5-anhydro-D-mannitol (Man) [31,32] and the capacity
of GLUTs to pass coumarin (Cou) fluorophores [39], to enable significant accumulation in the cell
through GLUT5. The resulting sugar–coumarin conjugates—“ManCous”—bearing H or CF3 at the
C4 position of the coumarin ring (ManCou1 and ManCou2, respectively; Figure 3A) were evaluated
for the uptake and GLUT5 specificity in cell culture. For this part, MCF7 cells, previously studied for
GLUT5-mediated uptake [22,24,30], and HepG2 cells, which lack GLUT5 [40], were used.

Figure 2. Synthesis of ManCou analogs.

For the initial uptake analysis, MCF7 cells were treated in a 96-well plate with ManCou
probes at different concentrations and the cell fluorescence was measured with a fluorescence plate
reader. At concentrations exceeding 100 µM, the fluorescence readout for ManCou2 showed signs of
saturations and leveled off at 200 µM concentration (Figure 3A). The fluorescence signal from ManCou1
gradually increased and showed no saturation, even at 500 µM concentration. The Z-stack analysis
of ManCou-treated cells showed a prominent accumulation of probes inside the cell. While both
probes are internalized by the cell, they show a marked difference in cellular distribution. ManCou1
is evenly distributed throughout the cell, including the nucleus, while ManCou2 is localized in the
cytosol (Figure 3B). The differences in the cell distribution parallel those in the ManCou uptake profile.
The linearity in the uptake of ManCou1 is suggestive of phosphorylation of the probe, leading to
the removal of the probe gradient within the cell. On the other hand, saturable uptake for ManCou2
implies lack of phosphorylation and gradient buildup, precluding continuous uptake of the probe.
It is then plausible that only phosphorylated species are further taken up by the cell nucleus. While
mannitol phosphorylation within the cell is established [41–44], further analyses are needed to link
nuclear accumulation with ManCou phosphorylation.

Figure 3. ManCou uptake analysis. (A) Concentration-dependent uptake in MCF7 cells in 96-well plate;
(B) brightfield and fluorescence (DAPI) overlay of confocal Z-stack images of MCF7 with ManCou1
and ManCou2; (C) brightfield and fluorescence (DAPI) overlay of confocal Z-stack images of HepG2
cells with ManCou1 and ManCou2. Images taken with 20 µM ManCous at 405 nm excitation and
461 nm emission (60× for MCF7 cells and 40× for HepG2 cells).
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To further delineate the contribution of the sugar in the uptake of ManCous, a direct comparison of
ManCou uptake with that of the nonconjugated coumarin was carried out. At the same concentrations,
we have observed six-fold and five-fold lower uptake respectively, for unconjugated coumarins (Cou1
is coumarin of ManCou1, and Cou2 is coumarin of ManCou2; Figure 4A), implying the sugar-driven
uptake of ManCous. It also appears that the uptake of ManCou1 is nearly twice as much as ManCou2.
The uptake of both ManCous was inhibited by fructose (Figure 4B), although to a greater extent in
the case of ManCou1. Glucose, however, had no effect on the uptake, as evident from the equally
efficient internalization of the probes in buffer and complete high-glucose culture medium (Figure 4C).
Finally, we have tested ManCou uptake in GLUT5-deficient HepG2 cells to delineate any contribution
from nonspecific binding to the observed gained fluorescence. While some basal fluorescence has been
observed for whole cell images, the Z-stack analysis (Figure 3C) showed no internalization of the probe,
suggesting no active uptake of ManCous. Overall, the lack of inhibition from glucose in conjunction
with the lack of uptake observed with HepG2 cells supports the GLUT5 specificity of ManCous.

Figure 4. Analysis of sugar impact on ManCou uptake. (A) Comparative uptake of ManCous (black
bars) vs nonconjugated (grey bars) coumarins; (B) fructose-induced inhibition of ManCou uptake;
(C) ManCou uptake is independent of glucose concentration and is equally effective in the buffer and
complete culture medium. All data obtained in 96-well plate format. Each data point constitutes an
average of two independent experiments in triplicate. Error bars represent standard deviation.

3.2. Profiling Fructose Uptake Efficiency and GLUT5 in Cells for Cancer Detection

We analyzed ManCou uptake in normal and cancer cell lines to evaluate the feasibility of
cancer cell detection on the basis of the probe uptake through GLUT5. The comparative analysis
of normal MCF10A, adenocarcinoma MCF7, and premalignant MCF10AneoT (ANeoT) cells was
carried out through imaging. After treating cells with 20 µM concentration of ManCous for 10 min,
the accumulated fluorescence was recorded and fluorescence intensity analyzed. We have observed
minimal to no accumulation of probes in the normal MCF10A breast cells (comparable to that in
HepG2 cells). The ManCous have excitation and emission maxima of 405 nm and 465 nm, respectively.
The fluorescent images were captured in the blue channel.

As indicated by the grayscale fluorescent images in Figure 5A, the level of probe-induced
fluorescence in the normal MCF10A cells is comparable to that of the HepG2 cells. The background
fluorescence appears to originate from the residual association of probes with the membrane, as no
fluorescence could be detected inside of MCF10A or HepG2 cells by Z-stack analysis. Thus, the data
implicates that the uptake of ManCou probes in MCF7 and AneoT cells proceeds through GLUT5,
resulting in a facile imaging of cancer cells. This was further confirmed by immunostaining the cells
treated with probes for GLUT5, as shown in Figure 6. It is important to note that fructose uptake in
the healthy tissues is limited to the liver and intestines, and fructose-specific GLUT5 is upregulated
in cancer cells [23,24,30,44,45], supporting our approach to using fructose-based detection. This was
further confirmed by immunostaining the cells treated with probes for GLUT5, as shown in Figure 6.
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Using the normalized average CTCF with respect to the control MCF10A, the relative levels
for each of the cells lines and treatment conditions can be directly assessed. As shown in Figure 5B,
the fluorescence intensity observed for AneoT treated with ManCou1 was nearly 70 times higher
than that for MCF10A and HepG2 cells for the same concentration and incubation period. Under
the same conditions, AneoT had nearly seven times higher response compared to MCF7, clearly
distinguishing the premalignant AneoT from the adenocarcinoma cells MCF7 (statistically significant
data). Considering the plausible connection between the uptake of ManCou1 and the metabolic
activity of the cells, the three-fold difference I the uptake between MCF7 and AneoT could reflect
the higher metabolic activity of premalignant cells. Thus, the differences in the uptake of ManCou1
provides a one-point discrimination between normal and cancer cells. Under identical conditions,
the ManCou2 probe had nearly 20 times higher uptake in the MCF7 than HepG2 cells. In contrast to
ManCou1, ManCou2 is taken up at the relatively same levels in MCF7 and AneoT cells, suggesting
similar levels of GLUT5 in both cell lines. Thus, the differences in the uptake of ManCou2 provide a
second point for discriminating between cancer and normal cells. The cumulative analysis of ManCou1
and ManCou2 uptake reflecting the differences in GLUT levels and uptake efficiency also adds to
a better discrimination between cancer subtypes. The expectations would be that in heterogeneous
populations, treating cells with ManCou1 and ManCou2 and analyzing the CTCF will provide a visual
discrimination of normal, premalignant, and adenocarcinoma cells. The two-point analysis would take
the form of the analysis shown in Figure 7. The disparity in the signal makes this approach also ideal
for spectrophotometric analysis in microplate or flow formats.

Figure 5. ManCou uptake in cells. (A) Grayscale fluorescence images of ManCou uptake in cells used to
determine relative fluorescence using EVOS FL Auto at 20×; (B) relative differences in ManCou uptake
(normalized for MCF10A cells). Data obtained for normal breast cells MCF 10A, hepatocellular cancer
cells HepG2 (negative control), premalignant breast cancer cells AneoT, and breast adenocarcinoma
cells MCF7 after 10 min of incubation with 20 µM of ManCous1 and 2. The t-tests (p < 0.05) performed
after F-test (F ≤ Fcritical one-tail). For ManCou1, MCF7 was statistically significant compared to AneoT,
HepG2, and MCF10A, while AneoT was statistically significant compared to HepG2 and MCF10A.
For ManCou2, only MCF7 was statistically significant compared to AneoT, HepG2, and MCF10A.
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Reported evidence suggests that HepG2 cells lack the fructose-specific transporter GLUT5 [40],
while breast cancer cells express it in significant levels. In order to assess the relation between uptake
of the probe and the presence of the fructose-specific transporter GLUT5 in the cells tested, we
carried out immunostaining of the cells for GLUT5 (Texas Red®. Ex: 596 nm, Em: 620 nm) following
a 10-min incubation with 20 µM of the respective probes. Cells without the probes were used as
controls. The differential expression of GLUT5 in the cellular membrane is evident from the GLUT5
immunostaining depicted in Figure 6 (“control” panel). As can be seen, there is little to no GLUT5
in MCF10A and HepG2 cells. In contrast, MCF7 cells and AneoT cells presented detectable levels
of GLUT5. The lack of probe uptake (blue fluorescence) in MCF10A and HepG2 is represented well
by the absence of GLUT5. Similarly, the probe uptake in MCF7 and AneoT cells are accompanied
by the presence of GLUT5 (Figure 6, “ManCou” panels). The differences in GLUT5 levels appear
to parallel the differences in the accumulation of ManCou probes in the normal and cancer cells.
Overall, the ManCou uptake correlates with the presence of GLUT5, providing further evidence for
the GLUT5-directed visualization of cancer cells. Further detailed analysis of GLUT5 expression and
its relation to fructose will be required to develop a better understanding of the relationship between
the fructose-specific transporters and uptake of the fructose-like probes.

Figure 6. Immunostaining of cells for GLUT5 without and with ManCous. Optical microscopy, 20×.
“Control” panel represents GLUT5 staining. “ManCou1” and “ManCou2” panels represent GLUT5
staining after 10 min treatment of cells with the respective probes. The red fluorescence represents
GLUT5 (Texas Red®. Ex: 596 nm, Em: 620 nm) and blue (DAPI) represents the probe. The cells
were incubated with 20 µM of the respective probes for 10 min and fixed in paraformaldehyde before
immunostaining. Images were captured using EVOS FL Auto immediately following immunostaining.

The outcomes of two-point analysis targeting GLUT5 are summarized in Figure 7. Overall,
the statistical differences in the uptake of fluorescent probes ManCou1 and ManCou2 are statistically
different, providing basis for clear discrimination between normal and cancer cells as well as between
cancer subtypes. The correlations observed for the uptake of the ManCous and the presence of GLUT5
as well as significant differences in accumulation of the ManCous in cancer cells empowers optical
screening of breast cancer using the fluorescent-labeled fructose analogs in multiplate or flow settings.
Further analysis and experimentation is needed to quantify the relative abundance of GLUT5 to
establish the correlations with ManCou uptake, as well as to evaluate the contribution from the cell
population densities in a given sample to improve the detection system and hence the diagnosis.
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Combined with the fluorescent response, the two-point, two-metric system has the potential to clearly
discriminate cancer cells and its subtypes. Future work will involve screening heterogeneous cultures
derived from breast cancer biopsy samples for advancing the approach to POC technology.

Figure 7. An example two-point analysis demonstrating the identification of normal, adenocarcinoma,
and premalignant cells.

4. Conclusions

We have successfully demonstrated the effective discrimination of premalignant and adenocarcinoma
cancer cells using fluorescently labeled fructose analogs in vitro. The rapid response from the 10-min
incubation and the observably different response between the cancer cells with the two fructose analogs
highlight the use of this technique in high-throughput point-of-care healthcare applications.

5. Patents

A provisional patent has been filed for the fluorescent fructose analog probes.
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Appendix A

Culture mediums used for the individual cell lines were formulated based on the recommended
culture conditions from ATCC. The MCF 10A cells were cultured in mammary epithelial growth
medium with the supplement kit from Lonza/Clonetics. Additionally, 100 ng/mL cholera toxin
was added. The gentamicin supplement from the kit was not used as recommended. The MCF7
cells were cultured in Eagle’s minimum essential medium (EMEM) supplemented with 0.01 mg/mL
human recombinant insulin and fetal bovine serum (FBS) to a final concentration of 10%. HepG2 was
cultured in EMEM with 10% FBS. The MCF10AneoT cells were cultured in high-calcium DMEM/F12
(1:1) from Gibco with 1.05 mM CaCl2, 10 mM HEPES, 10 µg/mL insulin, 20 ng/mL EGF, 0.5 µg/mL
hydrocortisone, 5% horse serum, and 100 ng/mL cholera toxin.
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