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ABSTRACT
In the last decade, immunotherapies have revolutionised 
anticancer treatment. However, there is still a number 
of patients that do not respond or acquire resistance 
to these treatments. Despite several efforts to combine 
immunotherapy with other strategies like chemotherapy, 
or other immunotherapy, there is an ‘urgent’ need to 
better understand the immune landscape of the tumour 
microenvironment. New promising approaches, in addition 
to blocking co-inhibitory pathways, such those cytotoxic 
T-lymphocyte-associated protein 4 and programmed 
cell death protein 1 mediated, consist of activating co-
stimulatory pathways to enhance antitumour immune 
responses. Among several new targets, glucocorticoid-
induced TNFR-related gene (GITR) activation can promote 
effector T-cell function and inhibit regulatory T-cell (Treg) 
function. Preclinical data on GITR-agonist monoclonal 
antibodies (mAbs) demonstrated antitumour activity in 
vitro and in vivo enhancing CD8+ and CD4+ effector T-cell 
activity and depleting tumour-infiltrating Tregs. Phase I 
clinical trials reported a manageable safety profile of GITR 
mAbs. However, monotherapy seems not to be effective, 
whereas responses have been reported in combination 
therapy, in particular adding PD-1 blockade. Several 
clinical studies are ongoing and results are awaited to 
further develop GITR-stimulating treatments.

INTRODUCTION
In the last decade, immunotherapies, mainly 
through antiprogrammed cell death protein 
1 (anti-PD-1)/programmed death-ligand 1 
and anticytotoxic T-lymphocyte-associated 
protein 4 (anti-CTLA-4) monoclonal anti-
bodies (mAbs), have revolutionised anti-
cancer treatment. However, there is still a 
number of patients that do not respond 
or acquire resistance to these treatments. 
According to recent tumour classification 
by their immune infiltration, some types of 
cancer potentially respond to immune check-
point inhibitors (highly immune-infiltrated 
or ‘hot tumour’), while in other tumours 
available immunotherapies appear not to be 
effective (non-immune-infiltrated or ‘cold 
tumour’). Despite several efforts to combine 
immunotherapy with other strategies like 
chemotherapy, radiotherapy or other immu-
notherapy aiming to convert ‘cold’ to ‘hot’ 
tumour, there is an ‘urgent’ need to better 
understand the immune landscape of the 

tumour microenvironment and to find alter-
native approaches to modulate immune func-
tion.1

New promising approaches, in addition 
to blocking co-inhibitory pathways, such 
those CTLA-4 and PD-1 mediated, consist 
of activating co-stimulatory pathways to 
enhance antitumour immune responses.2 
One such strategy includes the development 
of agonist antibodies to target members of 
the tumour necrosis factor receptor super-
family (TNFRSF) with key role on immune 
activation and antitumour immune response, 
like 4-1BB, OX40, CD27 and glucocorticoid-
induced TNFR-related gene (GITR).3 Several 
data demonstrate that GITR activation can 
promote effector T-cells function and inhibit 
regulatory T-cells (Treg) function.3 4

In this review, we focus on the GITR/GITR 
ligand (GITRL) axis.

BIOLOGICAL BACKGROUND
GITR and GITRL expression
GITR (TNFRSF18/CD357/AITR) is a type 
1 transmembrane protein belonging to 
the TNFRSF including OX40, CD27, CD40 
and 4-1BB. Human GITR is constitutively 
expressed at high level on CD4+CD25+-

FoxP3+ Tregs and at low levels on naïve and 
memory T-cells.4–7 On activation of CD8+ 
and CD4+ effector T-cells, GITR expression 
increases rapidly on both Tregs and effector 
T-cells, reaching the highest level on activated 
Tregs.4 5

GITR is also expressed on natural killer 
(NK) cells and at low levels on B cells, macro-
phages and dendritic cells, and can be upreg-
ulated by activation, especially on NK.8 9

GITRL is a type 2 transmembrane protein 
and is also a member of the TNFRSF. It is 
commonly identified as a trimer, although it 
can also be present as a monomer or assemble 
into others multimeric forms.10

GITRL is predominantly expressed by 
activated antigen-presenting cells, including 
macrophages, B cells, dendritic cells and 
endothelial cells.4 8 Notably, GITR and GITRL 
expression is not restricted to haematopoietic 
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cells. GITR expression has been described on epidermal 
keratinocytes and osteoclast precursors and GITRL 
expression on endothelial cells, especially after type I 
interferon (IFN) exposure.6

Recently, another GITR endogenous ligand has been 
described: SECTM1A, which is expressed both as a trans-
membrane protein and as a secreted protein. In mouse, 
SECTM1A is able to activate both GITR and CD7, but its 
role is not yet defined.11

GITR signalling and function
GITR, as other molecules of the TNFRSF, can act as a 
co-stimulatory receptor, thus representing a potential 

target to enhance immunotherapy, in particular immune 
checkpoint inhibitors.

All TNFR are characterised by their ability to bind TNF 
ligand and activate the transcription nuclear factor-κB 
(NF-κB) pathways via TNF receptor-associated factors 
(TRAFs), a family of six proteins that are recruited to 
further transduce signals within the cell. In particular, 
the activation of GITR signalling pathways, mediated by 
TRAF2/5-NF-κB, results in reduced T-cell apoptosis and 
promotes T-cell survival, at least in part by upregulating 
the expression of the Bcl-xL prosurvival molecule.12

In the periphery, after T-cell receptor (TCR) stimula-
tion, the GITRL or agonist antibodies on conventional 
T-cells increases T-cell activation by inducing interleukin 
(IL)-2 and IFN-γ expression, enhancing CD25 expression 
and stimulating cell proliferation (figure 1).12–14 Further-
more, GITR co-stimulation enhances CD8+ T-cell cyto-
toxic function, and promotes survival of bone marrow 
CD8+ memory T-cell (figure 2).15

Although GITR is highly expressed in (CD4+CD25+-

FoxP3+) Treg cells, its function on these cells is more 
complex (figure 3).3

In vitro and in vivo, GITR signalling, especially medi-
ated by agonist mAb, can inhibit Treg ability to suppress 
effector T-cells, either by rendering effector T-cells less 
susceptible to Treg immunosuppressive activities or by 
directly inhibiting Tregs.16 17 This last mechanism could 
be due to the transient loss of FoxP3 on Tregs, although 
it has been observed only in Tregs from tumour-bearing 
mice and not in Tregs from naïve mice.18

Interestingly, the GITR/GITRL axis effect on Treg 
seems to be inhibitory in the short-term, while the long-
term over stimulation in vivo favours the expansion and 
the activity of Treg in mice.16

In addition, GITR co-triggering of conventional T-cells 
stimulates IL-10 production, favouring differentiation of 
conventional CD4+ T-cells into T-helper 2 and Treg cells, 
these findings sustain the role of GITR in the balancing 
between T-helper and Treg cells.19

Differently, the role of GITR in NK remains to be deter-
mined because of contradictory data as to whether GITR 
engagement increases8 or decreases NK cell activity.20

In summary, while commonly Treg cells antagonise 
effector T-cells, thereby limiting antitumour activity, GITR 

Figure 1  CD4+ T-cell GITR/GITRL activation. APCs, 
antigen-presenting cells; GITR, glucocorticoid-induced 
TNFR-related gene; GITRL, GITR ligand; IFN, interferon; IL, 
interleukin; NF-κB, nuclear factor-κB; TCR, T-cell receptor; 
Treg, regulatory T-cell.

Figure 2  CD8+ T cell GITR/GITRL activation. APCs, 
antigen-presenting cells; GITR, glucocorticoid-induced 
TNFR-related gene; GITRL, GITR ligand; IFN, interferon; IL, 
interleukin; NF-κB, nuclear factor-κB; TCR, T-cell receptor; 
Treg, regulatory T-cell.

Figure 3  Treg GITR/GITRL activation. GITR, 
glucocorticoid-induced TNFR-related gene; GITRL, GITR 
ligand; TCR, T-cell receptor; Treg, regulatory T-cell.
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activation on effector T-cells increase effector function by 
limiting the sensitivity of these cells to Treg suppression.

MODULATION OF GITR IN PRECLINICAL TUMOUR MODELS
Antitumour activity of GITR mAb
In recent years, GITR has been largely studied as a phar-
macological target.

Co-activation of GITR by agonist mAbs can increase 
immune response, inflammation and thereby antitumour 
response.9 Differently, GITR inhibition, through antag-
onist mAbs could inhibit T-cell activation and immune 
response.6 Consequently, GITR agonist mAbs has been 
further developed as antitumour agents.

In tumour models, the antitumour activity of GITR 
mAbs is mainly based on the ability to enhance CD8+ and 
CD4+ effector T-cell activity and on the inhibition/deple-
tion of tumour-infiltrating Tregs.21–24

Importantly, GITR is not expressed on the tumour 
itself, but it is expressed on tumour-infiltrating lympho-
cytes (TILs) of several human cancer types including lung 
cancers, renal cell carcinoma, head and neck carcinoma 
and melanoma.25

The most widely used molecules to trigger GITR are 
agonist antibodies like DTA-1 (a rat IgG2b)5 or recombi-
nant version of GITRL, like GITR-Fc.

The DTA-1 mAb has demonstrated in vivo antitumour 
activity in multiple syngeneic mouse tumour models (eg, 
melanoma,24 cervical26) enhancing CD8+ and CD4+ T-cell 
proliferation and cytokine induction. A recent study 
reported that GITR agonists can also increase cellular 
metabolism to support CD8+ T-cell effector function and 
proliferation.27

The intermediate role of CD8+ and CD4+ T-cells in tumour 
rejections seems to be crucial.

Regressing tumour-bearing mice, treated with DTA-1, 
were found infiltrated by a large number of CD4+ and 
CD8+ T-cells, including those secreting IFN-γ. However, 
the treatment resulted in tumour regression only in 
IFN-γ-intact mice but not IFN-γ-deficient mice.28 29 The 
effect of DTA-1 was lost/decreased in the absence of 
CD8+ T and NK cells.4

Moreover, GITR engagement by DTA-1 promoted the 
differentiation of IL-9-producing CD4+ T-helper cells, 
thus enhancing immune-mediated tumour response.30

The additional crucial concomitant mechanism to inhibit 
tumour growth, following DTA-1—GITR triggering is the 
reduction of Treg activity and number. Such a reduction can 
occur via Treg-specific and tumour-specific antibody-
dependent cell cytotoxicity (ADCC): GITR+ Tregs specific 
for tumour antigens, through the Fc domain of anti-GITR 
mAbs, are recognised and killed by myeloid and NK cells 
present in the tumour.22 23

GITR has a higher expression in tumour infiltrating 
Treg compared with peritumoral region in several tumour 
like renal, colorectal and hepatocarcinoma.31–33

FoxP3+ Treg reduced accumulation in tumours has 
been also hypothesised as a result of reduced trafficking 

or loss of FoxP3 expression in intratumour Treg and their 
‘conversion’ into activated T-cells.24

However, Mahne et al reported that mDTA-1 depletes 
rather than converts intratumour Tregs. In tumour-
bearing mice, Treg depletion together with GITR trig-
gering were necessary to revert intratumour CD8+ T-cell 
exhaustion, thus improving antitumour efficacy.34

Vence et al confirmed that tumours with high expres-
sion of CD8+ and CD4+, after GITR mAb treatment, have 
the better response, mainly lung cancer, renal cancer and 
melanoma.25

Moreover, preliminary results showed a better suppres-
sion of tumour growth with intratumour compared with 
intravenous injection. In fact, the intratumour injection 
was able to induce a systemic antitumour immune reac-
tion, exerting its effect on injected and on un-injected 
tumours.35

Combination of GITR mAb with immune-modulating therapies
GITR, like other co-stimulating molecules, has a key role 
on T-cell activation and its activity can potentiate, in a 
synergic effect, other anticancer therapies.

Combined treatment with anti PD-1 and GITR-agonist 
mAbs was able to achieve long-term survival in mouse 
model of ovarian and breast cancer, stimulating IFN-γ 
producing conventional T-cells and inhibiting immu-
nosuppressive Tregs and myeloid-derived suppressor 
cells.4 36 The treatment combination manages to rescue 
CD8+ T-cell dysfunction and to induce proliferation of 
precursor effector memory T-cell phenotype in a CD226-
dependent manner.37 Durable responses were also 
reported adding cytotoxic chemotherapy or radiotherapy 
to anti-PD-1/GITR mAbs.36 38 39

Co-administration of GITR mAbs and anti-CTLA-4 
resulted in an 80% tumour-response in CT26 (colon 
carcinoma) and CMS5a (fibrosarcoma) mice tumour 
models reducing intratumour Treg (via GITR) and stimu-
lating CD8+ T-cells (via CTLA-4).37

Targeting GITR together with an OX40 agonist (OX40 
ligand fusion protein), showed unexpectedly a syner-
gistic antitumour effect on CT26 tumour-bearing mice, 
although the toxic profile of the combination could 
represent a limit to clinical development.40

The synergistic and complimentary antitumour effect 
obtained combining GITR mAbs and vaccines was 
reported13 in cervical cancer41 and in melanoma.42 More-
over, adding chemotherapy (gemcitabine) to the combi-
nation of vaccine and GITR mAb was able to decrease 
tumour-suppressive environment and to induce a long-
lasting memory immune response.43

In conclusion, in preclinical tumour models co-ac-
tivating GITR through agonist mAb was able to induce 
antitumour responses. In particular DTA-1 mAb demon-
strated in vivo antitumour activity in multiple mouse 
tumour models, enhancing CD8+ and CD4+ T-cell prolif-
eration/cytokine induction, and reducing Treg activity and 
number, especially via ADCC. Moreover, GITR agonist 
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mAbs best antitumour responses were achieved in combi-
nation with other immune-modulating therapies.

CLINICAL TRIALS WITH GITR MONOCLONAL ANTIBODIES
MEDI1873, a GITR-ligand/IgG1 agonist fusion protein, 
was tested in a phase I trial reporting G3 treatment-
related adverse events (TRAEs) in the 22.5% of patients 
and no G4-5 TRAEs (table 1). Pharmacodynamics anal-
ysis confirmed that MEDI1873 increased CD4+Ki67+ 
T-cells and induced a >25% decrease in GITR+/FoxP3+ 
T-cells in the evaluable patients. Stable disease (42.5%), 
durable in the 17.5% of patients, was the best response 
in this heavily pretreated population, supporting further 
clinical trials.44

The phase I trial with AMG 228, an agonistic human 
IgG1 GITR-mAb, reported a favourable safety profile, but 
no evidence of T-cell activation or antitumour activity, at 
least as monotherapy.45

BMS-986156, a fully human IgG GITR-mAb, has been 
tested as monotherapy and in combination therapy with 
nivolumab in a phase I/IIa trial. None of the 34 patients 
in the monotherapy arm experienced a dose-limiting 
toxicity (DLT) or grade G3-5 TRAEs, a patient out of 
258 had a DLT in combination with nivolumab 240 mg. 
No responses were seen with monotherapy, although an 
objective response rate (ORR) of 9% (18 out of 200 evalu-
able patients) across all tumour types was achieved in the 
combination arm.46

No responses were reported in the phase I trial with 
TRX518, a fully humanised Fc-dysfunctional aglycosylated 
IgG1κ GITR-mAb, in monotherapy. Pharmacodynamics 
data and subsequent in vitro and in vivo investigation high-
lighted the possible mechanisms of tumour resistance to anti-
GITR monotherapy and its possible overcome combining 
anti PD-1/PD-L1 therapy. In a murine model, DTA-1 early 
treatment delayed tumour growth, preventing intratu-
mour Treg accumulation and CD8+-not exhausted T-cell 
upregulation. Differently, in advanced tumours microen-
vironment, high Treg expression increases dysfunctional 
CD8+ T-cells that shows an exhausted profile and fail to 
upregulate markers of activation and cytotoxicity. Thus, 
adding PD-1 blockade was able to counteract CD8+ T-cells 
exhaustion, resulting in better tumour control.47 Prelim-
inary evaluations of tumour response among the first 
patients enrolled in the phase I combinational trial were 
encouraging (NCT02628574).

MK-4166, a humanised IgG1 agonist GITR mAb, in 
combination with pembrolizumab, an anti PD-1 mAb, 
demonstrated a good safety profile and potential activity, 
in particular among patients with melanoma naïve to 
treatments.48

Others compounds under investigation (table  2) 
are ASP1951 (PTZ-522),49 a tetravalent monospecific 
(TM) anti-GITR agonist antibody (NCT03799003); 
INCAGN01876, a humanised IgG1 mAb (NCT03126110) 
and GWN323 (NCT02740270).

CONCLUSIONS AND FUTURE PERSPECTIVES
GITR can act as a co-stimulatory receptor, representing 
a potential target to enhance immunotherapy efficacy. 
Preclinical data confirmed GITR triggering could increase 
CD8+ and CD4+ effector T-cell activity and reduce tumour-
infiltrating Tregs. GITR mAbs have a manageable safety 
profile. However, they seem not to be effective as mono-
therapy, whether responses have been reported in phase 
I/II trials combination therapy with immune checkpoint 
inhibitors. In particular, adding PD-1 blockade may have 
a synergistic and complimentary antitumour effect, by 
converting CD8+ T-cells exhaustion.

Several clinical studies are ongoing, especially in combi-
nation with other treatments and results are awaited to 
further develop GITR-stimulating treatment.
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