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ABSTRACT

In the last decade, immunotherapies have revolutionised
anticancer treatment. However, there is still a number

of patients that do not respond or acquire resistance

to these treatments. Despite several efforts to combine
immunotherapy with other strategies like chemotherapy,
or other immunotherapy, there is an ‘urgent’ need to
better understand the immune landscape of the tumour
microenvironment. New promising approaches, in addition
to blocking co-inhibitory pathways, such those cytotoxic
T-lymphocyte-associated protein 4 and programmed

cell death protein 1 mediated, consist of activating co-
stimulatory pathways to enhance antitumour immune
responses. Among several new targets, glucocorticoid-
induced TNFR-related gene (GITR) activation can promote
effector T-cell function and inhibit regulatory T-cell (Treg)
function. Preclinical data on GITR-agonist monoclonal
antibodies (mAbs) demonstrated antitumour activity in
vitro and in vivo enhancing CD8" and CD4" effector T-cell
activity and depleting tumour-infiltrating Tregs. Phase |
clinical trials reported a manageable safety profile of GITR
mAbs. However, monotherapy seems not to be effective,
whereas responses have been reported in combination
therapy, in particular adding PD-1 blockade. Several
clinical studies are ongoing and results are awaited to
further develop GITR-stimulating treatments.

INTRODUCTION

In the last decade, immunotherapies, mainly
through antiprogrammed cell death protein
1 (anti-PD-1) /programmed death-ligand 1
and anticytotoxic T-lymphocyte-associated
protein 4 (anti-CTLA-4) monoclonal anti-
bodies (mAbs), have revolutionised anti-
cancer treatment. However, there is still a
number of patients that do not respond
or acquire resistance to these treatments.
According to recent tumour classification
by their immune infiltration, some types of
cancer potentially respond to immune check-
point inhibitors (highly immune-infiltrated
or ‘hot tumour’), while in other tumours
available immunotherapies appear not to be
effective (non-immune-infiltrated or ‘cold
tumour’). Despite several efforts to combine
immunotherapy with other strategies like
chemotherapy, radiotherapy or other immu-
notherapy aiming to convert ‘cold’ to ‘hot’
tumour, there is an ‘urgent’ need to better
understand the immune landscape of the
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tumour microenvironment and to find alter-
native approaches to modulate immune func-
tion.

New promising approaches, in addition
to blocking co-inhibitory pathways, such
those CTLA-4 and PD-1 mediated, consist
of activating co-stimulatory pathways to
enhance antitumour immune responses.2
One such strategy includes the development
of agonist antibodies to target members of
the tumour necrosis factor receptor super-
family (TNFRSF) with key role on immune
activation and antitumour immune response,
like 4-1BB, OX40, CD27 and glucocorticoid-
induced TNFR-related gene (GITR) 2 Several
data demonstrate that GITR activation can
promote effector T-cells function and inhibit
regulatory T-cells (Treg) function.®*

In this review, we focus on the GITR/GITR
ligand (GITRL) axis.

BIOLOGICAL BACKGROUND

GITR and GITRL expression

GITR (TNFRSF18/CD357/AITR) is a type
1 transmembrane protein belonging to
the TNFRSF including OX40, CD27, CD40
and 4-1BB. Human GITR is constitutively
expressed at high level on CD4'CD25"
FoxP3" Tregs and at low levels on naive and
memory Tecells."” On activation of CD8"
and CD4" effector T-cells, GITR expression
increases rapidly on both Tregs and effector
T-cells, reaching the highest level on activated
Tregs.45

GITR is also expressed on natural killer
(NK) cells and at low levels on B cells, macro-
phages and dendritic cells, and can be upreg-
ulated by activation, especially on NK.**

GITRL is a type 2 transmembrane protein
and is also a member of the TNFRSF. It is
commonly identified as a trimer, although it
can also be present as a monomer or assemble
into others multimeric forms."

GITRL is predominantly expressed by
activated antigen-presenting cells, including
macrophages, B cells, dendritic cells and
endothelial cells.*® Notably, GITR and GITRL
expression is not restricted to haematopoietic
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Figure 1 CD4" T-cell GITR/GITRL activation. APCs,
antigen-presenting cells; GITR, glucocorticoid-induced
TNFR-related gene; GITRL, GITR ligand; IFN, interferon; IL,
interleukin; NF-xB, nuclear factor-«B; TCR, T-cell receptor;
Treg, regulatory T-cell.

cells. GITR expression has been described on epidermal
keratinocytes and osteoclast precursors and GITRL
expression on endothelial cells, especially after type I
interferon (IFN) exposure.6

Recently, another GITR endogenous ligand has been
described: SECTMIA, which is expressed both as a trans-
membrane protein and as a secreted protein. In mouse,
SECTMIA is able to activate both GITR and CD?7, but its
role is not yet defined."

GITR signalling and function
GITR, as other molecules of the TNFRSF, can act as a
co-stimulatory receptor, thus representing a potential
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Figure 2 CD8" Tcell GITR/GITRL activation. APCs,
antigen-presenting cells; GITR, glucocorticoid-induced
TNFR-related gene; GITRL, GITR ligand; IFN, interferon; IL,
interleukin; NF-kB, nuclear factor-«B; TCR, T-cell receptor;
Treg, regulatory T-cell.
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Figure 3 Treg GITR/GITRL activation. GITR,
glucocorticoid-induced TNFR-related gene; GITRL, GITR
ligand; TCR, T-cell receptor; Treg, regulatory T-cell.

target to enhance immunotherapy, in particular immune
checkpoint inhibitors.

All TNFR are characterised by their ability to bind TNF
ligand and activate the transcription nuclear factor-«B
(NF-xB) pathways via TNF receptor-associated factors
(TRAFs), a family of six proteins that are recruited to
further transduce signals within the cell. In particular,
the activation of GITR signalling pathways, mediated by
TRAF2/5-NF-kB, results in reduced T-cell apoptosis and
promotes T-cell survival, at least in part by upregulating
the expression of the BclxL prosurvival molecule.'”

In the periphery, after T-cell receptor (TCR) stimula-
tion, the GITRL or agonist antibodies on conventional
T-cells increases T-cell activation by inducing interleukin
(IL)-2 and IFN-y expression, enhancing CD25 expression
and stimulating cell proliferation (figure 1)."* Further-
more, GITR co-stimulation enhances CD8" T-cell cyto-
toxic function, and promotes survival of bone marrow
CD8" memory Tcell (figure 2)."

Although GITR is highly expressed in (CD4'CD25"
FoxP3") Treg cells, its function on these cells is more
complex (figure 3).%

In vitro and in vivo, GITR signalling, especially medi-
ated by agonist mAb, can inhibit Treg ability to suppress
effector T-cells, either by rendering effector T-cells less
susceptible to Treg immunosuppressive activities or by
directly inhibiting Tregs.'®'” This last mechanism could
be due to the transient loss of FoxP3 on Tregs, although
it has been observed only in Tregs from tumour-bearing
mice and not in Tregs from naive mice.'®

Interestingly, the GITR/GITRL axis effect on Treg
seems to be inhibitory in the short-term, while the long-
term over stimulation in vivo favours the expansion and
the activity of Treg in mice."’

In addition, GITR co-triggering of conventional T-cells
stimulates IL-10 production, favouring differentiation of
conventional CD4" T-cells into T-helper 2 and Treg cells,
these findings sustain the role of GITR in the balancing
between T-helper and Treg cells."

Differently, the role of GITR in NK remains to be deter-
mined because of contradictory data as to whether GITR
engagement increases® or decreases NK cell activity.”’

In summary, while commonly Treg cells antagonise
effector T-cells, thereby limiting antitumour activity, GITR
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activation on effector T-cells increase effector function by
limiting the sensitivity of these cells to Treg suppression.

MODULATION OF GITR IN PRECLINICAL TUMOUR MODELS
Antitumour activity of GITR mAb

In recent years, GITR has been largely studied as a phar-
macological target.

Co-activation of GITR by agonist mAbs can increase
immune response, inflammation and thereby antitumour
response.9 Differently, GITR inhibition, through antag-
onist mAbs could inhibit T-cell activation and immune
response.6 Consequently, GITR agonist mAbs has been
further developed as antitumour agents.

In tumour models, the antitumour activity of GITR
mAbs is mainly based on the ability to enhance CD8" and
CD4" effector T-cell activity and on the inhibition/deple-
tion of tumour-infiltrating Tregs.gl_24

Importantly, GITR is not expressed on the tumour
itself, but it is expressed on tumour-infiltrating lympho-
cytes (TILs) of several human cancer types including lung
cancers, renal cell carcinoma, head and neck carcinoma
and melanoma.”

The most widely used molecules to trigger GITR are
agonist antibodies like DTA-1 (a rat IgG2b)’ or recombi-
nant version of GITRL, like GITR-Fc.

The DTA-1 mAb has demonstrated in vivo antitumour
activity in multiple syngeneic mouse tumour models (eg,
melanoma,* cervical®) enhancing CD8" and CD4" T-cell
proliferation and cytokine induction. A recent study
reported that GITR agonists can also increase cellular
metabolism to support CD8" T=cell effector function and
p1roliferati0n.27

The intermediate role of CD8" and CD4" Tcells in tumour
rejections seems to be crucial.

Regressing tumour-bearing mice, treated with DTA-1,
were found infiltrated by a large number of CD4" and
CD8" T-cells, including those secreting IFN-y. However,
the treatment resulted in tumour regression only in
IFN-yintact mice but not IFN-y-deficient mice.”® * The
effect of DTA-1 was lost/decreased in the absence of
CDS8" T and NK cells.

Moreover, GITR engagement by DTA-1 promoted the
differentiation of IL-9-producing CDh4" T-helper cells,
thus enhancing immune-mediated tumour response.™

The additional crucial concomitant mechanism to inhibit
tumour growth, following DTA-1—GITR triggering is the
reduction of Treg activity and number. Such a reduction can
occur via Treg-specific and tumourspecific antibody-
dependent cell cytotoxicity (ADCC): GITR" Tregs specific
for tumour antigens, through the Fc domain of anti-GITR
mAbs, are recognised and killed by myeloid and NK cells
present in the tumour.”**

GITR has a higher expression in tumour infiltrating
Treg compared with peritumoral region in several tumour
like renal, colorectal and hepatocarcinoma.m_33

FoxP3" Treg reduced accumulation in tumours has
been also hypothesised as a result of reduced trafficking

or loss of FoxP3 expression in intratumour Treg and their
‘conversion’ into activated T-cells.**

However, Mahne ef al reported that mDTA-1 depletes
rather than converts intratumour Tregs. In tumour-
bearing mice, Treg depletion together with GITR trig-
gering were necessary to revert intratumour CD8" T-cell
exhaustion, thus improving antitumour efficacy.™

Vence et al confirmed that tumours with high expres-
sion of CD8" and CD4", after GITR mAb treatment, have
the better response, mainly lung cancer, renal cancer and
melanoma.”

Moreover, preliminary results showed a better suppres-
sion of tumour growth with intratumour compared with
intravenous injection. In fact, the intratumour injection
was able to induce a systemic antitumour immune reac-
tion, exerting its effect on injected and on un-injected
tumours.”

Combination of GITR mAb with immune-modulating therapies
GITR, like other co-stimulating molecules, has a key role
on T-cell activation and its activity can potentiate, in a
synergic effect, other anticancer therapies.

Combined treatment with anti PD-1 and GITR-agonist
mAbs was able to achieve long-term survival in mouse
model of ovarian and breast cancer, stimulating IFN-y
producing conventional T-cells and inhibiting immu-
nosuppressive Tregs and myeloid-derived suppressor
cells.**® The treatment combination manages to rescue
CD8" T-cell dysfunction and to induce proliferation of
precursor effector memory T-cell phenotype in a CD226-
dependent manner.”” Durable responses were also
reported adding cytotoxic chemotherapy or radiotherapy
to anti-PD-1/GITR mAbs.** %

Co-administration of GITR mAbs and anti-CTLA-4
resulted in an 80% tumour-response in CT26 (colon
carcinoma) and CMSbha (fibrosarcoma) mice tumour
models reducing intratumour Treg (via GITR) and stimu-
lating CD8" T-cells (via CTLA-4).”

Targeting GITR together with an OX40 agonist (OX40
ligand fusion protein), showed unexpectedly a syner-
gistic antitumour effect on CT26 tumour-bearing mice,
although the toxic profile of the combination could
represent a limit to clinical development.*’

The synergistic and complimentary antitumour effect
obtained combining GITR mAbs and vaccines was
reported"” in cervical cancer” and in melanoma.** More-
over, adding chemotherapy (gemcitabine) to the combi-
nation of vaccine and GITR mAb was able to decrease
tumour-suppressive environment and to induce a long-
lasting memory immune response.4g

In conclusion, in preclinical tumour models co-ac-
tivating GITR through agonist mAb was able to induce
antitumour responses. In particular DTA-1 mAb demon-
strated in vivo antitumour activity in multiple mouse
tumour models, enhancing CD8" and CD4" T-cell prolif-
eration/cytokine induction, and reducing Treg activity and
number, especially via ADCC. Moreover, GITR agonist
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mAbs best antitumour responses were achieved in combi-
nation with other immune-modulating therapies.

CLINICAL TRIALS WITH GITR MONOCLONAL ANTIBODIES
MEDI1873, a GITR-ligand/IgG1 agonist fusion protein,
was tested in a phase I trial reporting G3 treatment-
related adverse events (TRAEs) in the 22.5% of patients
and no G4-5 TRAEs (table 1). Pharmacodynamics anal-
ysis confirmed that MEDI1873 increased CD4'Ki67"
T-cells and induced a >25% decrease in GITR'/FoxP3"
T-cells in the evaluable patients. Stable disease (42.5%),
durable in the 17.5% of patients, was the best response
in this heavily pretreated population, supporting further
clinical trials.**

The phase I trial with AMG 228, an agonistic human
IgG1 GITR-mAD, reported a favourable safety profile, but
no evidence of T-cell activation or antitumour activity, at
least as monotherapy.*

BMS-986156, a fully human IgG GITR-mAb, has been
tested as monotherapy and in combination therapy with
nivolumab in a phase I/Ila trial. None of the 34 patients
in the monotherapy arm experienced a dose-limiting
toxicity (DLT) or grade G3-5 TRAEs, a patient out of
258 had a DLT in combination with nivolumab 240 mg.
No responses were seen with monotherapy, although an
objective response rate (ORR) of 9% (18 out of 200 evalu-
able patients) across all tumour types was achieved in the
combination arm.*’

No responses were reported in the phase I trial with
TRX518, a fully humanised Fc-dysfunctional aglycosylated
IgGlx GITR-mAb, in monotherapy. Pharmacodynamics
dataand subsequent in vitro and in vivo investigation high-
lighted the possible mechanisms of tumour resistance to anti-
GITR monotherapy and its possible overcome combining
anti PD-1/PD-L1 therapy. In a murine model, DTA-1 early
treatment delayed tumour growth, preventing intratu-
mour Treg accumulation and CD8"-not exhausted T-cell
upregulation. Differently, in advanced tumours microen-
vironment, high Treg expression increases dysfunctional
CDS8" T-cells that shows an exhausted profile and fail to
upregulate markers of activation and cytotoxicity. Thus,
adding PD-1 blockade was able to counteract CD8" T-cells
exhaustion, resulting in better tumour control.*” Prelim-
inary evaluations of tumour response among the first
patients enrolled in the phase I combinational trial were
encouraging (NCT02628574).

MK-4166, a humanised IgGl agonist GITR mAb, in
combination with pembrolizumab, an anti PD-1 mAb,
demonstrated a good safety profile and potential activity,
in particular among patients with melanoma naive to
treatments.

Others compounds under investigation (table 2)
are ASP1951 (PTZ-522),* a tetravalent monospecific
(TM) anti-GITR agonist antibody (NCT03799003);
INCAGNO01876, a humanised IgG1 mAb (NCT03126110)
and GWN323 (NCT02740270).

CONCLUSIONS AND FUTURE PERSPECTIVES
GITR can act as a co-stimulatory receptor, representing
a potential target to enhance immunotherapy efficacy.
Preclinical data confirmed GITR triggering could increase
CD8" and CD4" effector T-cell activity and reduce tumour-
infiltrating Tregs. GITR mAbs have a manageable safety
profile. However, they seem not to be effective as mono-
therapy, whether responses have been reported in phase
I/1I trials combination therapy with immune checkpoint
inhibitors. In particular, adding PD-1 blockade may have
a synergistic and complimentary antitumour effect, by
converting CD8" T-cells exhaustion.

Several clinical studies are ongoing, especially in combi-
nation with other treatments and results are awaited to
further develop GITR-stimulating treatment.
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