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Background: Dual specificity phosphatase 6 (DUSP6) is a member of a family of mitogen-activated protein kinase phosphatases
that dephosphorylates and inhibits activated ERK1/2. Dual specificity phosphatase 6 is dynamically regulated in developmental
and pathological conditions such as cancer.

Methods: Cancer cell lines were made deficient in DUSP6 by siRNA and shRNA silencing. Sensitivity to anti-EGFR and
chemotherapeutic agents was determined in viability and apoptosis assays, and in xenografts established in SCID mice. Cellular
effects of DUSP6 inactivation were analysed by proteomic methods, followed by analysis of markers of DNA damage response
(DDR) and cell cycle.

Results: We determined that depletion of DUSP6 reduced the viability of cancer cell lines and increased the cytotoxicity of EGFR
and other targeted inhibitors, and cytotoxic agents, in vitro and in vivo. Subsequent phosphoproteomic analysis indicated DUSP6
depletion significantly activated CHEK2 and p38, which function in the DDR pathway, and elevated levels of phosphorylated
H2AX, ATM, and CHEK2, for the first time identifying a role for DUSP6 in regulating DDR.

Conclusion: Our results provide a novel insight into the DUSP6 function in regulating genomic integrity and sensitivity to
chemotherapy in cancer.

Dual specificity phosphatase 6 (DUSP6, also known as MKP3 and
PYST1) belongs to the family of mitogen-activated protein
kinase (MAPK) phosphatases (Keyse, 2008; Furukawa, 2009).
Dual specificity phosphatase 6 negatively regulates mitogenic
signalling emanating from receptor tyrosine kinases (RTKs) such
as EGFR (Zhang et al, 2010) and FGFR (Li et al, 2007) and their
downstream effector RAS (Bluthgen et al, 2009), in part by
inducing the dephosphorylation and inactivation of ERK1/2
(Camps et al, 1998). Consistent with this function, DUSP6
depletion in chick embryos (Eblaghie et al, 2003) and gene
knockout in mice (Li et al, 2007) produced phenotypes indicative
of increased FGF signalling. Thus, one physiological action of
DUSP6 is to limit RTK signalling during development and in
cellular homoeostasis.

The DUSP6 function in cancer has proven more elusive, and
may vary dependent on the tumour type. Loss of DUSP6
expression due to promoter hypermethylation is associated with

the progression from the pancreatic intraepithelial neoplasia to
invasive ductal carcinoma, leading to the suggestion that DUSP6
functions in this cancer type as a tumour suppressor (Furukawa
et al, 2003). In contrast, elevated DUSP6 expression is associated
with poor prognosis in non-small cell lung cancer (Chen et al,
2007). However, DUSP6 is elevated in KRAS mutant colon cancer
without an effect on outcomes (De Roock et al, 2009), suggesting a
more complex function.

We previously reported the use of a network-based approach in
combination with siRNA library screening to identify genes that
modulate the sensitivity of cells to EGFR inhibitors that are widely
used in the clinic (Astsaturov et al, 2010). As a result of this screen,
we discovered that knockdown of DUSP6 potently sensitises A431
and other cancer cell lines to EGFR inhibitors. In subsequent
mechanistic analysis reported here, we have now established that
DUSP6 depletion has a broader activity in sensitising cells not
only to EGFR inhibitors but also to additional targeted agents and
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to DNA-damaging agents. Using a phosphoproteomic approach
to probe DUSP6 action, we unexpectedly find that DUSP6
depletion activates the ATM–CHEK2 pathway proteins and
increases expression of markers of DNA breaks. These results
suggest that DUSP6 may be a valuable biomarker and regulator
of responsiveness to a range of targeted and DNA cytotoxic
agents.

MATERIALS AND METHODS

Cell lines, compounds, and antibodies. The A431 cervical
adenocarcinoma and HEK-293T cell lines were obtained from
the American Type Culture Collection and maintained at the Fox
Chase Cancer Center Cell Culture Facility. The identity of A431
cell line was confirmed by genotyping. The FaDu, SCC25, and
Detroit cells were obtained from Dr TY Seiwert (University of
Chicago, Chicago, IL, USA). All cell lines were maintained in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented with
10% foetal bovine serum (FBS) and L-glutamine. Cetuximab and
erlotinib were purchased from the Fox Chase Cancer Center
pharmacy; CPT11 was from Sigma-Aldrich (St. Louis, MO, USA);
dasatinib was purchased from LC Labs (Woburn, MA, USA).
Antibodies to DUSP6 and pCHEK2 were purchased from R&D
Systems, Inc. (Minneapolis, MN, USA) against pH2AX, ATM, and
pATM from EMD Millipore Corporation (Billerica, MA, USA). All
other antibodies were obtained from Cell Signaling Technology
(Danvers, MA, USA).

Drug sensitivity assay. To test in vitro drug sensitivity, tumour
cells were plated in 96-well plates in 1% FBS/DMEM/L-glutamine
with 3000 cells per well and incubated overnight. Drugs were
added as 10� stocks in media, and cell viability was measured in
72 h with CellTiter Blue Viability Assay (Promega, Madison,
WI, USA).

Annexin V and TUNEL assays. Apoptosis was measured with the
Annexin V surface labelling, DNA fragmentation was assessed by
the TUNEL assay (both using assay kits from Guava Technologies,
Hayward, CA, USA). Cells were plated in 12-well plates, and the
next day they were treated with 1 mM erlotinib, or 50 nM CPT11, or
0.01 mg ml� 1 of cetuximab. After 72 h of incubation, positive cells
were counted using Guava flow cytometer.

Phosphoproteomic analysis. Relative levels of protein phosphor-
ylation in A431 cells stably expressing control, DUSP6, or
DUSP7 shRNA were assessed using the Human Phosphokinase
Proteome Profiler Array (ARY003, R&D Systems, Inc.), according
to the manufacturer’s protocol. The kit contains nitrocellulose
membranes spotted in duplicates with antibodies against 46
phosphosites of signalling molecules. Cells were grown in DMEM
supplemented with 1% FBS for 48 h, and then treated with 1 mM

erlotinib or vehicle alone for 3 h, and cell lysates were collected and
applied to the blocked membranes. The film images were scanned
and analysed with the ImageJ software (NIH, Bethesda, MD, USA).
The spot densities of proteins of shDUSP6 or shDUSP7 were
normalised to control cell line. For some proteins, their
phosphorylation status was validated by western blot.

Western blot. Cell lysates were prepared using M-PER mamma-
lian protein extraction reagent (Thermo Fisher Scientific Inc.,
Rockford, IL, USA). Protein concentration was determined using a
BSA kit (Pierce, Rockford, IL, USA). Proteins were resolved by
SDS–PAGE, transferred to PVDF, probed first with primary
antibodies, and then with IRDye secondary antibodies (LI-COR
Biosciences, Lincoln, NE, USA) suitable for the Odyssey imaging
system. Membranes were then scanned using an Odyssey scanner
(LI-COR Biosciences) and quantified.

Dual specificity phosphatase 6 silencing. Validated DUSP6_5
siRNA (Astsaturov et al, 2010; Hs_DUSP6_5, SI02627338; Qiagen
Inc., Valencia, CA, USA) was used to target DUSP6, and GL2
(targeting an insect luciferase, Thermo Fisher Scientific Inc.
(Waltham, MA, USA)) and PLK1 were correspondingly the
negative and positive controls for transfection, respectively.
Depletion of DUSP6 protein isoforms a and b has been validated
by western blot (Figure 1A) and quantitative PCR (Figure 1D).
Cells were combined with HiPerFect transfection reagent (Qiagen
Inc.) and siRNAs in 1% FBS-DMEM and after 24 h followed by
treatment with drugs. Sensitivity to drugs and effects of DUSP6
knockdown on DNA damage were assessed by the CellTiter Blue
Viability Assay, immunofluorescence, and western blot. A431 were
puro-
mycin selected following transduction with a replication-deficient
lentiviral vector to express two independent shRNA sequences
targeting DUSP6 (shDUSP6_1 and shDUPS6_2), shDUSP7, or
non-silencing control shRNA (Thermo Fisher Scientific Inc.,
Lafayette, CO, USA). Two unique shRNAs targeting DUSP6
mRNA were used: DUSP6_1 50-(AAACTGTGGTGTCTTGGTAC
AT)-30 and DUSP6_2 50-(CCGGCATCAAGTACATCTTGAA)-30.

Plasmid transfection. HEK-293T cells were seeded in six-well
plates to 50% confluency and in 24 h transfected with
plasmids mixed with lipofectamine (Life Technologies, Grand
Island, NY, USA). In all experiments, equal amounts of empty
vector DNA were added to controls. Plasmid pBabe-Puro-
MEK-DD (Boehm et al, 2007) was obtained from Addgene
(Addgene plasmid 15268, Cambridge, MA, USA). Dual
specificity phosphatase 6 full-length cDNA was cloned into
pLEX-HA-MYC lentiviral vector (Thermo Fisher Scientific Inc.,
Lafayette, CO, USA). Catalytically inactive DUSP6-C293S
mutant was made using site-directed mutagenesis (Stratagene, La
Jolla, CA, USA).

Immunofluorescence microscopy. A431 cells were plated on
glass slides in DMEM supplemented with 1% FBS. After 24–48 h of
growth, cells were treated with 100 nM CPT11 for 3 h or 5mM

erlotinib overnight. After that, cells were fixed, washed, permea-
bilised using 1% Triton-X100, blocked in 3% BSA and probed first
with a primary antibody, and then with a secondary antibody
conjugated with AlexaFluor-568 (Invitrogen, Grand Island, NY,
USA). Images were acquired on a Nikon C1 Spectral confocal
microscope (Nikon, Melville, NY, USA). Quantification of pH2AX,
pATM, and p53BP1 was done by counting cells with 410 nuclear
foci as positive in randomly chosen fields.

Cell cycle. To study cell cycle progression, cells were synchronised
with either thymidine or nocodazole. Double thymidine block
synchronises cells at the G1/S transition. Cells plated in six-well
plates were incubated with 2 mM thymidine for 18 h. Then the
thymidine was washed out and cells were refed with fresh medium
for 10 h before adding thymidine. After the second 16-h incubation
with thymidine, cells were collected at the indicated time points
after release from the thymidine block. To synchronise cells in the
G2/M transition, cells were treated with 100 nM nocodazole for
16 h, released from the block, and collected at the indicated time
points. Cells were fixed and stained with propidium iodide, and the
DNA content was analysed using the FACS flow cytometry. For
investigating the effects of DNA-damaging drugs on the cell cycle
progression, we incubated cells with 100 nM CPT11, a compound
known to block cells at the S phase. After 20 h incubation, the drug
was washed out and progression through the cell cycle was
monitored for 24 h.

Mouse xenografts. Male CB.17/SCID mice aged 6–8 weeks were
obtained from the Fox Chase Cancer Center breeding colony.
All experiments were performed according to protocols
approved by the institutional animal committee. Mice were
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injected subcutaneously to the flanks with three million of A431
cells stably expressing shRNA-DUSP6 or non-silencing control
shRNA. When tumours became palpable and reached
80–100 mm3, mice were allocated randomly into two groups:
10 mice per group; one receiving cetuximab 0.75 mg kg� 1 in
0.8% saline, whereas another treated with saline alone. The mice
were treated intraperitoneally twice a week for 3 weeks. Then, the
treatment was stopped and the tumour growth was monitored
until the tumours exceeded a volume of 2000 mm3 or
became ulcerated, or animals demonstrated distress or weight
loss 410% as per the local IACUC guidelines; after that the mice
were euthanised. Tumour volume was calculated using the
formula: tumour volume (mm3)¼ (smallest diameter2� largest
diameter)/2. Drug efficacy was expressed as the percentage
tumour growth inhibition (%TGI), calculated using the
equation 100� (T/C� 100), where T is the mean tumour volume

of the treated tumours and C is the mean volume in the control
group at the time of killing of the first mouse in the control
group. Statistical analysis was performed for the log-transformed
tumour volumes.

Quantitative RT–PCR. For evaluation of the target genes’
knockdown, cells were transfected in six-well plates and total
RNA was extracted using RNeasy Minikit (Qiagen Inc.,) 48–72 h
after transfection. Detection of isoform a and b was performed with
standardised assay primers and probes (Hs00169257_m1 for
isoform a and Hs00737962_m1 for isoform b; Ambion, Inc.,
Austin, TX, USA). Quantitative RT–PCR reactions were performed
using TaqMan probes and primers designed by the manufacturer,
using an ABI PRISM 7700 detection system (Applied Biosystems,
Foster City, CA, USA). The results were analysed using the
comparative Ct method to establish relative expression curves.
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Figure 1. DUSP6 silencing in vitro and in vivo sensitises to EGFR inhibitors. (A) Loss of DUSP6 protein expression in shRNA-modified A431 cells as
determined by western blot. (B) Schema of DUSP6 mRNA and protein. Numbers are amino-acid positions, PCR primers are indicated by arrows;
thick line shows siRNA DUSP6_5 targeting 30-UTR, the phosphatase domain is shaded; C293 indicates catalytic cysteine-293. (C) Silencing of
DUSP6 and DUSP7 mRNA was confirmed by qPCR in A431 cells stably expressing the indicated shRNA. (D) Silencing DUSP6 with validated siRNA
depleted both isoforms of DUSP6 using isoform-specific PCR primers. Shown is percent of remaining mRNA relative to non-targeting GL2 control.
(E, F) Silencing of DUSP6 increased the cytotoxicity of EGFR inhibitors, erlotinib (E) and cetuximab (F) in A431 cells. Results are shown as means
of four independent experiments±s.e.m., shDUSP6 vs non-silencing shRNA control at the corresponding drug concentrations; *P-values (1)
shDUSP6_1; and (2) shDUSP6_2 vs non-silencing shRNA control are o0.01, the Wilcoxon’s test. Results with shDUSP7 are not statistically
significant (P¼0.0976). (G) DUSP6 depletion with shRNA enhances apoptosis of A431 cells treated with 1mM erlotinib for 72 h, as measured by
the Annexin V staining. Shown are means of four independent experiments±s.e.m.; *Po0.05. (H) DUSP6 depletion enhances erlotinib-induced
apoptosis in FaDu cells. Cells were made deficient in DUSP6 by siRNA transfection and, 24 later, were treated with 2mM erlotinib, 10mg/ml
cetuximab, 25 nM CPT11 or vehicle for 48 hours. Markers of apoptosis, cleavage of poly-ADP-ribose polymerase (PARP) and caspase 3 (CASP3),
were determined by Western blot (shown) in two independent experiments.
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RESULTS

Dual specificity phosphatase 6 depletion sensitises A431 cells to
EGFR inhibitors in vitro and in vivo. Catalytically active DUSP6
(isoform a) is the predominant isoform of DUSP6 protein
expressed in A431 cells (Figure 1A and B). To investigate the
mechanism by which DUSP6 affected drug response, we employed
lentiviral shRNA vectors for stable depletion of the DUSP6 mRNA
in A431 cells. We confirmed depletion by both western blot
analysis and quantitative RT–PCR (Figure 1A–C and
Supplementary Figure S1A and B). Parallel depletion of the
structurally similar DUSP7 phosphatase (Dowd et al, 1998) and
use of a non-silencing shRNA served as controls (Figure 1A–C).
Consistent with our previously reported siRNA depletion studies
(Astsaturov et al, 2010), shRNA depletion of DUSP6 with two
independent RNA-targeting sequences significantly increased
sensitivity of the A431 cells to the EGFR inhibitor erlotinib,
whereas DUSP7 depletion did not (Figure 1E, Supplementary
Figure S1C). Similar results were observed with sensitisation to the
EGFR inhibitor cetuximab (Figure 1F, Supplementary Figure S1D).

We determined that increased sensitivity to erlotinib of DUSP6-
depleted cells was associated with increased apoptosis, reflected by
increased Annexin V (Figure 1G) and elevated poly-ADP-ribose
polymerase and caspase 3 cleavage, and staining (Figure 1H).

Importantly, DUSP6 depletion profoundly increased the
sensitivity of A431 cells to the inhibition of the EGFR pathway
in vivo, based on the analysis of subcutaneously implanted A431
xenografts containing integrated shDUSP6 or control shRNA
(Figure 2A, Supplementary Figure S2A). Both control and DUSP6-
deficient cells formed palpable tumours at 8–10 days after
implantation, although shDUSP6 A431 tumours grew more slowly
compared with controls (Figure 2A, Supplementary Figure S2A).
Treatment of control-depleted tumours slightly delayed growth,
and growth resumed after cessation of cetuximab treatment. By
contrast, cetuximab treatment suppressed growth of shDUSP6
tumours by 83% vs controls (TGI 83%, Po0.0001), with this effect
lasting at least 3 weeks after the last dose of cetuximab (Figure 2A).

Other studies (Zhang et al, 2010) have noted functional
interactions between DUSP6 and EGFR, with EGF treatment
inducing DUSP6 mRNA expression, erlotinib treatment depressing
DUSP6 mRNA expression in some cell types, and DUSP6
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Figure 2. Dual specificity phosphatase 6 regulates growth and sensitivity to multiple cytotoxic agents. (A) Silencing of DUSP6 sensitises A431
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depletion increasing the phosphorylation of ERK1/2 (Camps et al,
1998). We similarly found that EGF positively and erlotinib
negatively regulated DUSP6 mRNA, although effects were much
less pronounced on the protein level (Supplementary Figure
S2B–D). Notably, combined application of erlotinib and siRNA to
DUSP6 reduced DUSP6 protein levels more than either treatment
alone (Supplementary Figure S1A).

However, in contrast to some previous studies, although DUSP6
was initially identified in our screen based on its role in
sensitisation to EGFR inhibitors, our further investigation
indicated that depletion of DUSP6 also modestly or significantly
reduced the viability of multiple cell lines even without drug
treatment (Figure 2B and C). Detailed analysis of A431 carcinoma
cells stably depleted of DUSP6 indicated significantly reduced
growth both in vitro (Figure 2C) and in vivo (Figure 2A,
Supplementary Figure S2A), implying a role for this phosphatase
in support of proliferation. This result was surprising, as the
increased phosphorylation of ERK1/2 predicted by other studies in
this context would be associated with increased proliferation.
Indeed, our direct assessment of downstream effectors of EGFR
including ERK and AKT showed relatively little effect of depleting
DUSP6 in increasing the activity of these proteins (Figure 3 and
Supplementary Figure S3). Hence, our data implied that other
DUSPs or cellular phosphatases had redundant function for this

purpose, whereas DUSP6 depletion might have other critical
biological effects. We hence investigated whether depletion of
DUSP6 might more uniquely interact with alternative cell
signalling pathways.

Dual specificity phosphatase 6 depletion sensitises A431 cells
to multiple cytotoxic agents. Next, we examined whether the
observed drug sensitisation effect of DUSPP6 depletion was
selective to inhibitors of EGFR. We tested sensitivity of shRNA-
transduced A431 cells to dasatinib, a multikinase inhibitor (495%
in vitro kinase inhibition of the SRC family, ABL, ACK1, KIT, EPH
family, and PDGFR (Anastassiadis et al, 2011)), PHA-680632, an
Aurora kinase inhibitor (Soncini et al, 2006), and the DNA-
damaging agent CPT11, a topoisomerase 1 inhibitor. ShDUSP6
depletion sensitised A431 cells to each of these agents, indicating
lack of specificity for EGFR (Figure 2D). These results again
implied a more general function for DUSP6 in cell growth and
survival.

Dual specificity phosphatase 6 depletion activates signalling
proteins in the DNA damage response (DDR) pathway. To
assess the alteration of signalling pathways in drug-sensitised
DUSP6-depleted cells in an unbiased fashion, we measured levels
of phosphoproteins by solid-phase antibody array. We compared
protein phosphorylation in cells made deficient of DUSP6 or
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DUSP7 with specific shRNA, or with a non-targeting control
shRNA, in cells grown in 1% FBS treated for 3 h with vehicle
or 1 mM erlotinib (Figure 3A). Following quantification of data,
we observed significant increase in phosphorylation relative to
control-depleted cells for a limited number of proteins (Figure 3A)
in shDUSP6 cells relative to shDUSP7 or control shRNA. Two
proteins, the AMP-activated protein kinase AMPKa1 and the
MAPK kinases MEK1/2, were elevated under basal conditions;
however, as these changes were similar in both shDUSP6 and
shDUSP7 cells, we excluded these proteins from further con-
sideration as relevant to the DUSP6-specific phenotypes affecting
cell viability and drug sensitisation. Notably, we again did not
observe very significant changes in the phosphorylation status of
the EGFR downstream signalling effectors ERK1/2 and AKT
(Figure 3A), again suggesting that additional phosphatases
compensate for DUSP6 deficiency, and that DUSP6 depletion
exerts at least some important biological effects outside of the
canonical EGFR pathway.

As candidates for mediators of such effects, we observed that
depletion of drug-sensitising DUSP6 but not DUSP7 increased
levels of phosphorylated MAPK14/p38 kinase (T180/Y182), and
phosphorylated CHEK2 (T68), both in the presence or absence of
erlotinib treatment, suggesting they might be relevant to both the
sensitisation and the effect on basal cell viability (Figure 3A). These
array results were subsequently further confirmed by direct
western blotting (Figure 3B), which showed consistently elevated
levels of phosphorylation of p38 and CHEK2 in DUSP6-silenced
but not in control or DUSP7-depleted cells. Increased phospho-
p38 (Bulavin et al, 2001; Reinhardt et al, 2007) and phospho-
CHEK2 (Reinhardt and Yaffe, 2009) are sensitive biomarkers of
cellular DDR (Figure 4A), and are frequently activated in cancer
cells. However, no previous study has identified a role for DUSP6
in regulating activation of the DNA repair machinery.

To more broadly explore whether DUSP6 silencing intrinsically
activates signalling proteins involved in DDR, and at what level in
the pathway DUSP6 might be active, we investigated additional
DDR pathway effectors in multiple cancer cell lines (Figures 3 and 4).
ATM activation in response to DNA damage (Matsuoka et al,
2007) mediates DNA repair, apoptosis, and cell cycle regulation
through phosphorylation of a variety of downstream targets
including CHEK2, TP53, 53BP1, and H2AX (Rogakou et al,
1998; Kastan and Lim, 2000; Shiloh, 2006). Silencing of DUSP6
increased the activation-associated S1981 phosphorylation of ATM
(Figure 3B) and the S139 phosphorylation of histone H2AX
(Supplementary Figure S4) even in the absence of drug treatment,
thus suggesting an intrinsic effect of DUSP6 on the DNA repair
machinery.

Activation of the DDR pathway in the nuclei is manifested by
formation of foci-containing activated DDR proteins (Polo and
Jackson, 2011). To address whether DNA repair process is
influenced by DUSP6, we assessed DNA breaks by TUNEL assay
in cancer cells following siRNA knockdown of DUSP6 and found
constitutively higher number of TUNEL-positive cells following
DUSP6 depletion (Figure 4B), both in vehicle or CPT11-treated
cells, suggesting this response to loss of DUSP6 activity is
independent of any exogenous DNA-damaging stimulus. In
shDUSP6-depleted A431 cells (Figure 4C and D), we determined
an increased formation of nuclear foci containing phosphorylated
H2AX, ATM, and 53BP1 compared with controls. These foci were
further enhanced by treatment of DUSP6-depleted A431 cells with
CPT11 and erlotinib (Figure 4C and D). In accord with decreased
viability of multiple carcinoma cell lines following DUSP6 siRNA
transfection (Figure 2B and C), we found consistent upregulation
of pH2AX and pATM foci in multiple DUSP6-depleted cancer cell
lines, including A431, FaDu, Detroit, and SCC25 (Figure 4E and F),
under basal conditions, or following treatment with CPT11 or
erlotinib. Furthermore, we used western blot as an alternative

method to assess DDR pathway activity (Supplementary Figure S4).
Here, silencing of DUSP6 with siRNA in FaDu cells caused a
significant increase in pH2AX under basal conditions as well as
following treatment with erlotinib or CPT11. DUSP6 silencing also
accentuated CHEK2 phosphorylation, although these changes were
less pronounced.

Dual specificity phosphatase 6 depletion induces cell cycle
checkpoint delays and increases the intrinsic rate of cellular
DNA damage. Persistent presence of DNA breaks typically triggers
G1/S checkpoint activation mediated by the ATM/CHEK2 pathway
(Zhao et al, 2002) and delays DNA replication in the S phase (Falck
et al, 2001). If so, the observed slow growth of xenografts and cell
lines in vitro in which DUSP6 was stably depleted with shRNA
(Figure 2A and B) might reflect a slowed cell cycle, due to extensive
triggering of DNA damage checkpoints. To evaluate the cell cycle-
specific effects of DUSP6 loss, we synchronised shRNA-modified
A431 cells in the S phase (with thymidine), and then tracked recovery
and progression. Following synchronisation in the S phase with
thymidine, DUSP6-depleted cells showed a marked delay in the
S phase up to 9 h after transfer to thymidine-free full growth medium
(Figure 5A and B). We observed similar, although less pronounced,
delayed progression from the G1 to the S phase in DUSP6-depleted
cells (Supplementary Figure S5) using alternative block-release
synchronisation techniques (in the M phase with nocodazole,
Supplementary Figure S5A, or in the S phase with CPT11,
Supplementary Figure S5B).

Dual specificity phosphatase 6 activity in DDR in the context of
MEK to ERK signalling. Given reports of important ERK1/2
functional interactions with DUSP6 (Camps et al, 1998), we
considered the possibility that enhanced ERK1/2 activation might
influence DUSP6 signalling in the context of DDR. To test this
idea, we created a catalytically inactive DUSP6 mutant by replacing
the critical cysteine-293 with serine (C293S mutant; Levinthal and
Defranco, 2005). For this, we co-transfected HEK-293T cells with
plasmids expressing wild-type (WT) or catalytically inactive
DUSP6 constructs and a constitutively active form of the ERK1/2
activator MEK-DD (Boehm et al, 2007; Figure 5C and D).
Expression of the C293S mutant of DUSP6 independently elevated
the basal level of pATM foci-positive cells, similar to the use of a
DUSP6 shRNA, implying a dominant-negative activity. By
contrast, exogenous expression of WT DUSP6 reduced basal levels
of pATM foci by B50%. In this system, MEK-DD independently
caused an increase in the number of ATM-positive foci,
accompanied by an induction of ERK phosphorylation
(Figure 5C and D). In combination with MEK-DD, the WT
DUSP6 eliminated the MEK-DD increase of ATM foci (Figure 5C)
and suppressed ERK phosphorylation by 410-fold (Figure 5D). In
contrast, the C293S mutant of DUSP6 combined with MEK-DD to
further increase the number of cells with ATM foci (Figure 5C).

DISCUSSION

In this study, we found that constitutive or transient ablation of
DUSP6 decreased viability and sensitised cells to multiple targeted
and untargeted drugs (Figures 1 and 2), increased activity of ATM-
CHEK2 DDR signalling (Figures 3 and 4), delayed cell cycle
progression through S phase (Figure 5, Supplementary Figure S5),
and collaborated with MEK1 activation to promote DDR
activation. Our data suggest that fine tuning of ERK signalling
via DUSP6 may contribute to the regulation of cellular responses to
DNA damage induced by chemotherapy in a mechanism involving
DUSP6-dependent negative regulation of ATM and CHEK2.

Dual specificity phosphatase 6 has been previously identified as
a pro-survival phosphatase (MacKeigan et al, 2005). The expres-
sion of DUSP6 is transcriptionally regulated by EGFR activity, and
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DUSP6 is overexpressed in many cancers harbouring activating
mutations of the RAS or BRAF genes (Yun et al, 2009;
Degl0Innocenti et al, 2013). Suggestively, DUSP6 overexpression
has been associated with cisplatin resistance in non-small cell lung
carcinoma (Chen et al, 2007) and tumour growth promotion in
glioblastoma (Messina et al, 2011). However, the effects of DUSP6
may be very individually variable depending on the context of
associated genomic alterations in a particular cancer type. Given
the data presented here, loss of DUSP6 may provide a novel
mechanism by which losses of DUSP6 during the pancreatic cancer
progression may contribute to accumulation of DNA breaks and
lead to genomic instability.

As a general principle, DDR triggers a delay in cell cycle
progression to permit DNA repair, or if the damage is too
extensive, increased cell death (Reinhardt and Yaffe, 2009). Our
results suggest there is a signalling interplay between ATM-
CHEK2, ERK, and the DUSP6 phosphatase. One possibility might
be that an unopposed activity of ERK in the context of DUSP6
deficiency may directly activate the ATM-CHEK2 signalling.
Indeed, ERK activity has been shown to regulate cell fate decision
following DNA-damaging insults such as ionising radiation or
chemotherapy, and forced activation of ERK via MEK1 (Q56P
mutant) overexpression sensitised cells to DNA damage-induced
apoptosis (Tang et al, 2002; Emery et al, 2009). A recent
demonstration of direct interaction between CHEK2 and ERK1/2
in diffuse large B-cell lymphomas (Dai et al, 2011) provides
evidence, however, that DUSP6 may be involved in dynamic
complexes involving new partners in specific cellular contexts.
For instance, direct interaction between ATM, pTP53, and pERK
(Heo et al, 2012) exists in a new ternary complex following DNA
damage. Along these lines, recent work also demonstrated
existence of a ternary complex between DUSP6, ERK2, and

p38alpha in which the phosphatase activity of DUSP6 towards
p38alpha is allosterically regulated by ERK2 (Zhang et al, 2011).
We believe that a simple linear model of RTK-MAPK-DUSP6
regulation may be deficient in not reflecting the abundance of
collateral inputs to this conserved pathway (Friedman and
Perrimon, 2006). These findings cumulatively suggest that
interactions of DUSP6 and its substrates are dynamic and could
engage new partners in specific biological processes, or during
stress response. Our report provides evidence for the idea that
DUSP6 may be a novel and important regulator of cellular
responses to DNA damage, with a novel mechanistic explanation
for the diverse biological activity of DUSP6 in regulating cancer
cell susceptibility to apoptosis and chemotherapy resistance.
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