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ABSTRACT
Background  Alzheimer’s disease (AD) and age-related 
macular degeneration (AMD) share similar pathological 
features, suggesting common genetic aetiologies between 
the two. Investigating gene associations between AD 
and AMD may provide useful insights into the underlying 
pathogenesis and inform integrated prevention and 
treatment for both diseases.
Methods  A stratified quantile–quantile (QQ) plot was 
constructed to detect the pleiotropy among AD and AMD 
based on genome-wide association studies data from 
17 008 patients with AD and 30 178 patients with AMD. 
A Bayesian conditional false discovery rate-based (cFDR) 
method was used to identify pleiotropic genes. UK Biobank 
was used to verify the pleiotropy analysis. Biological 
network and enrichment analysis were conducted to 
explain the biological reason for pleiotropy phenomena. A 
diagnostic test based on gene expression data was used 
to predict biomarkers for AD and AMD based on pleiotropic 
genes and their regulators.
Results  Significant pleiotropy was found between AD and 
AMD (significant leftward shift on QQ plots). APOC1 and 
APOE were identified as pleiotropic genes for AD–AMD 
(cFDR <0.01). Network analysis revealed that APOC1 
and APOE occupied borderline positions on the gene co-
expression networks. Both APOC1 and APOE genes were 
enriched on the herpes simplex virus 1 infection pathway. 
Further, machine learning-based diagnostic tests identified 
that APOC1, APOE (areas under the curve (AUCs) >0.65) 
and their upstream regulators, especially ZNF131, ADNP2 
and HINFP, could be potential biomarkers for both AD and 
AMD (AUCs >0.8).
Conclusion  In this study, we confirmed the genetic 
pleiotropy between AD and AMD and identified APOC1 
and APOE as pleiotropic genes. Further, the integration of 
multiomics data identified ZNF131, ADNP2 and HINFP as 
novel diagnostic biomarkers for AD and AMD.

INTRODUCTION
Alzheimer’s disease (AD) and age-related 
macular degeneration (AMD) are both 
common progressive neurodegenerative 
diseases associated with significant comor-
bidity. Both AD and AMD are common 
comorbidities in chronic diseases and 

represent major global public health chal-
lenges.1 2 The clinical practice of AD has 
established several biomarkers, including 
MRI, Fluorodeoxyglucose-Positron Emission 
Tomography (FDG-PET), tau PET, cerebro-
spinal fluid measures of amyloid and tau, 
and plasma biomarkers, which are currently 
undergoing approval processes.3 Some AMD 
biomarkers have been reported, such as 
complement factor H, age-related maculop-
athy susceptibility 2, high-density lipoprotein 
cholesterol and vascular endothelial growth 
factor.4

Past epidemiological studies have shown a 
substantial association between AD and AMD 
at the phenotype level.5 In 1999, a study of 
1438 patients diagnosed with both AD and 
AMD demonstrated that these two diseases 
may have common pathogenesis.5 A meta-
analysis consisting of 11 840 patients found 
that AD and AMD had a significant asso-
ciation.6 Consistently with this, our recent 
study, based on 12 364 patients with eye and 
dementia tests from the UK Biobank, demon-
strated that patients with existing AMD have 
an increased risk of dementia.7

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Alzheimer’s disease (AD) and age-related macular 
degeneration (AMD) exhibit overlapping pathologi-
cal characteristics and are recognised as comorbid 
conditions in clinical practice.

WHAT THIS STUDY ADDS
	⇒ This study confirmed the genetic pleiotropy between 
AD and AMD.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ The findings from this study may promote the co-
diagnosis/treatment for AD and AMD.
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Accumulating evidence shows that AD and AMD share 
similar pathological mechanisms.8 For instance, ageing 
is a key risk factor for AD and AMD, and hypercholes-
terolaemia, hypertension, obesity, arteriosclerosis and 
smoking are common risk factors for them; deposi-
tion of amyloid beta plaques, other extracellular depo-
sition, increased oxidative stress, and apolipoprotein 
and complement activation pathways have also all been 
implicated in the pathogenesis of both.8–11 However, the 
nature of the relationship linking AD and AMD remains 
contentious.5 12 13 Investigating gene associations between 
AD and AMD could provide mechanistic insights into 
the pathogenesis underlying these two diseases and their 
potential shared pathogenesis, promoting integrated 
prevention and treatment for AD and AMD. Due to the 
complexity of accurately diagnosing AD, the diagnosis of 
AMD could potentially enhance AD diagnosis, provided 
their pleiotropy is confirmed. Additionally, the identifica-
tion of shared biomarkers for both AD and AMD would 
hold significant importance. Since 2005, genome-wide 
association studies (GWAS) have been widely used in 
the biomedical sphere to identify relationships between 
genetic variations—usually single nucleotide polymor-
phisms (SNPs). Logue et al6 and Tan et al14 independently 
explored the shared genetic aetiology between AD and 
AMD, and both teams suggested the genetic associations 
between these two diseases were significant. However, 
in their studies, further characterisation of the shared 
genetic mechanisms has been restricted by the relatively 
limited genetic information used for AMD and the lack of 
other validation data to independently verify their results.

To date, despite the substantial amount of data 
pointing towards the shared genetic aetiology of these 
two diseases, no previous studies have specifically anal-
ysed the pleiotropic genes implicated in AMD and AD on 
a biological network level. The proliferation of omics and 
complex network theory may herald a novel approach to 

investigating these associations. In the present study, we 
aimed to investigate the shared genetic aetiology between 
AD and AMD across genetic network, pathway and clin-
ical levels. We used multiomics data to investigate the 
pleiotropy between AD and AMD. We further explored 
the pleiotropic genes on the genetic networks, pathways 
and tissues to identify specific common topological and 
biological features and potential diagnostic biomarkers 
for both diseases.

METHODS
Data collection
We downloaded genetic data from GWAS summary 
statistics, RNA sequencing (RNA-seq) and microarray to 
conduct pleiotropy analysis and biomarker identification 
(download date: January 2022). A detailed description of 
included datasets was presented in table 1.

GWAS data
The AD dataset, downloaded from the GRASP database,15 
consisted of 17 008 AD cases with approximately 7 million 
SNPs. This dataset was derived from a meta-analysis by 
Lambert et al.16

We downloaded two AMD datasets from two separate 
meta-analyses: (1) a discovery dataset containing 16 144 
patients of GWAS data integrated from 26 studies17; (2) 
a replication AMD dataset including 14 034 patients from 
11 studies for verification.18

The association of pleiotropic genes derived from the 
GWAS with phenotypes was validated in the UK Biobank.19 
We included 2943 patients with AD and 7308 patients 
with AMD (86 with both AD and AMD) in the analysis.

The quality control and overall genetic statistics of these 
datasets have been described in detail elsewhere.16–19 
In order to expand the collection of AD and AMD-
related SNPs, a nominal p value threshold of 1×10–05 was 

Table 1  Descriptive characteristics of datasets included in this study

Disease Sample size (cases/controls)
Mean age 
(years) Gender (% female) Source Phase Reference

AD 17 008/37 154 63.6–82.1 57.6–74.5 GWAS Discovery Lambert et al16

AMD 16 144/17 832 73.33 58 GWAS Discovery Fritsche et al17

AMD 14 034/91 214 47.5–77.2 NA GWAS Replication Winkler et al18

AD 2943/502 854 56.5 54.4 GWAS Verification UK Biobank19

AMD 7308/174 957 57.2 54.4 GWAS Verification UK Biobank19

AD–AMD 86/174 957 57.2 54.4 GWAS Verification UK Biobank19

Healthy 838 NA 32.9 RNA-seq Verification GTEx25

AD 26/62 93.1 56.3 Microarray Discovery Hokama et al21

AD 97/98 85.02 48 Microarray Replication Piras et al22

AMD 8/3 76.6 37.5 Microarray Discovery Strunnikova et al23

AMD 5/5 84 80 RNA-seq Replication Wang et al24

AD, Alzheimer's disease; AMD, age-related macular degeneration; GTEx, Genotype-Tissue Expression; GWAS, genome-wide association 
studies; NA, not available; RNA-seq, RNA sequencing.
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considered to be of statistical significance for relation-
ships between SNPs and diseases.

Gene expression data
Gene expression datasets for the biomarker selection 
from the pleiotropic genes were downloaded from the 
GEO database.20 We included discovery datasets and 
replication datasets for AD and AMD separately. The 
AD discovery dataset (GSE36980) comprised expres-
sion data from the frontal cortex, temporal cortex and 
hippocampus from 26 patients with AD and 62 healthy 
controls.21 The AD replication dataset (GSE132903) 
included expression data of the middle temporal gyrus 
from 97 patients with AD and 98 healthy controls.22

The AMD discovery dataset (GSE1719) consisted of 36 
samples (comprising 18 patients and 18 controls) from 
8 patients with AMD and 3 controls,23 and the replica-
tion dataset (GSE99287) included 26 early/late AMD 
samples and 19 normal samples of the retina and retinal 
pigment epithelium from 5 patients with AMD and 5 
controls.24

The Genotype-Tissue Expression database provided the 
gene expression data from RNA-seq for 54 non-diseased 
tissue sites of 838 volunteers,25 to observe the expression 
situation of pleiotropic genes in different tissues and cells.

Pleiotropy analysis
A stratified quantile–quantile (QQ) plot with −log10(p 
value-exposure) as the x-axis and −log10(p value-outcome) 
as the y-axis was constructed to detect the pleiotropy 
between AD|AMD (AD to AMD) and AMD|AD (AMD to 
AD). Different p value cut-off thresholds for exposure 
were set to delineate individual curves. The assessment 
of pleiotropy was based on the level of the leftward shift 
from the null lines expected.

In 2015, a Bayesian conditional false discovery rate-
based (cFDR) method was created to detect the pleiot-
ropy between two diseases,26–28 which has since been 
applied successfully in the discovery of a series of pleio-
tropic SNPs.29–32 The false discovery rate (FDR) is a statis-
tical approach for the correction in multiple hypothesis 
testing.33 34 In pleiotropy analysis, FDR is used to reflect 
the possibility of non-pleiotropy for an SNP.

	﻿‍
FDR

(
pi
)

= Pr
(

H
(
i
)

o |Pi ≤ pi

)

‍�

Where the Pi is the random variable of p value for a trait 
i among all SNPs, and pi is the instance of Pi to a specific 
SNP. H0

(i) represents the null hypothesis that the specific 
SNP is not associated with trait i. Detection of pleiotropy 

Figure 1  (A) Conditional QQ plot for AD|AMD discovery. The x-axis is −log10 (p value of AD SNP), and the y-axis is −log10 (p 
value of AMD SNP). Different curves represent different cut-offs for the AMD p value. A significant left deviation was found 
among all the curves, indicating obvious pleiotropy for AD|AMD. (B) Conditional QQ plot for AMD discovery|AD. (C) Conditional 
QQ plot for AD|AMD replication. (D) Conditional QQ plot for AMD replication|AD. AD, Alzheimer's disease; AMD, age-related 
macular degeneration; QQ, quantile–quantile; SNP, single nucleotide polymorphism.
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between two diseases can be enhanced with cFDR, an 
extension of FDR.

	﻿‍
cFDR

(
pi|pj

)
= Pr

(
H
(
i
)

o |Pi ≤ pi, Pj ≤ pj

)

‍�

Where pi is the association of a specific SNP with the 
principal disease, and pj is with the conditional disease.

To find the pleiotropic SNPs both significant in 
AD|AMD and AMD|AD, a conjunction-cFDR (ccFDR)31 
was developed. In this study, we calculate cFDR from AD 
to AMD and AMD to AD separately, then select the larger 
as ccFDR.

	﻿‍ ccFDRi&j = max (cFDRi|j, cFDRj|i)‍�

where ‍ccFDRi&j ‍ is the max value of cFDR (AD|AMD) 
and cFDR (AMD|AD). The threshold of <0.01 for ccFDR 
was designated as the threshold for significance for plei-
otropic SNP.

We selected the bigger ccFDR value among the discovery 
and replication GWAS datasets and defined it as MccFDR 
(max ccFDR).

The KehaoWu/GWAScFDR package in R (V.4.1.0) was 
used to conduct the cFDR analysis. The pleiotropic SNPs 
were mapped to the corresponding genes from the infor-
mation in the AD dataset.16

Linkage disequilibrium analysis
Linkage disequilibrium (LD) analysis was conducted 
using LDlink and R2 was used to measure the LD level 
between SNPs. R2 ranked among 0–1, and 1 implies the 
SNPs provide exactly the same information.

Epidemiological verification for pleiotropic genes in AD and 
AMD
The logistic regression model evaluated ORs and 95% 
CIs for pleiotropic SNPs with AD and AMD. We used two 
logistical models in this analysis: model 1 was adjusted for 
age and gender, and model 2 was adjusted for model 1 
plus ethnicity, education and income.

Identification of upstream regulators
The TF2DNA database35 and the Kyoto Encyclopaedia 
of Genes and Genomes (KEGG)36 database were used to 
search the upstream regulators for AD–AMD pleiotropy 
genes.

Biological network analysis
The CEMiTool database37 was used to conduct the gene 
co-expression network (GCN) analysis for AD (GSE36980, 
GSE132903) and AMD (GSE1719, GSE99287) gene 
expression data.

AD–AMD pleiotropic genes along with their co-ex-
pressed genes were mapped on the human protein–
protein interaction (PPI) network from the String 
database.38 Cytoscape V.3.7.2 was used to calculate the 
network topology features of these genes. In this study, 
we used two popular network indicators to describe the 
positions and features of pleiotropic genes. ‘Degree’ indi-
cated the number of neighbours that directly connect to 

the specified node. ‘Average shortest path length’ was 
the average shortest distance (number of nodes on the 
way) of a random node connecting to other nodes on the 
network.

	﻿‍
C
(
v
)

=

∑
w d

(
v, w

)
n − 1 ‍�

Where d (v, w) is the distance between nodes v and w, 
and n is the number of nodes on the network. We also 
calculated the average values and SD in whole network 
models of degree and average shortest path length.

Functional analysis
The KEGG pathway enrichment analysis and Gene 
Ontology annotation were conducted for the functional 
analysis of these pleiotropic genes, which was performed 
by the String database.38

Discovery of novel biomarkers
Diagnostic logistic regression tests were used to discover 
new biomarkers from pleiotropic genes and their regula-
tors for AD and AMD. The gene expression was used as 
the predictor for the diagnostic test. The receiver oper-
ating characteristic curve was used to evaluate biomarker 
performance, and a value of greater than 0.6 for the area 
under the curve (AUC) was designated as the cut-off for 
an adequate biomarker. Python toolbox sklearn.metrics was 
used to perform this test. The DeLong test was used to 
statistically compare the AUCs for different tests. P<0.05 
was considered as with significant differences among 
diagnostic tests.

RESULTS
Genetic overlap of AD and AMD
Conditional QQ plots were plotted to identify the plei-
otropy between AD and AMD (figure 1). Both discovery 
datasets showed significant leftward shift, indicating high 
pleiotropy among AD and AMD.

The combined AD–AMD Manhattan plot of discovery 
and replication GWAS datasets were presented in 
figure 2A, where the MccFDR and chromosomal for SNPs 
were presented. 62 significant pleiotropic SNPs were 
found in the discovery dataset, of which 5 (rs429358, 
rs12721051, rs10414043, rs12721046 and rs7412) were 
verified on the replication data (figure  2A and online 
supplemental tables 1–3). The significant SNPs were 
all mapped on chromosome 19. In particular, SNPs 
rs12721051, rs12721046 and rs10414043 were mapped to 
the APOC1 gene, and rs429358 and rs7412 were mapped 
to APOE.

We have checked the LD states among the five pleio-
tropic SNPs (figure  2B), and the three SNPs within 
APOC1 showed moderate LD (R2=0.213 for rs12721051 
and rs10414043; R2=0.668 for rs12721051 and 
rs12721046; R2=0.340 for rs10414043 and rs12721046). 
rs7412 is independent from SNPs within APOE, with the 
highest R2=0.014; rs429358 demonstrates moderate LD 
with rs12721051, with an R2=0.4. Thus, rs12721051 was 

https://dx.doi.org/10.1136/bmjno-2023-000570
https://dx.doi.org/10.1136/bmjno-2023-000570
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removed, in order to keep the remaining SNPs more 
independent.

Phenotypical verification of the association between APOC1/
APOE to AD and AMD
Using the UK Biobank dataset, we examined the associa-
tions between the pleiotropic genes (APOC1 and APOE) 
with AD and AMD phenotypes (online supplemental 
table 4). APOC1 and APOE showed significant associa-
tions with AD, AMD and their comorbidities (p<0.05).

Genomic verification for APOC1 and APOE in healthy controls
Gene expression analysis in 54 tissues of 838 healthy 
controls for these pleiotropic genes was expressed on the 
heatmap in figure 2C and online supplemental figure 1. 
The expression of APOE and APOC1 was significantly 
higher in the liver, adrenal gland and brain. APOE was 
also highly expressed in the skin.

Biological network analysis for pleiotropic genes
Gene expression datasets were used to construct the 
GCNs (figure  3 and online supplemental figure 2). We 
observed that APOC1 and APOE expression was assessed 
on three datasets. The GCNs for APOE and APOC1 were 
presented in figure  3A–C and figure  3D–F, separately. 
Overall, APOC1-related network models were larger 
in size and exhibited stronger compactness. However, 
no significant differences were found between patients 

and controls (online supplemental figure 1). Further, 
APOC1 and APOE were not identified as hubs on the 
GCNs, with degrees less than 10 in all models. The rela-
tively medium average shortest path lengths (~3 in most 
models) indicated that the connections of APOC1 and 
APOE with other genes on the GCNs were not discrete. 
These features suggested that APOC1 and APOE were 
situated at peripheral positions on the GCNs but main-
tained moderate interaction with other genes.

Regulators of APOC1 and APOE
16 and 14 regulators for APOC1 and APOE were identi-
fied, respectively. Five were replications (ZBTB48, MZF1, 
ZNF131, ZNF319 and ZNF273) for both APOC1 and 
APOE (figure 4A). The locations and binding strengths 
for these regulators were presented in online supple-
mental figure 3A,B. Most of APOC1, APOE and their 
regulators had no interaction with each other on the PPI 
network (online supplemental figure 4). The reason for 
no interaction may be the discovery of PPI is not complete.

Biological function analysis results for pleiotropic genes and 
their regulators
Regulation of the cellular biosynthetic process, binding 
and intracellular membrane-bounded organelle was 
annotated by Gene Ontology analysis for APOC1, APOE 
and their regulators (online supplemental tables 5–7). In 

Figure 2  (A) AD–AMD combined Manhattan plot. MccFDR was set as y-axis, which indicated the max ccFDR value among 
discovery and replication datasets. Five SNPs (rs429358, rs12721051, rs10414043, rs12721046 and rs7412) were identified as 
shared SNPs for AD and AMD, and they are all located on chromosome 19. Their corresponding genes were APOC1 and APOE. 
(B) LD analysis results; rs12721051 was removed because of significant LD level. (C) RNA-seq expression heatmap for APOC1 
and APOE. Both APOE and APOC1 expressed significantly high in the liver, adrenal gland and brain. AD, Alzheimer's disease; 
AMD, age-related macular degeneration; ccFDR, conjunction-conditional false discovery rate; EBV, Epstein-Barr virus; LD, 
linkage disequilibrium; SNPs, single nucleotide polymorphisms.

https://dx.doi.org/10.1136/bmjno-2023-000570
https://dx.doi.org/10.1136/bmjno-2023-000570
https://dx.doi.org/10.1136/bmjno-2023-000570
https://dx.doi.org/10.1136/bmjno-2023-000570
https://dx.doi.org/10.1136/bmjno-2023-000570
https://dx.doi.org/10.1136/bmjno-2023-000570
https://dx.doi.org/10.1136/bmjno-2023-000570
https://dx.doi.org/10.1136/bmjno-2023-000570
https://dx.doi.org/10.1136/bmjno-2023-000570
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KEGG pathway analysis, six genes were mapped on the 
herpes simplex virus 1 (HSV1) infection (online supple-
mental figure 5 and online supplemental table 8).

Notably, we found several APOE–APOC1-specific 
enriched pathways, including very low-density lipopro-
tein particle clearance, chylomicron remnant clearance 
and positive regulation of cholesterol esterification on 
the biological process level, phosphatidylcholine-sterol 
o-acyltransferase activator activity on the molecular func-
tion level and chylomicron on the cellular component 
level (online supplemental tables 6–8). We also found 
that APOE was mapped on the AD pathway, regulated 
by amyloid beta, which was further regulated by the APP 
gene through C99 (online supplemental figure 6).

Novel biomarker discovery for AD and AMD
Diagnostic test results for APOC1, APOE and their 
regulators have been presented in figure  4B. APOC1 
demonstrated good performance in six datasets (AUC: 
0.71, 0.74, 0.72, 0.84, 0.66, 0.69). APOE only performed 
well on two datasets (AMD replication-retinal pigment 
epithelium: AUC=0.90; AD discovery-hippocampus: 
AUC=0.65). 23 of 25 regulators showed good perfor-
mance in the diagnostic test (average AUCs in all data-
sets >0.6). Among the five shared regulators for APOC1 
and APOE, ZNF131 showed the best performance in all 
datasets (all AUCs >0.6, four AUCs >0.8). ADNP2 was 
the best-performing regulator for APOC1, which showed 
good diagnostic values in three datasets (AUCs >0.85). 

Figure 3  GCNs for APOC1 and APOE in different datasets. The degree and average shortest path length for APOC1 and 
APOE and average in whole network models were presented. (A) AD discovery-frontal cortex-APOC1 model. (B) AD discovery-
temporal cortex-APOC1 model. (C) AD replication-APOC1 model. (D) AD discovery-frontal cortex-APOE model. (E) AD 
discovery-temporal cortex-APOE model. (F) AD replication-APOE model. AD, Alzheimer's disease; GCNs, gene co-expression 
networks.

https://dx.doi.org/10.1136/bmjno-2023-000570
https://dx.doi.org/10.1136/bmjno-2023-000570
https://dx.doi.org/10.1136/bmjno-2023-000570
https://dx.doi.org/10.1136/bmjno-2023-000570
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Among the regulators of APOE, HINFP performed best 
(average AUC=0.72).

The DeLong test was used to statistically compare the 
AUCs for the diagnostic tests among APOC1 and APOE 
(online supplemental table 9). Except in AD replication 
group (p=0.0000009173), all the AUCs showed no differ-
ences (p>0.05).

In order to detect the performance of combined 
biomarkers, we combined APOC1 and APOE together 
and got AUCs of 0.71, 0.72, 0.57, 0.61, 0.54, 0.90, 0.62 
and 0.67 in different groups, which showed significant 
improvements compared with APOC1 or APOE sepa-
rately. Meanwhile, we also combined APOC1, APOE and 
their regulators, and did not find significant improve-
ments (figure 4B).

DISCUSSION
This study demonstrated that AD and AMD shared a 
common genetic aetiology, consistent with previous find-
ings of Logue et al6 and Tan et al.14 The identification of 
pleiotropy between AD and AMD holds significant clinical 

significance. It is widely recognised that the diagnosis and 
prevention of AD pose global challenges. Confirming 
the shared genetic aetiology between AD and AMD 
could enhance AD prevention and diagnosis through 
accurate and timely detection of AMD. Advancing from 
these studies, our study investigates the overall associ-
ation between AD and AMD GWAS data using cFDR, a 
robust Bayesian algorithm that greatly facilitated pleio-
tropic gene identification. Further, for both diseases, 
we included both discovery and replication datasets and 
identified the identical SNPs, lending further credence to 
the generalisability of our analysis. In addition, the appli-
cation of network topology analysis enabled the observa-
tion of the position of pleiotropic genes on the AD–AMD 
GCNs. We found that although APOC1 and APOE were 
not hubs on the GCNs, they present an ‘average shortest 
path lengths’ of around three, indicating that pleiotropic 
genes may have a moderate ability to interact with other 
genes on GCN (figure 3). This finding may prompt the 
identification and verification of further pleiotropic 
genes on networks.

Figure 4  (A) Regulators for APOC1 and APOE. Five shared regulators were found for APOC1 and APOE. (B) Heatmap of 
diagnostic performance (y-axis: AUC) for APOC1, APOE and their regulators in different expression datasets (x-axis). Average 
AUCs were calculated and displayed in the last row (average). APOC1 demonstrated good performance in six datasets (AUC: 
0.71, 0.74, 0.72, 0.84, 0.66, 0.69) except on two datasets (AD discovery-hippocampus and AMD discovery). APOE only 
performed well on two datasets (AMD replication-retinal pigment epithelium: AUC=0.90; and AD discovery-hippocampus: 
AUC=0.65). 23 of 25 regulators showed good performance in the diagnostic test (average AUCs in all datasets >0.6). Among 
the five shared regulators for APOC1 and APOE, ZNF131 showed the best performance in all datasets (all AUCs >0.6, AUC=0.8 
in AD discovery-frontal cortex; 0.88 in AD discovery-hippocampus (AUC: 0.88), AMD replication-retinal pigment epithelium 
(AUC:0.90) and AMD replication-retina (AUC: 0.84)). ADNP2 was the best-performed regulator for APOC1, which showed good 
diagnostic values in AD discovery-hippocampus (AUC: 0.85), AMD replication-retinal pigment epithelium (AUC:0.98) and AMD 
replication-retina (AUC: 0.92). Among the regulators of APOE, HINFP performed best (average AUC=0.72). We have combined 
APOC1 with APOE, and got AUCs of 0.71, 0.72, 0.57, 0.61, 0.54, 0.90, 0.62 and 0.67 in different groups, which showed 
significant improvements compared with APOC1 or APOE separately. Meanwhile, we also combined APOC1, APOE and their 
regulators, and did not find significant improvements. AD, Alzheimer's disease; AMD, age-related macular degeneration; AUC, 
area under the curve.

https://dx.doi.org/10.1136/bmjno-2023-000570


8 Zhang X, et al. BMJ Neurol Open 2024;6:e000570. doi:10.1136/bmjno-2023-000570

Open access�

Our study verified that both APOC1 and APOE were 
pleiotropic genes for both AD and AMD. The protein 
encoded by APOE serves as a major lipid carrier and has 
been confirmed as a key risk factor for AD and AMD.34 39 
APOC1, as a close neighbour of APOE (online supple-
mental figure 4), also encodes a protein in the apolipo-
protein C family that plays an essential role in lipoprotein 
metabolism. APOC1 has been considered to be a risk 
factor for the development of AD.40 However, no previous 
studies reported the association between APOC1 and 
AMD. Our study, verified with the UK Biobank dataset, 
confirms that both APOE and APOC1 significantly 
contribute to the development of AD and AMD, partic-
ularly the comorbidity of AD and AMD (online supple-
mental table 4). We also conducted a genomic analysis 
to understand the pleiotropy of AD and AMD, by located 
gene expression level of their pleiotropic genes on 
tissues, to further understand the pleiotropy aetiology 
in phenotype level. Since both are neurodegenerative 
diseases that are closely related to neuronal tissue, their 
pleiotropy exhibits a substantially high expression in the 
brain (figure 2B).

Our study identified several upstream regulators for 
both APOC1 and APOE and a subsequent biological 
function analysis to detect the pleiotropic genes. Regu-
lators are genes with the ability to control the expression 
of other genes and are instrumental to the maintenance 
of healthy biological processes. The investigation of 
upstream regulators for pleiotropic genes is critical to the 
understanding of the pleiotropy of AD–AMD. We found 
significant pathways (online supplemental figure 5 and 
online supplemental tables 5–8) that may be essential for 
AD–AMD pathogenesis and may guide future pleiotropic 
gene discovery. We found that most of the enriched path-
ways are key pathways for the basic biological process 
like metabolic and binding-related pathways (online 
supplemental tables 5–8). Interestingly, as these genes 
are enriched on the HSV1 infection pathway (online 
supplemental figure 5), HSV1 infection is a risk factor 
for AD,41 but its association with AMD remains unknown. 
Our study may inspire future research to investigate the 
association between HSV1 with AMD or AD–AMD comor-
bidity. According to our pathway enrichment finding, we 
postulate that the pleiotropy of AD–AMD comorbidity 
may be mediated by basic biological processes and may 
occur even at a molecular level.

Our study used pleiotropic genes and their regulators 
to identify multifunctional biomarkers for AD, AMD 
and AD–AMD comorbidity. Our investigation, using 
gene expression data for multifunctional AD–AMD 
biomarkers detection among pleiotropic genes, suggests 
that APOC1 has good diagnostic potential for both AD 
and AMD while APOE might more focus on the AMD 
diagnosis from the retinal pigment epithelium. Further, 
most of the regulators of APOC1 and APOE showed 
good diagnostic values, especially ZNF131, ADNP2 and 
HINFP. ZNF131 is a protein-coding gene, which conducts 
function in the adult central nervous system.42 ADNP2 is 

also a protein-coding gene, which has been reportedly 
related to autosomal dominant non-syndromic intellec-
tual disability.43 HINFP is the final link in the cyclinE/
CDK2/p220NPAT/HINFP pathway, playing a key role in 
the G1/S phase transition, which has been identified as a 
biomarker for colorectal cancer44 and type 2 diabetes.45

Our study has several limitations. First, we did not 
analyse the subtypes of AD and AMD as the GWAS data-
sets did not specify this information. The subtypes of 
these diseases may be important information for clin-
ical diagnosis and treatment. Second, the sample sizes 
in microarray datasets for diagnosis tests were relatively 
small, limiting our potential further identification of 
multifunctional AD–AMD biomarkers among pleiotropic 
genes. Third, we were able to examine the diagnostic 
value of the identified biomarkers in the patients with 
either AD or AMD but not in patients with both AD and 
AMD due to data availability. Fourth, we did not take into 
consideration the onset time and duration of diseases of 
AD and AMD in our analyses. Fifth, our consideration of 
only two network features in our network analysis leaves 
room for further analysis of additional network features 
in future studies.

CONCLUSIONS
In this study, we constructed the genetic pleiotropy 
between AD and AMD and identified APOC1 and APOE 
to be pleiotropic genes for both diseases. These results 
support existing clinical and biochemical evidence that 
demonstrates common features in the pathophysiolog-
ical pathways leading to both AD and AMD. Further, 
the biological network and pathway analysis in our study 
characterise the network topology features and pathways 
for pleiotropic genes for AD–AMD. The integration of 
multiomics data identified ZNF131, ADNP2 and HINFP 
as novel diagnostic biomarkers for AD and AMD.
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