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Abstract

Background: Machine learning (ML) algorithms have been successfully employed for prediction of outcomes in
clinical research. In this study, we have explored the application of ML-based algorithms to predict cause of death
(CoD) from verbal autopsy records available through the Million Death Study (MDS).

Methods: From MDS, 18826 unique childhood deaths at ages 1–59 months during the time period 2004–13 were
selected for generating the prediction models of which over 70% of deaths were caused by six infectious diseases
(pneumonia, diarrhoeal diseases, malaria, fever of unknown origin, meningitis/encephalitis, and measles). Six popular
ML-based algorithms such as support vector machine, gradient boosting modeling, C5.0, artificial neural network, k-
nearest neighbor, classification and regression tree were used for building the CoD prediction models.

Results: SVM algorithm was the best performer with a prediction accuracy of over 0.8. The highest accuracy was
found for diarrhoeal diseases (accuracy = 0.97) and the lowest was for meningitis/encephalitis (accuracy = 0.80). The
top signs/symptoms for classification of these CoDs were also extracted for each of the diseases. A combination of
signs/symptoms presented by the deceased individual can effectively lead to the CoD diagnosis.

Conclusions: Overall, this study affirms that verbal autopsy tools are efficient in CoD diagnosis and that automated
classification parameters captured through ML could be added to verbal autopsies to improve classification of
causes of death.

Keywords: Machine learning, Prediction model, Million Death Study, Verbal autopsy, Child mortality, Cause of
death, Infectious disease
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Background
The ongoing COVID-19 pandemic has sharply revealed
the long standing fact that many of the deaths, especially
in low-income countries are not well documented as
most of the deaths occur at home and not in well-
regulated hospital settings. A second reason for poor
documentation of death is because unlike birth, family
members are not sufficiently incentivised to register
death. This gap in death records and associated data is a
serious impediment in assessing disease patterns and
public health needs of a country. To address this gap,
the Million Death Study (MDS) was initiated in India to
quantify premature mortality through verbal autopsy
(VA) [1, 2] in a nationally representative sample of
homes. VA uses a set of symptoms and signs captured
through a structured questionnaire to assign cause of
death (CoD) [3–5]. The questionnaire is administered to
family or caretakers of the deceased by non-medical sur-
veyors. Each data record is then assigned randomly to
two of the several trained physicians in the team. The
physicians independently assign the CoD, based on the
surveyor’s report. In cases, where the CoD assignment
for a record does not match for the two physicians, it is
adjudicated by a third senior physician.
It would be worthwhile to study how efficiently the

signs and symptoms captured by the surveyors could be
used to predict CoD using supervised machine-learning
(ML) algorithms. Such a study, in addition to revealing
the scope for automation of VA tools, will also give in-
sights on improvement of methodology for more accur-
ate diagnosis at reduced cost of implementation.
Supervised ML algorithms learn from a set of input

variables to predict a response variable. Many of the
classification problems in biological and medical fields
have been successfully solved using ML methods such as
support vector machine (SVM), gradient boosting mod-
elling (GBM), C5.0 (C5), artificial neural network
(ANN), k-nearest neighbour (kNN), classification and re-
gression tree (CART) [6, 7]. SVM and ANN algorithms
have been successfully used for disease detection [8–11].
In this study, MDS dataset captured from 2004 to

2013 for ages 1–59 months has been explored for ML-
based prediction of CoD for six infectious diseases viz.
pneumonia, diarrhoeal diseases, malaria, meningitis/en-
cephalitis, measles and fever of unknown origin
(FOUO).

Methods
Population-based mortality data
The rationale, methodology, and efficacy of the MDS
have been described elsewhere [12, 13]. The RHIME
(Routine, Reliable, Representative and Re-sampled
Household Investigation of Mortality with Medical
Evaluation) form was used by trained surveyors to obtain

information from family or caretakers of the deceased
[14]. Each completed survey in the MDS was reviewed
independently by two trained physicians, who were ran-
domly assigned VAs through an online portal based on
matching language proficiency of the physician and the
language in which the VA was completed. Two inde-
pendent physicians reviewed all the completed RHIME
forms and assigned the underlying CoD according to the
International Classification of Diseases, tenth revision
(ICD-10) [15], and included a number of “keywords” in
the record, which are signs and symptoms observed in
the VA that support their diagnosis. The CoD was ap-
proved for records wherein the two physicians assigned
the same CoD. For the remaining records, a third senior
physician was referred to finalise the CoD based on the
physicians keywords [2, 16]. Initial differences in coding
(about 30% of records) were reconciled by both physi-
cians, who each anonymously received the other’s key-
words justifying their choice of underlying CoD. After
this reconciliation stage, any outstanding differences
were assigned to and adjudicated by one of 40 senior
physicians (about 10% of records). The steps involved in
the MDS underwent various quality assurance checks,
including resampling by an independent team in 2001–
2003 that yielded similar results to the original survey.
The MDS records obtained for India from 2004 to

2013 were filtered for age between 1 to 59 months
and cases wherein both physicians initially agreed on
the underlying CoD. These filtering criteria led to
18,826 unique records and this data was further
segregated based on six infectious disease categories:
pneumonia, diarrhoeal diseases, malaria, fever of
unknown origin, meningitis/encephalitis, and measles
(Table 1). Previous analyses by Dingra et al. and
review of ICD coding by Aleksandrowicz et al.
suggest ‘fever of unknown origin’ as predominantly
infectious, thus we have included it in the infectious
disease category [17, 18].
These six diseases constituted ~ 70% (13,216 out of

18,826) of the total deaths across all CoDs in this
age category. The remaining 30% (5610 out of
18,826) constituted the other five diseases such as
tuberculosis, injury, non-communicable disease
(NCD), ill defined conditions (ILDF), and communic-
able, perinatal and nutritional disorders (CMPND).

Data processing
Physicians keywords for each record were aggregated for
both physicians and grouped into 35 symptom categories
and subcategories, selected based on their medical rele-
vance to the six CoD included in this study. The 35
groupings as well as inclusion and exclusion terms for
symptom categories and subcategories are shown in S1
Appendix. Symptom groups were coded in a binary
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fashion: each of the 18,826 records received a “1” if ei-
ther coding physician listed keywords reflecting the
symptom category, and a “0” if they did not. Four of the
symptom categories (fever, breathing problems, cough,
diarrhoea) also contained subcategories that were aggre-
gated under the parent category (S1 Appendix). For ex-
ample, if one of the physician keywords for a death
record was “high fever,” the record was coded to reflect
both the “fever” and “high fever” categories. Stata version
14.2 [19] was used for the physician keyword
classification.

ML-based algorithms for prediction of CoD
Machine learning (ML) algorithms are popularly used
for predicting an outcome or dependent variable from a
pool of high dimensional input variables. In this study,
the outcome or dependent variable is the CoD assign-
ment and the input variables are physician’s keywords
for each record. The ML algorithms such as support
vector machine (SVM), gradient boosting modelling
(GBM), C5.0 (C5), artificial neural network (ANN), k-
nearest neighbour (kNN), classification and regression
tree (CART) were implemented using e1071, rpart, gbm
and caret R packages with default parameter settings
[20–23]. In case of SVM, the radial basis function (RBF)
kernel was selected for transforming the input features
into the high dimensional space for hyperplane differen-
tiation of the positive and negative classes. RBF is known
to be more generalized and robust as compared to the
other kernel functions available for SVM [24]. The
values for cost ‘C’ and ‘sigma’ were optimised for each
model individually.

SVM
SVM, as a supervised machine learning algorithm, can
be used for generating classification and regression
models. For classification models, SVM algorithms
plot each record of a dataset as a point in n-
dimensional space, where n is the number of numer-
ical features for each record and creates a hyperplane
for the separation of two or more classes of datasets.

The points closest to the hyperplane/separator are
called support vectors as it holds the separating plane.
The algorithm aims to generate a hyperplane that
maximises the distance between the classes/datasets
and simultaneously minimises the classification errors.
In cases where data points are not linearly separable,
SVM uses the kernel function [6, 25–29].

ANN
ANN algorithms function by mimicking the biological
nervous system, which has many neurons connected in a
layered manner. ANNs consist of an input layer that
captures the features/variables of the datasets; one or
more hidden layers which process the information, and
an output layer that displays the outcome. Each variable
can be denoted as a node and their interactions are de-
noted by edges. ANN can detect non-linear relationships
between variables and generate predictions based on
nodes, and edge weights. The advantages of ANNs are
its tolerance to noise, capability of learning complex
data, and classify instances into more than one output.
For large neural networks, the interpretation of the algo-
rithm may be difficult and can require high processing
time [6, 25, 27, 29, 30].

kNN
kNN is a supervised machine learning algorithm which
is conceptually simple, and non-parametric in nature.
kNNs work by capturing the closest data points for the
query record to a known dataset and then assign the
class of query based on majority of class votes. The input
features of the dataset are used to identify the closeness
between the records. Here, k denotes the number of
closest data points considered for the vote and hence is
an important parameter for the prediction outcome. The
advantages of kNNs are its easy implementation, quick
learning and not prone to overfitting. The disadvantages
of kNN are its sensitivity to noise, and requirement of
large storage space [6, 27].

Table 1 Number of MDS 2004–13 VA records with initial physician agreement for ages 1–59 months across six infectious causes of
death

Cause of death (CoD) Disease code ICD-10 codes Number of cases % cases

Pneumonia Pneum A37, J00-J06, J09-J18, J20-J22, J32, J36, J85, J86, P23, U04 5733 43

Diarrhoeal diseases Diar A00-A09 4897 37

Malaria Mal B50-B54 860 7

Fever of unknown origin Fouo R50 754 6

Meningitis/encephalitis Men A39, A81-A89, G00-G09 490 4

Measles Meas B01, B05 482 4

Total All above codes 13,216

Idicula-Thomas et al. BMC Public Health         (2021) 21:1787 Page 3 of 11



CART
CART is a decision tree-based algorithm in which
each root node of a tree represent an input variable
and leaf nodes of tree represent the output variable.
A binary decision tree is generated at each step by
splitting a node into two child nodes. It creates a set
of logical rules, the response to which determines the
split in the dataset. The advantages of CART algo-
rithm include fast processing of data and easy inter-
pretation of the algorithm [31–33].

GBM
GBM is a tree-based method that combines predictions
from multiple decision trees. Each of the decision trees
can be considered as weak learners which eventually are
converted into strong learners by minimising the errors
of the previous decision tree. The advantages of GBM
include its high predictive accuracy and ability to predict
multiclass data. The disadvantages of GBM include over-
fitting of data, sensitivity to noisy data, and requirement
of high processing time [28, 34, 35].

C5
C5 is also a tree-based algorithm that functions by mini-
mising the information entropy or maximising the infor-
mation gain at each split. The data is split initially based
on the biggest information gain and continued till it can-
not be split further. The features that do not contribute
to the splits are removed from the final model. While
C5 algorithms are easy to implement and interpret, it re-
quires categorical (ordinal/nominal) data as target vari-
able and may not work well on small datasets [31, 36].

Generation of training and test datasets
Individual prediction models were generated for each of
the six infectious diseases namely pneumonia, diarrhoeal
diseases, malaria, meningitis/encephalitis, measles and
fever of unknown origin (FOUO). For each disease
model, records belonging to the disease that is being
predicted were marked as positive and the remaining re-
cords (not limited to the 6 diseases considered in the
study) are marked as negative. An unbalanced dataset
can be converted to balanced dataset (with equal repre-
sentation from positive and negative classes) by random
resampling either by oversampling the minority class or
undersampling the majority class. Here, we opted for
creation of balanced 2-class classifier by undersampling
the majority class (negative class) to match the number
of records in minority class (positive class) for each of
the six disease datasets. Subsequently, for each of the
models, the dataset was partitioned into training and test
datasets using 80:20 random split. The robustness of
each ML-based model was evaluated by performing a

10-fold cross-validation with 10 iterations on the train-
ing dataset.
The SVM prediction models were also generated to

differentiate between pair of diseases with overlapping
symptoms such as i) pneumonia and diarrhoeal diseases,
ii) malaria and meningitis/encephalitis, and iii) malaria
and FOUO. In these cases, the positive and negative
classes comprised of the records of first and second dis-
ease respectively and undersampling of the majority
class was used to generate a balanced classifier.

Evaluation of prediction models
The test datasets were used to evaluate the performance
of each of the selected models using the below perform-
ance metrics:

accuracy ¼ TP þ TN
TP þ FN þ TN þ FP

ð1Þ

recall=sensitivity ¼ TP
TP þ FN

ð2Þ

specificity ¼ TN
TN þ FP

ð3Þ

precision ¼ TP
TP þ FP

ð4Þ

F1 ¼ 2� precision� recall
precisionþ recall

ð5Þ

TP (true positives) and TN (true negatives) denote the
number of outcomes where the model correctly predicts
the positive and negative class respectively. FP (false pos-
itives) and FN (false negatives) denote the number of
outcomes where the model incorrectly predicts the posi-
tive and negative class respectively.
Cohen’s kappa evaluates model by measuring the

agreement between predicted accuracy and observed
class accuracy.

Cohen
0
s kappa ¼ Po−Pe

1−Pe
ð6Þ

where Po is the relative observed agreement and Pe is
the random chance of agreement [37].

Hierarchical clustering of physicians’ keywords
The relationship/co-occurrence of symptoms reported
for each disease were studied using ascendant hierarch-
ical clustering using hclustvar function in ClustOfVar R
package [38]. The number of clusters was set to six, as
we were studying six diseases.
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Results
Disease-wise distribution of records
Amongst these six diseases, deaths due to pneumonia
and diarrhoeal diseases were most common, respectively
reflecting 43 and 37% of the deaths in the dataset, while
deaths due to measles and meningitis/encephalitis were
the least common, each reflecting just under 4% of the
deaths in the dataset (Table 1).
Pneumonia and diarrhoeal diseases are known to be

major cause of childhood mortality in India, especially in
poorer communities [39] and this is reflected in the
MDS data.

Distribution of symptoms across disease datasets
In VA, physicians use the questionnaire notes of non-
medical surveyors to identify keywords that eventually
form the basis of CoD assignment. In this study, these
keywords were converted to rule-based, non-redundant
set of symptoms for ease of automation (S1 Appendix).
The distribution of these symptoms across the six CoD
are visualised in Fig. 1, and record counts for each of the
six CoD can be found in S2 Appendix. It was observed
that 17 of the 35 symptoms viz. vomiting, jaundice, ab-
dominal pain /distention (abdompain), diarrhoea, an-
aemia, weight loss, low birth weight (lbw), poor feeding,
stiffness/ body pain (stiffpain), unconsciousness (uncon-
scious), convulsion, cough, breathing problems (breath-
prob), cold, fever chills, high fever and fever were
present, with varying frequencies, in all six diseases. For
e.g., vomiting and diarrhoea were frequent in diarrhoeal
diseases; fever chills were present in most of malarial
cases; rash was common in measles and breathing prob-
lems were observed in most of pneumonia cases. These
observations were in concordance with WHO manual
for disease diagnosis [41–43].
To evaluate if symptoms can self-cluster, based on

their co-occurrence into distinct disease classes, un-
supervised (without CoD annotation) hierarchical clus-
tering was performed on 13,216 records belonging to six
diseases (Fig. 2).
The clustering algorithm was forced to generate six

clusters and interestingly the six clusters represented the
six CoDs as can be deduced based on the nature of
symptoms. Cluster 1 had symptoms such as breathing
problem (breathprob), cough, cold, chest indrawing
(indraw), fast breathing (fastbreath), grunting, respiratory
distress (respdistress) and wheezing which are attribut-
able to Pneumonia; Cluster 2 had rash and abscess that
is characteristic of measles; Cluster 3 had fever chills,
fever, high fever typical of malaria; Cluster 4 had cholera,
dehydration, diarrhoea, vomiting, blood in stools, ab-
dominal pain /distention (abdompain), night sweats and
swelling that are commonly observed in diarrhoeal dis-
eases; Cluster 5 had delirium, unconsciousness,

convulsion and stiffness/body pain (stiffpain) distinctive
features of meningitis/encephalitis and Cluster 5 had
jaundice, low birth weight (lbw), anaemia, poor feeding
and weight loss representing fever of unknown origin
(Fig. 2). Hierarchical clustering was also performed indi-
vidually for each of the six infectious diseases using the
symptoms that were present in at least 10% of the
records for each of the disease, to gain further disease-
specific insights on symptom co-occurrence and its
distribution (S1 Fig).

ML-based models using symptoms for CoD prediction
To confirm if symptoms can be used to predict CoDs
for each record, ML-based classification models were
built individually for each of the six diseases. Each model
was build using 80% of training data and the remaining
as test data. Six ML algorithms viz., SVM, GBM, C5,
ANN, kNN and CART were used to predict CoD. The
prediction performances of these models were evaluated
based on accuracy, kappa, recall/sensitivity, specificity,
precision and F1 score (Table 2 and S2 Fig).
Of 6 ML-based algorithms, SVM and GBM performed

better than the other four algorithms (Table 2). Litera-
ture evidences also suggest that SVM models are super-
ior for developing disease classification models [44, 45].
The SVM based prediction model performed best for

diarrhoeal diseases and lowest for meningitis/encephalitis
(Table 3). SVM models could classify pneumonia, diar-
rhoeal diseases, malaria, meningitis/encephalitis, measles
and FOUO with 91, 95, 90, 83, 97 and 87% precision re-
spectively using the associated symptom data (Table 3).
The 10 most relevant symptoms for CoD prediction

for each of the SVM-based prediction models were also
extracted (S3 Fig) and this data concurs well with WHO
manual for disease diagnosis [41–43, 46, 47]. The co-
occurrence of these top 10 features of each of the six
diseases was visualised using disease-symptom network
plot (Fig. 3). Of 35 symptoms used for the ML-based
disease model generation, 19 symptoms were critical for
classification of the six diseases and five symptoms viz.,
fever, diarrhoea, breathing problem (breathprob), cough
and vomiting were associated with all the six infectious
diseases (Fig. 3). Six symptoms viz., abdominal pain /dis-
tention (abdompain), convulsion, fever chills, grunting,
low birth weight (lbw) and rash were identified as im-
portant predictors specifically for a single disease (Fig.
3). For eg., rash was identified as one of the top predic-
tors specifically for measles while grunting was an im-
portant predictor only for pneumonia.

SVM models for classifying diseases with overlapping
symptoms
SVM models were built for classifying pairs of diseases
that had several overlapping symptoms. The
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Fig. 1 Bubble plot depicting distribution of symptoms across six infectious diseases. X-axis represents disease class and y-axis represents
symptoms coded by rule-based method. The bubble size is proportional to percentage of records positive for the symptom in the disease class.
The plot was generated using ggplot2 R package [40]
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performance measures of SVM models for predicting
CoD for pneumonia-diarrhoeal diseases, malaria- menin-
gitis/encephalitis and malaria-fever of unknown origin
are shown in Table 4 and the 10 most important fea-
tures for disease prediction can be viewed in S4 Fig.
SVM model for pneumonia- diarrhoeal diseases depicted
highest accuracy (98%). SVM models for malaria – men-
ingitis/encephalitis and malaria - fever of unknown ori-
gin were able to classify with 84 and 85% accuracy
respectively.

Discussion
Using ML-based algorithms, we could effectively predict
CoD from the signs/symptoms captured by the VA tools.
We have documented the ability of the symptoms to
form disease-based clusters, in spite of being present in
multiple diseases, suggesting that they can be effectively
exploited as input variables to predict the corresponding
CoDs.
Although all the ML algorithms (except CART) per-

formed well for disease prediction, SVM models

Fig. 2 Tree-based clustering of symptoms for six clusters. The vertical axis represents distance between clusters

Table 2 Comparison of the prediction accuracy of ML-based algorithms for six diseases

ML algorithms Pneumonia Diarrhoeal diseases Malaria Meningitis/ encephalitis Measles Fever of unknown origin

SVM 0.90 0.97 0.91 0.80 0.92 0.87

GBM 0.90 0.97 0.92 0.80 0.92 0.79

C5 0.89 0.97 0.90 0.80 0.92 0.87

ANN 0.89 0.96 0.90 0.79 0.93 0.88

kNN 0.89 0.96 0.91 0.75 0.93 0.87

CART 0.87 0.96 0.83 0.75 0.92 0.81
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displayed consistently superior performance for all six
diseases. In previous studies on disease prediction,
SVMs using RBF kernel have found to be better per-
formers than other ML-algorithms such as SVMs with
linear or polynomial kernels, Random Forest and De-
cision Trees [44, 45].
Our study is, as far as we can determine, the first to

systematically compare various ML-based algorithms ap-
plied to physician coded VAs. While there has been

substantial debate if algorithms outperform physician
coding, a recent randomized trial among 10,000 deaths
showed the physician coding outperformed most cur-
rently available algorithms [16]. Moreover, the world-
wide clinically accepted standard of medical diagnosis or
of certification of the causes of deaths are by physicians.
Our paper adds to the literature suggesting that ML-
assisted algorithms may help to improve and standardize
physician-based coding. This is especially relevant for

Table 3 Performance matrix of SVM models for six infectious diseases

Performance Measure Pneumonia Diarrhoeal diseases Malaria Meningitis/ encephalitis Measles Fever of unknown origin

Accuracy 0.90 0.97 0.91 0.80 0.92 0.87

Kappa 0.80 0.93 0.81 0.60 0.84 0.74

Recall/Sensitivity 0.88 0.98 0.92 0.76 0.88 0.87

Specificity 0.92 0.95 0.90 0.85 0.97 0.87

Precision 0.91 0.95 0.90 0.83 0.97 0.87

F1 score 0.90 0.97 0.91 0.79 0.92 0.87

Fig. 3 Disease-symptom network of top 10 features obtained from SVM model. Green nodes represent symptoms and blue nodes represent
diseases. The size of disease node is proportional to number of records corresponding to the disease in the dataset. Edge represents association
between disease and symptom and its width is proportional to percentage of records positive for the symptom. The network was created using
igraph R package [48]
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childhood conditions, where the major reasons for death
are few, and reasonably similar across African and Asian
countries [49].
The strengths of the study were its large size, repre-

sentative sampling of deaths in India and standard ways
of coding of records by physicians. Moreover, the key-
words used by physicians while variable, were amenable
for binning into broader categories that permitted redu-
cing the input feature space and application of ML-
algorithms. Nonetheless the study has some limitations.
Three important parameters that are missed in this
study are the type, duration and intensity of the illness.
Hence, symptoms such as dry or wet cough; cough for a
week or a month; intense vomiting/diarrhoea over mild
vomiting/diarrhoea cannot be distinguished. The study
relies on the cognitive abilities of the respondents and in
cases where the death has occurred in distant past, the
recollection of the symptoms may not be perfect.

Conclusions
For the foreseeable future, national verbal autopsy stud-
ies are critical to capture rural, home deaths until a time
when deaths start to occur mostly in facilities that
mandate medical certification. Under these circum-
stances, innovations to improve verbal autopsy methods
are essential. ML-algorithms applied to physician-
derived keywords offer a simple, practicable way to im-
prove the classification of causes of death in children,
and should be considered as one of the strategies for ad-
vances in verbal autopsy methodology.
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