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T o be functional, proteins need to bind their part-
ners; expressing function in the cell entails a net-
work of binding events. Yet, in vivo and in vitro,

binding of transcriptional control (TC) proteins to their
cognate DNA response elements (REs) or of protein mol-
ecules to their protein partners does not imply func-
tion. Function is based on events taking place following
binding, that is, whether the binding leads to specific
subsequent binding events as specified by the cellular
program. Consequently, identification of the location of
the REs in the genome by chromatin immunoprecipita-
tion (ChIP) that obtains protein�DNA interactions is of-
ten coupled with microarray readout of these experi-
ments (ChIP-chip) (1). Such a combination assists in
defining the in vivo utilization of genomic sequences
by the TC proteins and the functional consequences. To-
ward this aim, the higher resolution and greater cover-
age ChiP-seq technique for genome-wide profiling of
DNA-binding proteins is also gaining momentum (2). In
genomic DNA, not all REs are chromatin-available (3).
However, even for chromatin-available REs, binding of
a TC protein does not necessarily indicate function. Simi-
larly, detection of protein�protein interactions by co-
immunoprecipitation via endogenous (not overex-
pressed and not tagged) proteins with subsequent
Western blotting implies direct or indirect (via a bridg-
ing protein) binding; however, again, the binding may
or may not specify function. Moreover, REs that are very
similar, with only a single base pair (bp) change, can
lead to vastly different functional consequences (4−8).
Yet while it is broadly accepted that binding, whether of
a TC protein to its RE or between proteins, does not indi-
cate function, the reasons are not entirely understood.
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ABSTRACT Studies of binding are often question: first, is the observed binding
functional, and second, if it is, which function? Is it activation or repression? The
first question relates to binding at different sites; the second relates to binding at
similar sites. These questions apply to transcription factors binding to genomic
DNA and to protein interaction domains binding to their partners. Here, we explain
that both can be understood in terms of allostery and the cellular (or in vitro) envi-
ronment. The idea is simple yet powerful; it emphasizes the role of allostery in de-
fining whether binding between transcription factors and (cognate or noncognate)
DNA sequences will lead to function and to the type of function. Allosteric effects
are the outcome of dynamically shifting populations; thus binding to even slightly
different DNA sequences will lead to different transcription factor conformations
that can be reflected in the binding sites to their co-regulators. Currently, allostery
is not considered when trying to understand how binding phenomena determine
the functional outcome. Allosteric effects can enhance the binding specificity in a
function-oriented manner. Here we provide a biological rationale that considers
cellular crowding effects.
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At one end of the spectrum, some types of specific bind-
ing are linked to specific functions (Figure 1, panel A);
at the other, specific binding is insufficient. Function is
determined by subsequent events (Figure 1, panel B).
There are examples for both. For the first (4), p53 has a
very large number of similar REs in the genome. Binding
to certain REs activates DNA repair, cell-cycle arrest, se-
nescence, or apoptosis; binding to others represses or
inactivates pathways via either involvement of the his-
tone deacetylase, inactivation of other DNA-bound and
DNA-unbound activators, or other routes (5). The tran-
scriptional repressor REST (NRSF), which encodes DNA
binding affinity hierarchies contributing to regulation
during lineage-specific and developmental programs,
provides another example (9). Canonical REST REs bind

strongly and control REST targets common to all cell
types, whereas atypical motifs involve weak interac-
tions in cell- or tissue-specific targets. Hence, selective
binding of a certain RE already determines the functional
outcome. The nuclear receptor (NR) provides an ex-
ample for the other end of the spectrum; NR binding to
its REs is insufficient. The functional outcome is deter-
mined by subsequent co-regulator, co-activator, or co-
repressor, binding events at different sites (6, 7). The
Apak (ATM and p53-associated KZNF protein), a
Krüppel-associated box (KRAB)-type protein (10) that
regulates p53-dependent apoptosis, provides an ex-
ample for a yet different mechanism: binding to both
p53 TC and to DNA via its zinc-finger motif. At the same
time, not all binding events away from the co-activator

Figure 1. An illustration to explain why binding does not necessarily spell function. The response elements (REs, red boxes) of a given transcriptional
control protein (TC) have very similar DNA sequences, with small base pair (bp) changes, yet they regulate genes whose functions can be vastly differ-
ent. A key question is how the TC selectively binds a given RE among all the similar ones in the genome. A) Affinity of the TC to its REs is low. Bind-
ing of a cofactor (Co-F1) to the TC allosterically alters slightly the binding site of the TC to the DNA, leading to higher affinity binding to a specific RE.
Which cofactor is available and binds depends on the cellular network. In this case, binding already implies specific function. B) The TC has high affin-
ity to its REs; thus it binds to all chromatin-available ones. However, binding is insufficient. Since REs with even slightly different DNA sequences have
slightly different conformations, binding to a specific RE allosterically leads to changes in the cofactor binding site of the TC, which now selectively
binds a cofactor (Co-F2). Which cofactor binds again depends on the cellular network. C) Binding of a protein cofactor (Co-F3) has no functional conse-
quences, since this binding event does not affect the allosteric communication pathways between the functional RE and transcriptionally relevant
binding sites.
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binding site are functional (Figure 1, panel C). Why then
does binding not necessarily imply function? We pro-
pose that to be functional, binding either should be a
consequence of allosteric amplification of a minor con-
formational change, as in p53 and REST, or should lead
to it, as in NR, or both, as in Apak. A similar situation
can be seen in protein interaction domains (PID) such
as PDZ, 14-3-3, Bromo, SH2, SH3, and LRR (11). Ligand
binding to PID, mutations, or post-translational modifi-
cations away from the binding site allosterically alter the
PID binding site conformation (12, 13). Figure 2 pro-
vides two examples illustrating how binding at other
sites by an RE (6) or agonist/antagonist ligand (14) can
alter the respective co-regulator binding site conforma-

tions leading to activation or inhibition. Cellular fluctua-
tions play key roles in all, either in the initial allosteric
event or in subsequent binding events. Similar confor-
mational changes can be elicited by perturbation (bind-
ing, post-translational modification) events on major al-
losteric pathways elsewhere in the structure (12). On
the other hand, in nonfunctional binding the perturba-
tion site is not on a major pathway between the RE’s (or
agonist’s) and the co-regulator’s (Figure 1, panel C).
Thus chromatin immunoprecipitation obtains binding;
however, microarray readout may not present functional
change. This emphasizes the shortcomings in cellular
network diagrams: pathways are neither simply sequen-
tial nor “yes/no” contingent events. Mechanistically,

Figure 2. Two examples illustrating how binding at other sites�by an RE (A) or agonist/antagonist li-
gand (B)�can allosterically alter the respective co-regulator binding site conformation leading to
activation or inhibition. In the left panel of A, three crystal structures (6) of the glucocorticoid recep-
tor (GR) bound to three REs whose sequences are very similar to each other are superimposed. Bind-
ing allosterically leads to a conformational change at the co-regulator binding site (PDB ids: yel-
low, 3G99; blue, 3G6P; green, 3FYL). In the right panel, all 15 crystallized GR structures (3FYL, 3G6P,
3G6Q, 3G6R, 3G6T, 3G6U, 3G8U, 3G97, 3G8X, 3G99, 3G9I, 3G9J, 3G9M, 3G9O, and 3G9P) are su-
perimposed and viewed from a different angle showing that the conformational change is far away
from the DNA. Here only one RE (CGT in 3FYL) is shown, for clarity. Panel B illustrates the effects of
the binding of an antagonist (left panel, PDB 1nde) and an agonist (right panel, PDB 1nde) on co-
activator binding to the estrogen receptor (ER) ligand binding domain (LBD) (14). The binding of the
agonist and antagonist are at the same ER site; however, the antagonist leads to an allosteric dis-
placement of H12 to occupy roughly the same position as the co-activator. Hence, co-activator bind-
ing to the LBD is blocked. Binding of the agonist exposes the co-regulator binding site.
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pathway steps are the outcome of allosteric response re-
flected in conformational selection (15−20). This
mechanistic picture rests on a dynamic view of mol-
ecules as ensembles of conformations.

In solution proteins exist as conformational en-
sembles, which can be described by statistical mechan-
ical laws, and their populations follow statistical distri-
butions (21−23). The number of states is vast, the con-
formational differences are generally small, and the
barriers are low (Figure 3). The more flexible the pro-
teins are (as in the case of transcription factors that are
often disordered), the larger the number of states.
Ample data from single molecule, NMR, and other tech-

niques (24−34) validate this description (19, 35−37).
During binding, higher energy lower population con-
formers that are most complementary to the ligand are
selected and the equilibrium shifts toward these con-
formers (15−18). This validated (19) “conformational
selection and population shift” model (15−18) for mo-
lecular recognition provides an alternative to the 50-year
old “induced fit” hypothesis (38). Relating this descrip-
tion to binding and function, in our first case type
(Figure 1, panel A), binding implies function; hence a
key question is how the TC protein selects a particular
RE among all similar and available REs in the genome (4)
and similarly, how the PID (11), which can have hun-

Figure 3. Simple illustration of conformational selection in terms of the free energy landscape. Several crystal struc-
tures of the glucocorticoid receptors and their corresponding REs are used here as examples. GR samples the con-
formational space around the native state. Conformers lie in distinct local minima separated by low barriers, and
their energies differ slightly. All conformers pre-exist prior to binding, and each selectively binds an RE (15�19).
NMR has recently validated this theoretical proposition, illustrating that the bound conformers pre-exist in the un-
bound state (19, 35�37). Here five superimposed pairs of crystal conformers are shown presenting minor conforma-
tional changes. The conformers at the left and right have been manually slightly unfolded to depict higher energy
states. At the bottom are the corresponding five superimposed GR REs with very similar DNA sequences. The corre-
sponding PDB structures and REs (from left to right) are 3FYL-3G6P (DNA, CGT-FKBP5), 3G6Q-3G6R (DNA, FKBP5-
FKBP5), 3G6T-3G6U (DNA, FKBP5-FKBP5), 3G8U-3G8X (DNA, GILZ-GILZ), and 3G97-3G99 (DNA, GILZ-PAL). The
aligned RE sequences (6) are also presented, illustrating the minor base pair changes.
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dreds of partners binding at the same site (39), selects
a specific one. Since here the affinities are generally low,
selection is dictated by prior binding (or post-
translational modification) events. These allosterically
shift the ensemble toward specific conformations. At the
other end of the spectrum (Figure 1, panel B), the TC al-
ready binds with high affinity many REs. One or two bps
changes are amplified via population shifts in the TC
(Figure 2, panel A). Similar shifts are reflected in the PID
(11) following phosphorylation/acetylation or ligand
(e.g., agonist/antagonist (14, 40, 41), Figure 2, panel
B) binding. The outcome is surfaces complementary to
a specific co-repressor or co-activator (Figure 1, panel B)
(14). This explains the fundamental question of how
the minor differences elicited by substitutions of single
bps among REs or mutational, post-translational modifi-
cation or ligand-binding events can lead to vastly differ-
ent functional effects. This question is particularly cru-
cial since protein factors and DNA generally present only
small conformational changes. We note that here we as-
sume that one RE is recognized by a specific TC. Al-
though to date no cases of one RE recognized by mul-
tiple TCs has been observed, in principle this can
happen; under such circumstances the RE can block
the TC binding site, mimicking an antagonist.

Gene expression is controlled by cellular networks,
which consist of linked processes. Text books, such as
Cell Biology (42) depict processes as diagrams of series
of binding events, where one follows the other or is con-
tingent on the other. However, events like those of the
nuclear receptor (5, 6) question such simple descrip-
tions (Figure 4). Conformational changes elicited by one
RE differ from those of another. Eventually, which co-
regulator, e.g., acetylase or deacetylase, is selectively re-
cruited depends on co-regulator concentration, post-
translational modification states, etc., that is, on the
network. In turn, the network reflects the cellular envi-
ronment. Similarly, a PID can bind similar ligands but
elicit different conformational changes in the partner-
binding site (Figure 1, panel B). Hence, here DNA (or, li-
gand) binding observed by experiment does not indi-
cate whether it activates or inhibits expression; function
depends on sufficiently high concentration of protein
factors that recognize a specific binding site conforma-
tion amplified by a certain RE (or ligand). On the other
hand, in the first case (e.g., of p53 (4) or REST (9),
Figure 1, panel A), binding implicates function. Such a
description further sheds light on the often observed low

affinity binding: affinity measurements may not reflect
in vivo scenarios.

From the mechanistic standpoint, we face two prob-
lems: first, if binding is at different sites, is it functional
or nonfunctional, and second, if at similar sites, what is
the outcome, activation or inhibition? Experiments re-
flect steady-state concentrations; they do not follow the
time course of the immense fluctuations in the cellular
environment and the consequent allosteric effects. This
problem transcends into cellular network binding dia-
grams that do not reflect this changing selectivity. Yet af-
finity is a function of allosteric effects, and “yes/no” con-
tingencies cannot mirror such changes. Binding can be
a function of concentration or selectivity; in turn, selec-
tivity is the outcome of shifts of the ensemble of confor-
mational states following perturbation events, that is,
the outcome of allostery. To increase binding selectivity
is then the key role of allosteric events, and allosteric ef-
fects are not accounted for in cellular network diagrams.

Binding is not necessarily highly selective, as in the
case of the transcriptional repressor CoR or NotchIC
binding to CSL (43), where binding reflects cellular con-
centrations; at the same time, cellular events reflect al-
losteric effects that amplify minor conformational
changes, thus spelling higher selectivity. Cellular net-
work descriptions should mirror both. Network modules
have been featured from the topological standpoint
(44, 45). Recent work highlighted the relationship be-
tween protein conformational fluctuations and their
“promiscuous functions” and how they can greatly facili-
tate the evolution of new functions. Such mechanisms
have been delineated both experimentally (46) and
theoretically (47). Phenomena described here further
apply to the biological functions of protein disordered
states where similar conformational principles apply
(48, 49). Here we suggest a mechanistic conformational
level description where cellular processes consist of in-
dependent components governed by dynamically shift-
ing populations. Such a description accounts for molec-
ular level binding selectivity and incorporates the
immense fluctuations in cellular conditions. It is based
on a picture of molecules as dynamic conformational
ensembles and at the same time explains how evolu-
tion minimizes errors in molecular recognition. Develop-
ment increases functional complexity. We speculate
that evolution faced the question of how to exert effi-
cient response to the environment: engineer new con-
trol proteins or make use of the conformational space of
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existing ones? Developing new molecules is risky and
slower, yet expanding existing ones is wasteful, requir-
ing high concentrations with only some of the binding
events being productive. To minimize the chance of er-
rors, evolution nonetheless chose this route. The num-
ber of similar REs and similar PID partners increased dra-
matically (3, 39, 50, 51), leading to numerous
nonproductive binding events as in the case of the NR.
However, at the same time, evolution embraced al-

lostery: through environment-triggered conformational
changes that lead to enhanced specificity, allosteric ef-
fects enforce an ordered sequence of events in multimo-
lecular associations, leading to complex yet less error-
prone structures as in the case of viral capsids. Allostery
limits the conformational space of the association, re-
ducing the chances of nonproductive associations in-
herent to diffusion-collision-type processes, thus offer-
ing advantageous solutions. We further note that our

Figure 4. Allosteric regulation underlies the complex binding�function relationship in cellular networks. The figure highlights the inadequacy of
current cellular diagrams that depict series of binding events. As an example. we depict the estrogen receptor, for which there are experimen-
tal data. Estrogen receptors (Era and ERb) can be selectively activated by ligand binding, with allosteric control of ligand selectivity and function
(55). A) Schematic “textbook” network diagram of the estrogen receptor (ER) signaling pathways. ER activation is controlled by extracellular
signals, hormone and cofactor binding events (56). Extracellular signals lead to phosphorylation of the ER monomer. Examples of the extracel-
lular signals are (i) dopamine and cAMP binding to GPCR can activate PKA; (ii) growth factors (GFs) activate their receptors with subsequent ac-
tivation of the RAS-RAF-ERK pathway; and (iii) nongenomic action of ER in the membrane activates the PI3K-Akt pathway. Both antagonist and
agonist ligands can prompt ER dimerization with different allosteric consequences for the helix H12 position (see Figure 2, panel B). The shift in
the H12 position triggered by antagonist ligands blocks subsequent cofactor binding, while agonist ligands allostericaly change the ER con-
formations to allow cofactor recruitment. Cofactors (57) like the nuclear receptor co-repressor (NCoR) and the repressor of the estrogen receptor
activity (REA) lead to repression of ER response elements (ERE). Examples of direct activators are the thyroid hormone receptor (TRAP), steroid
receptor activator (SRA), and steroid receptor co-activators (SRCs). The secondary co-activators (like CoCoA and PRMT) also bind ERS indirectly
through association with SRCs. Thus, the network diagram provides simple binding events but misses the allosteric regulation of binding and
function (57), which are highlighted in panels B and C. B) Affinities between the central node (here the human ERa) and its binding partners (ag-
onists, connected via the edges), where line thickness indicates the binding strength (58) thus specifying its rank. For example, the 17b-
dihydroequilenin (17b-DHEquilenin) ranks third, and Equilenin ranks tenth in binding strength. C) The rank of human ERa functional activity
(58), where line thickness indicates the strength of the functional activity. Unlike the binding strength, 17b-DHEquilenin only ranks eighth and
Equilenin ranks third in binding strength for ERa. For ERb, the Equilenin ranks last in binding strength but is the most active for ERb (58). Com-
parison of the widths of corresponding edges between panels B and C illustrates that the extent of the affinity does not necessarily correspond
to the degree of function. Thus the allosteric control of estrogen receptors strongly supports the notion that allostery should be considered
when trying to understand how binding phenomena determine the functional outcome.
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definition of function as binding that leads to specific
subsequent events explains why interface design is so
difficult: the binding should be such that it would elicit
an allosteric transition culminating with (far away) bind-
ing sites that have “correct” conformations. To con-
clude, here we present a perspective of protein�DNA
binding that suggests possible criteria that can be used
to discriminate between functional and nonfunctional
binding events. A key ingredient of the discriminant cri-
teria is the presence of allosteric effects that are capable
of enhancing the binding specificity in a function-
oriented manner. Allostery plays a key role in determin-

ing whether a binding event is functional and the type
of function (4, 8, 13, 15−20, 52, 53). This provides a
new definition of function and as such of biophysical
events that qualify as “functional”.
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