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1  | INTRODUC TION

A new, highly virulent coronavirus (CoV) capable of infecting humans 
(HCoV) currently holds much of the world's population hostage. This 

virus, referred to as severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) and causing the coronavirus disease 2019 (COVID-
19) disease in infected subjects, emerged at the end of 2019 in China 
and the moment is affecting the population in at least 214 countries 
and territories around the world. This is only the latest in a series of 
lethal HCoV-caused illnesses, following the emergence of SARS-CoV 
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Abstract
Without protective and/or therapeutic agents the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) infection known as coronavirus disease 2019 
is quickly spreading worldwide. It has surprising transmissibility potential, since it 
could infect all ages, gender, and human sectors. It attacks respiratory, gastrointes-
tinal, urinary, hepatic, and endovascular systems and can reach the peripheral nerv-
ous system (PNS) and central nervous system (CNS) through known and unknown 
mechanisms. The reports on the neurological manifestations and complications of 
the SARS-CoV-2 infection are increasing exponentially. Herein, we enumerate seven 
candidate routes, which the mature or immature SARS-CoV-2 components could use 
to reach the CNS and PNS, utilizing the within-body cross talk between organs. The 
majority of SARS-CoV-2–infected patients suffer from some neurological manifesta-
tions (e.g., confusion, anosmia, and ageusia). It seems that although the mature virus 
did not reach the CNS or PNS of the majority of patients, its unassembled compo-
nents and/or the accompanying immune-mediated responses may be responsible for 
the observed neurological symptoms. The viral particles and/or its components have 
been specifically documented in endothelial cells of lung, kidney, skin, and CNS. This 
means that the blood–endothelial barrier may be considered as the main route for 
SARS-CoV-2 entry into the nervous system, with the barrier disruption being more 
logical than barrier permeability, as evidenced by postmortem analyses.
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in 2002 and Middle East respiratory syndrome-coronavirus (MERS-
CoV) in 2012. Within the worldwide storm caused by the COVID-19 
outbreak, most patients infected with SARS-CoV-2 and diagnosed 
with COVID-19 have only mild symptoms or are entirely asymp-
tomatic. Unfortunately, approximately 20% of infected individu-
als exhibit far more serious symptoms, with 15% being considered 
“severe” and requiring oxygen, and the remaining 5% being viewed 
as “critical” and relying on ventilators. Symptoms of these serious 
cases include signs similar to pneumonia, septic shock, respiratory 
failure, and even multi-organ failure. Thus far, an estimated 1%–2% 
of COVID-19 cases have proven to be fatal (Guan et al., 2020; Li, 
Guan, et al., 2020), though it must be noted that the majority of fa-
talities associated with the disease happened in individuals suffering 
from chronic afflictions, including various cardiovascular diseases, 
chronic obstructive pulmonary disease (COPD), and other comor-
bidities (Wu & McGoogan, 2020).

Analyses of deceased SARS-CoV-2 patients have shown that the 
viral particles reach and are distributed in nervous system tissues 
(Table 1). This discovery begs several important questions: from 
where did SARS-CoV-2 come to the nervous system and how did 
it access the brain? What are the brain infection manifestations? Is 
viral infection persistent in the brain? Are COVID-19 deaths depen-
dent or independent on brain infection? The goal of this work is to 

get some logical answers to some of these questions.
To this end, we conducted a comprehensive analysis of existing 

literature, using the following search strategy and selection crite-
ria. References for this review were collected through searches of 
PubMed, SCOPUS, and Web of Science for articles published until 
10 July 2020. The search terms used were “coronaviruses, SARS-
CoV, SARS-CoV-2, 2019-nCov, MERS-CoV, 229E-CoV”, and “COVID-
19”, combined with “nervous system”, “neuroinvasion”, “neurological 
manifestation”, and “brain.” In vitro studies on neurotropism poten-
tials of CoV on neural or glial cell cultures were considered. In vivo 
model investigations were included for infection routes (intranasal 
and intraperitoneal) of neuroinvasion. Postmortem autopsies and 
biopsy analyses were considered. Furthermore, clinical findings 
were searched and included for neurological signs related to CoVs 
infections.

Although the 2002–2004 outbreak of the SARS-CoV, as well as 
the 2012–2020 outbreak of the MERS-CoV and current COVID-19 
are the real newsmakers, it is recognized now that in addition to 
SARS-CoV, MERS-CoV, and SARS-CoV-2 (all are β-CoVs of the B and 
C lineage), there are four other CoVs capable of infecting humans 
(HCoVs), which circulate continuously in the human population. 
These are HCoV-OC43 (Bruckova et al., 1970; Zhu et al., 2018) and 
HCoV-HKU1 (Woo et al., 2005) (β-CoVs of the A lineage or β1CoVs), 
and HCoV-229E (Hierholzer, 1976; Kaye et al., 1972) and HCoV-NL63 
(Fouchier et al., 2004; van der Hoek et al., 2004) (α-CoVs). Identified 
in the late 1960s (HCoV-229E and the HCoV-OC43) (Almeida & 
Tyrrell, 1967; Bradburne et al., 1967; Hamre & Procknow, 1966; 
Larson et al., 1980; McIntosh et al., 1967) and in 2004–2005 
(HCoV-NL63 (Esper et al., 2005; Fouchier et al., 2004; van der Hoek 

et al., 2004) and HCoV-HKU1 (Woo et al., 2005)), these HCoVs are 
known to be responsible for 3%–10% cases of the common cold and 
short-term upper respiratory infections that occur mainly in winter, 
with a short incubation time (Gerna et al., 2006, 2007), with about 
2% of the human population being healthy carriers of an HCoV 
(Geller et al., 2012; Zumla et al., 2016). Although these HCoV strains 
can also cause more serious diseases of the lower respiratory tract, 
such as bronchitis, bronchiolitis, and pneumonia, especially in new-
borns or infants, elderly people, and immunocompromised patients 
(Geller et al., 2012; Zumla et al., 2016), their phenotypes are gener-
ally mild, and as a result, these four HCoVs received relatively little 
attention. Consequently, there is abundant research into CoV that 
stems all the way back to the 1930s, which has resulted in a consid-
erable knowledge base and various tools for further examining these 
pathogens in humans.

Data from the in vitro experiments on culturing SARS-CoV and 
SARS-CoV-2 on the cell lines derived from different human and 
animal organs clearly indicated that there are many similarities as 
well as differences between these two CoVs. One of the interest-
ing points made in this study was that SARS-CoV-2 (but not SARS-
CoV) was able to modestly replicate in the neuronal (U251) cells, 
which highlighted the potential of this virus to cause neurological 
manifestations (e.g., confusion, anosmia, and ageusia) in patients 
with COVID-19 (Chu et al., 2020). The same study also showed 
that the pluripotent stem cell (iPSC)-derived BrainSphere model 
can be infected with SARS-CoV-2 (SARS-CoV-2/Wuhan-1/2020), 
which exponentially replicated 10-fold there (Bullen et al., 2020). 
The virus particles were found in the neuronal cell body extending 
into apparent neurite structures. This neural cell model expressed 
angiotensin-converting enzyme-2 (ACE2, a SARS-CoV-2 receptor 
on the surface of the host cells interacting with the viral spike (S) 
protein) but not the transmembrane serine protease-2 (TMPRSS2, 
the catalytic enzyme responsible for the S protein priming required 
for the subsequent CoV cell entry), which suggests the presence of 
alternative proteolytic tools there (Bullen et al., 2020). This state-of-
the-art 3D organotypic cell culture model was already successfully 

Significance

There are neurological manifestations and complica-
tions of the severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) infection. Therefore, similar to 
other coronaviruses SARS-CoV-2 is a neurotropic virus. 
To answer the question on how SARS-CoV-2 infection 
can reach the human nervous system, we are discussing 
here seven candidate routes. Among these seven path-
ways, the blood–endothelial barrier is the main route for 
SARS-CoV-2 entry into the nervous system. An impor-
tant other route is breaching of the BBB, permeability of 
which can be increased by the cytokine storm leading to 
neuroinflammation.
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used in the infection studies with the Zika, Dengue, HIV, and John 
Cunningham (JV) viruses. The most interesting point of these studies 
was the fact that the functional blood–brain barrier (BBB) had lost its 
functionality when microglia (which was not derived from the neu-
ral precursor cells but from the mesoderm germ layer) invaded the 
developing brain from the blood, resulting in cytokine release and 
neuronal damage in models analyzing the infection with HIV and JC 
viruses (Bullen et al., 2020). Therefore, one of the reasons why some, 
but not all, of the patients showed neurological manifestations could 
be related to the fact that the BBB normally hinders virus entry, but 
is impaired in some by inflammatory conditions (Bullen et al., 2020).

2  | ARE HUMAN CORONAVIRUSES 
NEUROTROPIC?

Neurotropism of HCoVs represents an interesting problem. Data 
on the immune-mediated central nervous system (CNS) pathology 
associated with viral infection are traditionally derived from the 
analysis of mice infected with a member of the Coronaviridae fam-
ily, Murine Hepatitis Virus (MHV) strains, which is a β-coronavirus 
genetically related to Human CoV-OC4347 (Lane & Hosking, 2010). 
Being a group II coronavirus, MHV represents a natural pathogen of 
mice that typically infects the liver, gastrointestinal (GI) tract, and 
CNS, and shows various disease manifestations ranging from gastro-
enteritis to hepatitis and acute and chronic encephalomyelitis (Bailey 
et al., 1949; Cheever et al. 1949; Holmes & Lai, 1996; McIntosh, 1996; 
Perlman et al., 1999). It is recognized that there are at least three 
major mechanisms of the formation of immune-mediated lesions in 
CNS. They include: (a) a systemic inflammatory response syndrome 
which occurs as a result of an excessive host response to the in-
fection and leads to the dysfunction of various organs, including 
CNS, (b) a direct viral infection of CNS immune cells, such as astro-
cytes, microglia, and macrophages, leading to the local production 
of pro-inflammatory cytokines IL-6, TNF-α, IL-1β, and IL12, as well 
as some toxic agents or subsequent tissue damage via the recruit-
ment and activation of other immune cells and induction of apop-
tosis (Li et al., 2004), and (c) generation of an autoimmune reaction 
by an adaptive immune response directed against host epitopes or 
proteins, which are either misrecognized by the pathogen-directed 
antibodies or expressed by damaged tissues (and previously unrec-
ognized by the adaptive immune system) (Bergmann et al., 2006; 
Natoli et al., 2020; Perlman & Dandekar, 2005). There is also a pos-
sibility for the eventual demyelination caused by immune-mediated 
events, either through T cells or by means of other cytokine and 
chemokine pathways (Wu et al., 2000).

About 40% (167 out of 417) of COVID-19 patients are known 
to develop a spectrum of neurological symptoms, such as cerebro-
vascular diseases, hypoxic/ischemic encephalopathy, impaired con-
sciousness, acute cerebrovascular disease, encephalopathy, acute 
hemorrhagic necrotizing, corticospinal tract signs, and prominent 
agitation and confusion (von Weyhern et al., 2020) (reviewed in (De 
Felice et al., 2020)). These manifestations prove the presence of a 

link between the SARS-CoV-2 infection and CNS pathologies and 
support neurotropism of this virus (Puelles et al., 2020; Solomon 
et al., 2020).

Although the CoVs are not primarily neurotropic viruses and the 
most published reports defined the respiratory epithelium as their 
primary target, there is increasing evidence that neurotropism is 
indeed a common feature of the viruses (Chen, Zhou, et al., 2020; 
Glass et al., 2004; Khan et al., 2020; Li et al., 2012; Wang, Hu, et al., 
2020). In addition to the aforementioned MHV, many other mem-
bers of the β-CoV family have been documented to show neurot-
ropism. This necessitates gaining a clear understanding of whether 
SARS-CoV-2 can enter the CNS and cause neuronal injury that may 
result in acute respiratory distress (Li et al., 2020) and potentially 
some other neurological manifestations.

3  | SARS- CoV

Human tissue studies displayed an abundance of ACE2 receptors 
in the epithelia of the small intestine and lung. These receptors 
were also identified in vesicular systems, such as venous and ar-
terial endothelial cells (ECs) and arterial smooth muscle cells in 
all organs studied, including the brain (Hamming et al., 2004). In 
agreement with these observations, ACE2 immunostaining was 
widely distributed throughout the brain in the transgenic mouse 
(K18-hACE2 model) expressing human ACE2 (Doobay et al., 2007). 
A close look at the antigen and viral kinetics of the SARS-CoV 
virus in transgenic mice revealed that the infection began in the 
respiratory epithelium, spread rapidly to the alveoli, entered the 
brain via the olfactory nerve, and progressively invaded cortical 
and subcortical regions (McCray et al., 2007; Netland et al., 2008). 
It was also shown that, eventually, the infection extended to sev-
eral vital brainstem nuclei, such as the nucleus tractus solitarii, 
dorsal motor nucleus of the vagus, and area postrema. Since the 
dorsal vagal complex (DVC) is located in the medulla oblongata, 
the lowest region of the brainstem that controls several auto-
nomic activities, including orchestration of the cardiorespiratory 
function (heart and breathing) and food intake, injuries of this 
specific region of the brainstem could be detrimental to the main-
tenance of homeostasis and explain the cardiorespiratory disor-
der. Although the animals intracranially inoculated with low-dose 
virus were characterized by a limited viral spreading, they rapidly 
succumbed to infection (Netland et al., 2008). In animal models, 
CoV infection was accompanied by a considerable infiltration of 
lymphocytes and macrophages in the lungs, resulting in a release 
of pro-inflammatory cytokines. This occurred in the brain as well 
as at the pulmonary level, and within 5 days the subject mice en-
tered a lethargic-like state, which would suggest the involvement 
of the CNS (McCray et al., 2007; Natoli et al., 2020). These neu-
roanatomic seem to point to the idea that the infected organisms 
die as a result of dysfunction of the cardiorespiratory center in 
the brainstem (Li, Bai, et al., 2020). In the past, autopsy results 
of humans with SARS-CoV infections showed strong evidence 
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of the presence of SARS-CoV by immunohistochemistry, real-
time reverse transcription PCR, and electron microscopy (Natoli 
et al., 2020). Furthermore, individuals with acute SARS-CoV also 
exhibited the presence of the virus in the cerebrospinal fluid (CSF, 
Netland et al., 2008).

4  | MERS- CoV

Very limited data are currently available on the neurological dis-
orders and pathology in humans with the MERS-CoV infection. 
Although the majority of patients infected with MERS-CoV ex-
hibit predominant pulmonary clinical involvement, there are some 
patients who exhibit neurologic manifestations, such as ataxia, 
coma, peripheral nerve symptoms, and focal motor deficits (Arabi 
et al., 2015; Kim et al., 2017; Natoli et al., 2020). Ex vivo analyses 
of the MERS-CoV infectivity in various human lung cell lines dem-
onstrated that the virus could infect human neuronal lines (Chan 
et al., 2013). In the hDPP4 transgenic mice model, intranasal MERS-
CoV inoculation resulted in infection of both lung and brain by the 
virus at 3- to 9-day and 7- to 9-day postinoculation, respectively, 
indicating different viral infection kinetics (Hao et al., 2019). This 
may indicate a hematogeneous infection route. The brain is (pos-
sibly) infected via the olfactory nerves, and thereafter infection is 
rapidly spread to some specific brain areas, including the thalamus 
and brainstem (Netland et al., 2008). Interestingly, the virus parti-
cles were detected only in the brain, but not in the lung, in mice 
infected with low inoculum doses of MERS-CoV, suggesting that 
the infection in the CNS played a greater role in the high mortality 
(Li et al., 2016). Similar to SARS-CoV, MERS-CoV is also known to 
replicate in human macrophages and dendritic cells, lending addi-
tional support to the hematogeneous hypothesis (Zhou et al., 2014). 
The infected model brain consequences included a mild perivascular 
cuffing (Agrawal et al., 2015), and congestion and dilatation of the 
cerebral vessels and areas of cellular necrosis in the thalamus, hip-
pocampus, and cerebral cortex (Hao et al., 2019; Natoli et al., 2020).

5  | SARS- CoV-2 (COVID -19)

Although the SARS-CoV-2 is mainly a respiratory pathogen, it can 
also manifest neurologically, causing encephalitis and epileptic sei-
zures, which makes CNS involvement likely. The reported neurolog-
ical sequelae of SARS-CoV-2 further suggest that the neurological 
impact of the virus needs to be examined. In fact, although the on-
going COVID-19 pandemic is still relatively young, it has already 
given rise to many neurological and neuroradiological phenotypes, 
including ageusia, anosmia, Guillain-Barré syndrome, and even 
acute necrotizing hemorrhagic encephalopathy (Mao et al., 2020; 
Poyiadji et al., 2020; Solomon et al., 2020; Zhao et al., 2020).

Mao et al. recently reported that among the patients with a 
severe form of COVID-19, more than 88% (78/88) displayed some 
form of neurologic dysfunction, such as acute cerebrovascular 

diseases and impaired consciousness (Mao et al., 2020). Also, during 
the current SARS-CoV-2 outbreak, a COVID-19 patient was re-
ported to have lost control over breathing (Li, Bai, et al., 2020). Since 
many COVID-19 patients suffer acute respiratory failure, clinicians 
and health-care professionals must separate them into cases that 
are either neurologically affected, or do not display any neurological 
deficits (Baig et al., 2020; Li, Bai, et al., 2020). It would therefore be 
beneficial to have a greater understanding of the possible neuroin-
vasion of the disease, as it can help in the treatment and prevention 
of respiratory failure related to SARS-CoV-2 (Li, Bai, et al., 2020).

In a recent report it was demonstrated that both human and 
mouse olfactory sensory neurons do not express the two key 
genes involved in SARS-CoV-2 entry, namely TMPRSS243 and ACE2 
(Brann et al., 2020). However, the olfactory epithelial support cells 
and stem cells express both of these genes, similar to nasal re-
spiratory epithelium cells (Brann et al., 2020). This suggests that 
the SARS-CoV-2 infection may possess mechanisms that lead to 
olfactory dysfunction, and also brings into question whether ol-
factory bulb can serve as an entry point for CoVs. (Brann et al., 
2020; Natoli et al., 2020). Since the anosmia symptoms appeared 
in many SARS-CoV-2 infections, these important questions were 
raised (De Felice et al., 2020): Does anosmia represent an indica-
tion of a SARS-CoV-2 infection in the CNS, or it is a reflection of 
an impact on the peripheral nervous system (PNS)? Furthermore, 
can the olfactory or optic nerves act as conduits for SARS-CoV-
2’s entry into the CNS? These questions are also in line with the 
current lack of published data on human neuropathological mani-
festations of the SARS-CoV-2 infection.

6  | NEUROLOGIC AL MANIFESTATIONS IN 
COVID -19 PATIENTS

It is accepted now that the SARS-CoV-2 can reach and be mani-
fested in most human organs and tissues (Figure 1). Mao et al. (2020) 

F I G U R E  1   Respiratory and extra respiratory organ/system 
COVID-19 prevalence
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and Solomon et al. (2020) investigated the penetration potential of 
the virus into the CNS in >220 patients (Mao et al., 2020; Solomon 
et al., 2020). Their results show that 36.4% of the patients had some 
neurologic abnormalities ranging from some nonspecific manifes-
tations, such as headache, seizure, and dizziness to specific mani-
festations, such as stroke and loss of sense of taste (ageusia) and 
smell (anosmia) (Mao et al., 2020). In fact, gustatory and olfactory 
dysfunctions are both prevalent in patients with mild-to-moderate 
COVID-19, despite not having nasal symptoms, whereas some other 
neurological symptoms and manifestations can be seen in the more 
severe COVID-19 cases (Ahmad & Rathore, 2020; Asadi-Pooya & 
Simani, 2020; Conde Cardona et al., 2020; Lai et al., 2020; Vonck 
et al., 2020). It must be noted here that the more severe neurologic 
symptoms, such as decreased levels of consciousness, or develop-
ment of seizures and stroke, were more common in patients in the 
late stages of the infection, and these symptoms were responsible 
for the heightened mortality rate in severely affected patients (Mao 
et al., 2020). Histopathological examination of the brain specimens 
obtained from 18 patients who died 0 to 32 days after the onset of 
the COVID-19 symptoms of COVID-19 showed only hypoxic changes 
and did not show encephalitis or other specific brain changes refer-
able to the virus. There was no cytoplasmic viral staining in immu-
nohistochemical analysis. The virus was detected at low levels in six 
brain sections obtained from five patients (Solomon et al., 2020).

One should keep in mind though that the diagnosis of coronavirus 
particles by electron microscopy is challenging due to the numerous 
similarly appearing normal cellular structures (e.g., clathrin-coated 
vesicles, which are normal cell organelles involved in intracellular 
transport or cross-sections of the rough endoplasmic reticulum), 
creating significant controversy (see e.g., (Miller & Brealey, 2020; 
Miller & Goldsmith, 2020; Su, Gao, et al., 2020; Su, Yang, et al., 2020) 
and (Goldsmith et al., 2020; Varga et al., 2020a, 2020b)). In fact, it 
was pointed out that “there are inherent difficulties in discrimina-
tion of cellular vesicles from viral particles solely by morphological 
evidence” (Su, Gao, et al., 2020). In other words, the electron mi-
croscopic evidence alone is not sufficient for unambiguous identi-
fication of virions, with many erroneously identified particles being 
found in incorrect cellular location, or lacking diagnostic features of 
coronavirus. We provided an in-depth discussion of this issue in our 
recent review (Elrashdy et al., 2020).

It was also hypothesized that CNS infection with involvement and 
dysfunction of the cardiorespiratory brainstem centers may contrib-
ute to the death of infected animals or patients (Li, Bai, et al., 2020; 
Xia & Lazartigues, 2008). hACE2 transgenic mice that inoculated 
intracranially or intranasally with virus particles commonly exhib-
ited a disseminated infection of the DVC (area postrema, nucleus 
tractus solitarius, and dorsal motor nucleus of the vagus) (Netland 
et al., 2008). This complex contains efferent and afferent projections 
of the vagus nerve to the lungs and respiratory tracts, suggesting 
that the vagus nerve may also serve as a neuronal route for viral 
entry into the brain. This leads to the hypothesis that the dysfunc-
tion of the cardiorespiratory brainstem center may be at least par-
tially responsible for the death of CoV-infected animals or patients 

(Li, Bai, et al., 2020; Xia & Lazartigues, 2008). A cytokine storm 
with excessive levels of pro-inflammatory cytokines (IL-6, GM-CSF, 
IL-2, interferon-γ, IL-7, inducible protein 10, TNF-α, macrophage in-
flammatory protein 1-α, monocyte chemoattractant protein 1, and 
monocyte chemoattractant protein 1) may also contribute to the 
lethality of the COVID-19 infection (Desforges et al., 2019; Mehta 
et al., 2020). This is illustrated by recent reports of a COVID-19 pa-
tient with an acute necrotizing encephalopathy, a rare complication 
observed in infections with viruses such as influenza, and related to 
a cytokine storm in the brain without direct viral invasion (Poyiadji 
et al., 2020; Vonck et al., 2020).

A postmortem histological analysis of the brain of a 71-year-
old man who died from complications of COVID-19 revealed the 
presence of several types of pathological lesions, such as a wide-
spread hemorrhagic and lesion of white matter with clusters of mac-
rophages, necrotic blood vessels, and perivascular inflammation, 
acute axonal injury, demyelination, marked lesions of central axonal 
injury, associated extravasated blood, and surrounding myelin loss 
(Reichard et al., 2020). Despite all of these dramatic neurological 
manifestation in this patient, a routine histological examination of 
the olfactory bulb/nerve revealed only aging-related corpora amy-
lacea (Reichard et al., 2020). More globally, the presence of brain 
tissue edema and partial neuronal degeneration were reported in au-
topsy reports of deceased COVID-19 patients (Xu, Shi, et al., 2020).

7  | SARS- CoV-2 CELLUL AR ENTRY 
RECEPTORS

It appears that all the major requirements for efficient hijacking 
of the nervous cells/tissues by the SARS-CoV-2, which caused the 
COVID-19 outbreak, are in the place. This includes utilization of the 
ACE2 (which is present on the surfaces of the cells in a wide variety 
of human tissues, including the brain) as a cellular entry receptor and 
the presence of the spike glycoprotein possessing affinity for ACE2, 
which is ~10- to 20-fold higher than that of the SARS-CoV spike pro-
tein (Walls et al., 2020; Wrapp et al., 2020). All this indicates that 
SARS-CoV-2 may have higher neuroinvasive potential compared to 
previous HCoVs. It was also shown that the SARS-CoV-2 receptor 
ACE2 is expressed in ECs of cerebral capillaries, and within the brain 
parenchyma in both neurons and microglia (Yamagata et al., 2020). 
However, there is no complete expression profile of the catalytic 
enzymes that are required for CoV entry, such as transmembrane 
serine protease 2 (TMPRSS2) and Furin, on the surface of the nerv-
ous tissue cells, from where the COVID-19 can inter to the human 
nervous system.

Recent studies showed that a subset of COVID-19 patients ex-
hibit altered olfactory function (Altin et al., 2020; Chung et al., 2020; 
Cooper et al., 2020). Single-cell and bulk RNA-Seq data sets from 
human nasal biopsy (Durante et al., 2020) were analyzed to identify 
the cell types in the human olfactory neuroepithelium (which is an 
extracranial site supplying input to the olfactory bulbs of the brain) 
and in the olfactory bulb that express cell entry molecules (ACE2 
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and TMPRSS2, as well as Furin) that mediate infection by SARS-
CoV-2 (Brann et al., 2020). This was further complemented by the 
analysis of the single-cell RNA-Seq data from whole mouse olfactory 
bulb from juvenile mice (age postnatal day 26–29; Zeisel et al., 2018) 
as well as single-cell RNA-Seq data from the olfactory bulb from 
the adult male mice (8 to 12 weeks old) (Brann et al., 2020). These 
analyses revealed that two key genes involved in SARS-CoV-2 entry, 
namely ACE2 and TMPRSS2, were expressed in the samples from the 
whole olfactory mucosa in mouse and human in addition to the thiol 
proteases cathepsins Ctsb and Ctsl (Brann et al., 2020). However, 
neither olfactory sensory neurons nor olfactory bulb neurons ex-
pressed these genes (with the exception of cathepsins Ctsl), which 
instead were expressed in several stem, perivascular, and support 
cells (Brann et al., 2020). Such results suggest that anosmia and re-
lated disturbances in odor perception in COVID-19 patients could be 
associated with the SARS-CoV-2 infection of nonneuronal cell types 
(Brann et al., 2020).

Vavougios proposed that the furin-like cleavage site of the CoV 
spike protein could be an important determinant for the neurotropism 
of this virus (i.e., its ability to infect nerve tissue) (Vavougios, 2020a, 
2020b). In fact, it was found that cleavage of the S-protein by furin 
or furin-like proteases is important for the invasion and virulence of 
SARS-CoV and MERS-CoV (Millet & Whittaker, 2015). Furthermore, 
the proteases determine the host tissue tropism and specificity of 
these CoVs (Millet & Whittaker, 2015), letting them infect the ner-
vous system via membrane fusion. However, additional studies are 
necessary to determine if the furin-like cleavage site on the spike 
protein of SARS-CoV-2 plays a certain role in its invasion of the 
nervous system. Another important issue that also requires careful 
future analysis is the presence and sustainability of the nervous sys-
tem damage after the cure of the COVID-19 infection. This became 
especially troublesome in light of the fact that the anosmia and age-
usia, which are frequently observed among COVID-19 patients, also 
serve as characteristic and prodromal nonmotor manifestations of 
Parkinson's disease (Haehner et al., 2011; Oppo et al., 2020).

It is also possible that other SARS-CoV-2 receptors may exist, 
or another cellular entry mode is utilized by SARS-CoV-2 for hijack-
ing the nervous cells/tissues. These possibilities were supported by 
Radzikowska et al. (2020), whose analysis suggested the presence 
of a different receptor repertoire potentially involved in the SARS-
CoV-2 infection at the epithelial barriers and in the immune cells, 
such as the co-expression of ACE2, CD147 (BSG), and CD26 (DPP4). 
Changes in the expression of these receptors related to gender, age, 
smoking, and obesity, as well as to the status of the disease may 
further contribute to COVID-19 severity and morbidity patterns 
(Radzikowska et al., 2020). Using a combination of structural and 
molecular modeling approaches, Fantini et al. (2020) revealed that 
the sialic acids linked to host cell surface glycoproteins and gangli-
oside can also serve as an additional cellular entry route for SRSR-
CoV-2 (Fantini et al., 2020), similar to influenza virus, SARS-CoV, and 
HCoV OC43 (Lu et al., 2008; Tortorici et al., 2019). A new type of 
ganglioside-binding domain (111–158) at the tip of the N-terminal 
domain of the SARS-CoV-2 S protein was identified, which is fully 

conserved among clinical isolates worldwide, and sialic acid and gan-
glioside bind chloroquine with high affinity (Fantini et al., 2020).

Although there is a 77% sequence identity between SARS-CoV 
and SARS-CoV-2, Hassanzadeh et al. (2020) discovered that the 
SARS-CoV-2 S protein has a slightly higher positive charge than 
SARS-CoV. This is because it has five less negatively charged res-
idues and four more positively charged residues, which may be 
why the protein has a higher affinity for negatively charged regions 
of other molecules in both specific and nonspecific interactions 
(Hassanzadeh et al., 2020). Analysis of the peculiarities of the S pro-
tein binding to the host ACE2 receptor showed a 30% higher binding 
energy for SARS-CoV-2 than the SARS-CoV S protein (Hassanzadeh 
et al., 2020). Therefore, SARS-CoV-2 is expected to have higher ef-
ficiency than SARS-CoV in reaching the brain after entering through 
the cells (Hassanzadeh et al., 2020).

8  | CIGARET TE SMOKING , COVID -19 
INFEC TIVIT Y,  AND NEUROTROPISM

Cigarette smoke has been shown to increase patient susceptibil-
ity to COVID-19, with smokers suffering from the disease being far 
more likely to develop critical illnesses (Guo, 2020; Patanavanich 
& Glantz, 2020; Zhao, Meng, et al., 2020). One study of 1,099 
COVID-19 patients revealed that only 4.7% of nonsmokers required 
mechanical ventilation, were admitted to an intensive care unit, or 
died, compared to 12.3% of smokers (Guan et al., 2020). Although 
the exact mechanism for such an association is uncertain, one of the 
potential explanations can be found in the fact that cigarette smoke 
can increase the levels of ACE2 expression in the lungs of mammals 
(Smith & Sheltzer, 2020). In the case of SARS-CoV infection, ACE2 
levels may influence the progression of the disease: within a group of 
mice engineered to express human ACE2, mice with the highest lev-
els of ACE2 mRNA displaying the shortest survival time after being 
exposed to SARS-CoV (McCray et al., 2007).

In agreement with this model, analysis of the data sets of large, 
small, and bronchial airway epithelium of current and former smok-
ers revealed a noticeable upregulation of pulmonary ACE2 gene 
expression in all data sets of smokers compared to nonsmokers, 
irrespective of tissue subset (Cai et al., 2020). Another study also 
showed that ACE2 expression in the lower airways is upregulated 
by active cigarette smoking and COPD, which might help explain 
the higher risk of serious COVID-19 in patients that smoke (Leung, 
Yang, et al., 2020). Interestingly, in this study, smoking status was 
significantly related to the levels of the ACE2 gene expression in 
the airways of these participants, where current smokers showed 
a significantly higher gene expression than never-smokers, whereas 
former smokers’ levels were between current and never-smokers 
(Leung, Yang, et al., 2020). This ACE2 overexpression in human 
bronchial epithelial cells is mediated by nicotine exposure specifi-
cally through the α7 subtype of nicotine acetylcholine receptors 
(α7-nAChR) (Russo et al., 2020), which was significantly correlated 
with the expression of CHRNA7 gene encoding the α7-nAChR. The 
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levels of the CHRNA7 expression were also correlated with the body 
mass index, raising an intriguing scenario, where the nicotine recep-
tor mediation of ACE2 may also be related to the high proportion of 
obese individuals among the COVID-19 cases (Leung et al., 2020). 
Further support is given by the fact that cigarette smoke might cause 
a dose-dependent upregulation of ACE2, in both rodent and human 
lungs (Smith et al., 2020).

There are also reports indicating that smoking may result in 
higher levels of androgen hormones like testosterone. The androgen 
receptor has been shown to increase the expression of TMPRSS2 
(Qing et al., 2020), and sex steroid modulation of TMPRSS2 serves 
as a possible mechanism that may explain the differences in SARS-
CoV-2 infection rates between females and males (Stopsack 
et al., 2020). In line with these observations, RNA-sequencing 
data analysis for lung and oral epithelial tissues of human COVID-
19 patients clearly demonstrated that both TMPRSS2 and ACE2 
were significantly upregulated among smokers versus nonsmokers 
(Chakladar et al., 2020). It was also found that there was a correla-
tion between the smoking-mediated upregulation of the androgen 
pathway and the upregulation of ACE2/TMPRSS2 expression, and 
that the androgen receptor gene and ADAM17 (a key mediator of 
ACE2 activity) were upregulated in smokers (Chakladar et al., 2020). 
Furthermore, smoking was shown to induce furin upregulation, al-
though to a lesser degree than ACE2 (Cai et al., 2020).

Taken together, these observations support the idea that epithe-
lial cells may be more susceptible to the COVID-19 virus as a re-
sult of smoking (Chakladar et al., 2020). But what one can say about 
smoking and neurotropism of CoVs? ACE2 expression in human 
brain vessels was significantly elevated by cigarette smoke extract 
(CSE) treatment. Furthermore, it was found that ACE2 expression is 
increased in vessels exposed to diabetes or smoking and in ischemic 
brains, which leads to them being more susceptible to infection. 
Also, ACE2 expression was upregulated in primary cultured human 
blood vessels with diabetes when compared to healthy vessels (Choi 
et al., 2020). Therefore, the regulation of ACE2 expression by cig-
arette smoke in the brain likely has a significant effect on SARS-
CoV-2 susceptibility, and might facilitate viral dissemination (Smith 
et al., 2020). The harmful effects of CSE on the BBB can upregulate 
several genes related to inflammation, such as VCAM1 and ICAM1, 
which also have destructive effects on the BBB (Choi et al., 2020).

9  | NERVOUS SYSTEM ACCESS ROUTES OF 
HCOVS AND REL ATED PATHOPHYSIOLOGY

CoVs are primarily not neurotropic viruses, and their primary target 
is the respiratory epithelium. However, although the ACE2, which 
serves as a major receptor for SARS-CoV and SARS-CoV-2, and 
which is an enzyme attached to the cell membranes of cells in the 
arteries, lungs, kidney, heart, and intestines, it can also be found in 
glial cells in spinal and brain neurons (Palasca et al., 2018). SARS-CoV 
and SARS-CoV-2 can therefore use these receptors to enter, attach, 
multiply, and damage the neuronal tissue. Studies on mice also show 

that SARS-CoV can enter the brain through the cribriform bone or 
through a retrograde transfer via the olfactory epithelium, and in 
7 days can reach the brain. The virus can also enter the brain directly 
due to a disruption of the BBB during the viremia phase of the dis-
ease. The invasion of peripheral nerve terminals by CoV is another 
postulated mechanism, after which the virus enters the CNS through 
the synapse connected route. Given that SARS-CoV-2 is very similar 
to SARS-CoV, it is likely that it can invade the CNS using the same 
methods as SARS-CoV.

However, though the receptor's expression pattern can de-
termine which cells can be infected, not all cells that express the 
receptor, or even cells with the highest receptor expression, are nec-
essarily the primary targets of the viral attack. This can be exempli-
fied by the mouse hepatitis virus (MHV) studies, where the MHVR 
receptor is highly expressed in the liver, but barely so in neurons. 
In contrast, the MHV strain JHM.SD, which is highly neurovirulent, 
is not able to replicate in the liver during viral infection, (Bender 
et al., 2010). Mapping the viral tropism in vivo and the virulence fac-
tors that contributed to pathogenesis required considerable time 
and energy. Surprisingly, it was revealed that tissue tropism was not 
solely impacted by the viral spike protein, but instead by other viral 
“background genes,” such as replicase and nucleocapsid, in addition 
to different viral accessory genes, in which can also be used for the 
determination of tropism (reviewed in (Weiss & Leibowitz, 2011)). 
Pathogenesis can therefore not be directly inferred from the 
knowledge of the receptor and spike protein alone. Future studies 
on SARS-CoV-2 will define tissue tropism and whether it parallels 
SARS-CoV or not (Weiss, 2020).

Let us look more closely on the potential routes for SARS-
CoV-2 entry into the CNS (see Figure 2). The observation of the 
presence of the viral-like particles in brain capillary endothelium 
and their active budding across the ECs strongly suggested that 
the hematogeneous route and the endothelial bed were the most 
likely pathway to the brain (Paniz-Mondolfi et al., 2020). Expression 
of the human receptor ACE2, which serves as a receptor and the 
binding target for the trimeric spike protein of SARS-CoV-2, by 
the vascular endothelium (Hamming et al., 2004) also supported 
this interpretation (Paniz-Mondolfi et al., 2020). However, other 
routes of the SARS-CoV-2 CNS entry, such as retrograde axonal 
transport from the olfactory bulb, cannot be ruled out. In line with 
this idea, there is experimental evidence showing the capability 
of neuroinvasion by HCoV-OC43 and SARS-CoV in mice infected 
intranasally with these viruses (Desforges et al., 2019). It was hy-
pothesized that this could happen as a result of a disruption of the 
nasal epithelium and the resulting neuronal dissemination of the 
virus (Desforges et al., 2019). This idea would explain the onset of 
early signs of anosmia as a precursor to other neurological symp-
toms. Furthermore, based on the previously observed ability of 
other viruses such as SARS-CoV in the brainstem to induce the 
dysfunction of the cardiorespiratory center (Netland et al., 2008), 
it was hypothesized that the respiratory failure of COVID-19 pa-
tients may be governed by the neuroinvasive potential of SARS-
CoV-2(Li, Bai, et al., 2020; Paniz-Mondolfi et al., 2020). Therefore, 
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COVID-19 might cause respiratory failure and death not through 
damage to the lungs, but by affecting the brain.

Baig et al. have suggested (Baig et al., 2020) that the SARS-
CoV-2 may access the brain using the same “transcribrial route” 
defined for other pathogens that target the CNS (such as Naegleria 

fowleri causing meningoencephalitis) (Baig, 2016) and for the de-
livery of drugs and embryonic stem cells to brain (Baig, 2017). It 
is also likely that the SARS-CoV-2 dissemination across the cribri-
form plate of the ethmoid bone or in the systemic circulation may 
result in cerebral involvement, similar to what was reported in 

F I G U R E  2   Diagram for human blood–nervous system barriers. (a) Blood–cerebrospinal fluid (BCSFB)/CP barrier (1. Fenestrated 
endothelium, 2. Interstitial matrix, 3 and 4. Choroid plexus epithelium, 5. Brain cells). (b) Blood–cerebrospinal fluid (BCSFB)/meningeal 
barrier (1. arachnoid, 2. Trabeculae cross-section, 3. Pericyte, 4. Epithelial cell tight junction, 5. Epithelial cell, 6. CSF, 7. Pia Mater). (c) Blood-
brain barrier (1. Astrocyte, 2. Basement membrane, 3. Pericyte, 4. Endothelial cell [non-fenestrated], 5. Tight junction). (d1) Blood–nerve 
barrier BNB (cross section) (1. Epineurium, 2. Perineurium, 3. Endoneurial vessel, 4. Basal lamina. 5. Endoneurium, 6. Myelin, 7. Nucleus 
of Schwann cell, 8. Axon, 9. Endoneurial endothelial cells of microvessel, 10. Epineurium blood vessel). (d2) Blood–nerve barrier. (e) Blood 
olfactory nerve barrier. (f) Inside the glomeruli barriers both of glomerular endothelial and epithelial cells (known as podocytes) cross talk 
occurs, where they share the glomerular basement membrane. (g) inside the glomerular both of peritubular capillary endothelial and tubular 
epithelial cells cross talk also occurs through the barrier where they are separated by a tubular basement membrane and interstitial space. 
Both of kidney epithelial (podocytes and tubular) are breached with SARS-CoV-2 in COVID-19 patients (reviewed in (Elrashdy et al., 2020)). 
From her the viral and/or its components can spread from renal anastomosis into CNS via nerve supply. Although the cross talk between 
human organs in health and diseases is a very complicated processes go through huge number of mechanisms, but it well documented in a 
dramatically pattern (Armutcu, 2019; Lu et al., 2015) [Color figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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patients affected by SARS-CoV (Netland et al., 2008). As per Baig 
et al., by virtue of its presence in general circulation, SARS-CoV-2 
can be passed into cerebral circulation, where it will have a chance 
to interact with ACE2 expressed in the capillary endothelium, and 
thereby to infect cells there, causing damage to the endothelial 
lining and providing viral access to the brain (Baig et al., 2020). 
Importantly, SARS-CoV-2 interaction with the ACE2 receptors 
expressed in neurons can lead to virus entry and begin a cycle 
of viral budding and neuronal damage without substantial inflam-
mation, as was reported previously in SARS-CoV cases (Netland 
et al., 2008). It should be noted that well before the anticipated 
neuronal damage occurs, the endothelial ruptures in cerebral cap-
illaries, together with bleeding within the cerebral tissue, can be 
fatal in COVID-19 patients (Baig et al., 2020). SARS-CoV-2’s move-
ment to the brain via the cribriform plate located near the olfac-
tory bulb can act as an additional path that would allow the virus 
to reach and affect the brain. All this clearly indicates that the ob-
servation of hyposmia or an altered sense of smell in an early and 
uncomplicated stage of a COVID-19 patient should be thoroughly 
investigated for CNS involvement (Baig et al., 2020).

10  | OLFAC TORY ROUTE (OE)

There is a growing interest in the study of the OE. It is the most 
proximal axonal area of the human brain, with neurons that can 
be regenerated. Many studies show a strong link between olfac-
tory deficiency (e.g., loss of smell) and neurodegenerative dis-
eases such as (Alzheimer's and Parkinson's diseases, AD and PD, 
respectively). The main neurological manifestation of COVID-19 is 
the loss of taste or smell. Since most instances of smell loss occur 
without significant rhinorrhea or nasal congestion, the virus likely 
targets the chemical senses in ways that are different from those 
utilized by other common cold-causing agents or endemic corona-
viruses (Cooper et al., 2020). Therefore, it seems that the olfactory 
route represents a logical pathway of SARS-CoV-2 entry into the 
CNS. In fact, analysis of SARS-CoV-2 prevalence in clinical speci-
mens showed that the viral copy number found in nasal swabs is 
~200-fold higher than those found in the bronchoalveolar lavage 
or pharyngeal swabs (Wang, Xu, et al., 2020; Zou et al., 2020). The 
utilization of the olfactory route is further supported by the fact 
that issues with smell have been reported internationally, report-
ing a prevalence as high as 85% in a large, multicenter European 
survey (Lechien et al., 2020). Furthermore, high-intensity ACE2 
staining was detected in olfactory mucosal biopsies, with a 200- 
to 700-fold ACE2 enrichment in the olfactory neuroepithelium 
(sustentacular cells) relative to the nasal respiratory or tracheal 
epithelial cells (Chen, Shen, et al., 2020). This cellular tropism of 
SARS-CoV-2 may underlie its high transmissibility and association 
with dysfunction of olfactory neuroepithelium receptors in the 
nasal and oral mucosa, and also suggests the existence of a viral 
reservoir that may be a good candidate for intranasal therapy. In 
contrast, ACE2 was not found in immature and mature olfactory 

neurons (Chen, Shen, et al., 2020). Taken together, these ob-
servations of the enhanced expression of ACE2 localized to the 
olfactory neuroepithelium of the human airway suggests that 
COVID-19 infection and replication may take place in the apical 
layer of nasal and olfactory mucosa, resulting in olfactory loss 
and acting as a possible entry point of the virus into the CNS, 
causing neurological symptoms (Chen, Shen, et al., 2020; Mao 
et al., 2020). Furthermore, although the postmortem examination 
showed no inflammatory infiltrates or neuronal necrosis in the 
brains of the deceased COVID-19 patients analyzed histologically, 
and although the SARS-CoV-2 RNA copy numbers were predomi-
nantly low in the brain, the corresponding values detected in the 
olfactory bulb were higher than those in the brainstem, support-
ing the hypothesis of the viral entry into the brain via the lamina 
cribrosa (Menter et al., 2020). In light of the facts that the swabs 
from olfactory sustentacular cells bear ~200-fold SARS-CoV-2 
RNA copy numbers compared to those found in the bronchoal-
veolar lavage, and that the olfactory sustentacular cells express 
200- to 700-fold more ACE2 relative to the nasal respiratory or 
tracheal epithelial cells, a fundamental question arose: are there 
local structures responsible for the COVID-19-associated loss of 
smell and taste? This seems to be the case, since the microenvi-
ronment becomes favorable for the release and/or recruitment of 
inflammatory leukocytes and cytokines, and subsequently acute 
reversible or chronic impairment of these chemosensory func-
tions (Cooper et al., 2020; Kirschenbaum et al., 2020; Schlosser 
et al., 2016; Torabi et al., 2020).

11  | BLOOD–NERVOUS SYSTEM BARRIERS 
(BNSBs)

Humans have evolved highly sophisticated barrier systems to pre-
vent the entry of potentially harmful substances into the nervous 
system. The CNS contains four types of such barriers, which are the 
BBB, the choroid plexus (CP, which is a vascular tissue found in all 
cerebral ventricles that produces the CSF of the CNS) blood–cer-
ebrospinal fluid barrier (BCSFB), the meningeal–brain barrier (which 
consists of the three membranes that envelop the brain and spinal 
cord, with the meninges in mammals being the dura mater, the arach-
noid mater, and the pia mater), and the lymphatic vessel–brain bar-
rier. In addition, there is one more barrier of the PNS, namely, the 
blood–nerve barrier (BNB). However, some viruses are able to di-
rectly manipulate the BBB or BCSFB to enter the CNS, whereas oth-
ers hijack host immune cells or travel within peripheral nerves. The 
BNSB may represent the main route of the SARS-CoV-2 for breach-
ing the nervous system (CNS and PNS).

The nervous system has barriers that isolate it from the blood-
stream and help it achieve the complex microenvironment control 
necessary for complex neural signaling. Although all these main 
physiological nervous barriers differ in location, size, morphology, 
and function, their main structural units are the epithelial or ECs, 
which are known to express both ACE2 and TMPRSS2. The vascular 
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ECs constitute the interface between the interstitial fluid of the CNS 
tissue and the blood. The blood–cerebrospinal fluid barrier (BCSFB) 
comprises a single layer of endothelial/epithelial cells at the CP or 
meninges. It is a fluid–brain barrier consisting of two membranes 
that separate blood from CSF at the capillary level, and CSF from 
brain tissue. Epithelial cells separate the plexus or meningeal blood 
from the CSF. The BCSFB regulates most of the exchange of ions, 
water, and other substances that can be found between blood and 
CSF. A few localized brain regions, such as the pineal and the area 
postrema, are called circumventricular organs (CVOs) and lack the 
vascular BBB, but rather have a barrier of ependymal cells between 
the CSF and CVO tissue, and of tanycytes between adjacent brain 
tissue and the CVO. Therefore, the BCSFB represents a regula-
tory interface comprising a monolayer of cells that separates the 
blood from the fluids of the CNS (Abdul Razzak et al., 2019; Doran 
et al., 2013).

As most neurological disorders in COVID-19 patients are demon-
strated in somewhat aged patients, the well-documented effects 
of age on the endothelial/epithelial barriers and specifically of the 
BNSB should be kept in mind. The exponential decline in integrity/
permeability of these barriers is linked to age as reviewed in detail 
by Delaney and Cambell (2017). It is becoming increasingly evident 
that the pericytes are susceptible to age-dependent deterioration at 
the BBB. Breakdown of the paracellular pathway, pericyte loss, and 
transcellular permeability can exacerbate the events linked with age, 
and can lead to the extravasation of blood-borne material. The sus-
ceptibility of endothelium toward many intrinsic destructive agents 
is known to increase with aging (Delaney & Campbell, 2017). Again, 
these facts may provide some explanations of why the SARS-CoV-2 
particles were detected in all postmortem nervous tissue biopsy ex-
amined (see Table 1).

11.1 | The blood-brain barrier route

The BBB, located in the brain microvessels, is the largest brain barrier 
in terms of length, (close to 650 km) and surface (10–20 m2). It pro-
tects the brain from exogenous and circulating threats and maintains 
brain homeostasis (Saint-Pol et al., 2020). Despite its size, various 
neuroinvasive viral pathogens, such as rabies, HIV-1, West Nile, Zika, 
and influenza are able to breach the BBB (Berger & Avison, 2004; 
Chai et al., 2014; Chaves et al., 2014; Diamond & Klein, 2004; Leda 
et al., 2019; Marshall, 1988; Mustafa et al., 2019; Paterson, 2005; 
Resnick et al., 1988; Wang et al., 2013). These viruses negatively 
affect the barrier by direct interaction with the ECs, as well as by 
induction of host immune responses that result in elevated expres-
sions of pro-inflammatory chemokines, cytokines, and cell adhesion 
molecules that lead to a deterioration of the barrier's functional and 
structural integrity (Dahm et al., 2016). A disruption of the BBB can 
result in the crossing of viral particles and infected immune cells, 
which can further elevate the levels of inflammatory mediators (Al-
Obaidi et al., 2018; Dahm et al., 2016; Daniels et al., 2014; Spindler 
& Hsu, 2012). It is therefore possible that SARS-CoV-2 can use these 

mechanisms of neuroinvasion, and may also primarily enter the CNS 
by crossing the BBB. Interactions between SARS-CoV-2 and compo-
nents of the BBB therefore have the potential to significantly impact 
neuropathogenesis. Further support to the BBB route hypothesis 
is given by the facts that BBB is disrupted in hypertension (Setiadi 
et al., 2018) and hypertension is a frequent comorbidity for COVID-
19 (Espinosa et al., 2020; Gold et al., 2020; Parveen et al., 2020; 
Surma et al., 2020; Zaki et al., 2020).

The BBB is a highly restrictive barrier that protects the CNS 
from aberrant immune responses and pathogens in the periphery. 
BBB is formed by the brain ECs lining the cerebral microvasculature 
with about 50–100 times tighter contacts than that in the periph-
eral microvessels and astrocytes, which are in direct contact with 
the ECs (Abbott, 2002). Astrocytes play a central role in maintaining 
homeostasis within the CNS by regulating the integrity of the BBB, 
as well as by controlling the uptake of excess neurotransmitters 
and other extracellular factors that may perturb neurotransmission 
(Abbott, 2002). It was also pointed out that several biomolecules, 
such as Endothelin-1 (ET-1), Glutamate, IL-1β, IL-2, IL-6, TNFα, mac-
rophage inflammatory proteins MIP-2, and nitric oxide might modu-
late the BBB permeability, with at least some of these biomolecules 
being released by astrocytic glial cells (Abbott, 2002).

Notably, a deregulated immune response serves as an important 
mediator of COVID-19 mortality (Pedersen & Ho, 2020), as critical 
illnesses are more likely to develop in patients with heightened lev-
els of inflammatory cytokines (Chen, Wu, et al., 2020; Chen, Zhao, 
et al., 2020; Qin et al., 2020; Tan et al., 2020; Yang, Li, et al., 2020; 
Yang, Shen, et al., 2020). These conditions are referred to as ‘‘cyto-
kine storms’’ and result in an increase in vascular permeability, which 
facilitates immune cell efflux into affected tissues, while also pos-
sibly worsening pneumonia (Zhang et al., 2020). Importantly, most 
of the proteins that were shown to modulate the BBB permeability 
(Abbott, 2002) are part of the cytokine storm in severe COVID-19 
cases. One of the outputs of the systemic inflammation is known 
to cause vascular injury, including breakdown of collagen and per-
meability of BBB. For example, influenza A virus infection disturbs 
BBB via the systemic elevation of the levels of the matrix metal-
lopeptidase 9 (MMP-9) (Muhammad et al., 2011, 2016; Takahashi 
et al., 2018), which is a member of the family of zinc-metallopro-
teinases involved in the degradation of the extracellular matrix and 
which breaks collagen present in the basal membrane of every ar-
terial wall, thereby leading to a high collagen turnover in systemic 
circulation (Hackenberg et al., 2020) and to the increase in BBB 
permeability. Such BBB permeability elevation represents a link 
between MMPs (specifically MMP-9) and CNS disorder (Bongetta 
et al., 2020; Wu et al., 2020).

Under physiologic conditions, the BBB is relatively impermeable, 
though recently the list of biomolecules capable of modulating the 
permeability, integrity, and tightness of the BBB was extended by 
inclusion of the SARS-CoV-2 spike protein (Buzhdygan et al., 2020). 
It was shown here that introduction of the viral spike proteins into 
the model systems recapitulating the essential features of the BBB 
resulted in a breach of the barrier. Furthermore, SARS-CoV-2 spike 
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protein was shown to increase the MMP3, CCL5, CXCL10, ICAM-1, 
and VCAM-1 (which are cell adhesion molecules, CAMs) gene ex-
pression levels, alter mRNA levels of interleukins IL-1β and IL-6, and 
trigger a pro-inflammatory response on brain ECs that may further 
contribute to an altered state of BBB function (Buzhdygan et al., 
2020). These observations were used to support a hypothesis that 
SARS-CoV-2 is potentially a neuroinvasive virus since it can turn on 
the machinery to enable the migration of infected immune cells into 
the brain parenchyma (Buzhdygan et al., 2020). In blood vessels, the 
increase in VCAM1 and ICAM1 in response to the pro-inflammatory 
cytokines plays a crucial role in the adhesion of leukocytes, including 
macrophages and neutrophils, with the end result being disruption of 
the BBB and inflammation of the brain (Choi et al., 2020). Viral gene 
products can also contribute to the BBB breakdown through upreg-
ulation of many biomarkers (Swanson & McGavern, 2015). CXCL8, 
CXCL10, CXCL13, VCAM-1, MMP2, MMP14, and IL-6 were shown to 
be overexpressed in COVID-19 patients (Ackermann et al., 2020). All 
of these molecules were demonstrated to increase the permeability 
of the endothelial/epithelial cell barriers (especially in nervous sys-
tem) or decrease its electric resistance and/or cleave the tight junc-
tion proteins and promote leukocyte extravasation from the blood 
(reviewed in detail in (Swanson & McGavern, 2015)).

Therefore, SARS-CoV-2 is able to breach the BBB during the 
course of ongoing infection. Then, similar to the earlier observations 
for SARS-CoV (Channappanavar & Perlman, 2017), interactions of 
SARS-CoV-2 S protein with ACE2 in multiple brain regions allows the 
virus to infect the brain. More severe cases of COVID-19 may result 
in higher probabilities of BBB disruption, which can be associated 
with strong immunologic responses, such as the cytokine storm pa-
thologies or some co-infection, or other comorbidities.

Therefore, viruses might invade the CNS by entering through the 
ECs of the BBB and the blood–CSF barrier in the CP. Studies con-
ducted by Bulfamante et al. (2020) and Paniz-Mondolfi et al. (2020) 
strongly support this hypothesis. The authors captured the viral par-
ticles using a cytoplasmic vacuole at the endothelial neural cell in-
terface in a transmission electron microscope (TEM), suggesting that 
SARS-CoV-2 is able to bind to vascular endothelium, penetrate the 
BBB, and invade nervous tissues through hematogeneous pathways.

The presence of SARS-CoV-2 in the brain was demonstrated by 
TEM analysis of the sections obtained at postmortem that revealed 
the presence of 80 to 110 nm viral particles in frontal lobe brain sec-
tions (Paniz-Mondolfi et al., 2020). The presence of the virus there 
was further confirmed by testing the frozen front lobe tissue via run-
ning in parallel brain samples in four RT-PCR assays that targeted dif-
ferent regions of the viral genome, ORF1/a and E genes, N1, N2, N3, 
N2 and E genes, and ORF1ab and S genes. SARS-CoV-2 was detected 
in the brain tissue, while the RT-PCR testing did not detect SARS-
CoV-2 in a postmortem CSF samples (Paniz-Mondolfi et al., 2020). 
However, other reports detected SARS-CoV-2 in the CSF samples of 
the COVID-19 patients from three different countries (USA, Brazil, 
and Japan).

In the first report, PCR detected the SARS-CoV-2 in the CSF of a 
40-year-old Los Angeles resident with type 2 diabetes mellitus and 

obesity, who developed fever and temporary loss of consciousness 
(syncope) and was admitted for encephalitis (Duong et al., 2020; 
Huang et al., 2020). In the second report, the SARS-CoV-2 genome 
was detected and sequenced in a 42-year-old resident of São Paulo 
with suspected demyelinating disease (Domingues et al., 2020). In 
the third report, RT-PCR analysis detected SARS-CoV-2 in the CSF 
of a Japanese patient with meningitis/encephalitis associated with 
SARS-CoV-2 (Moriguchi et al., 2020). Although SARS-CoV-2 RNA 
was found in the CSF, no reports have detected and/or demon-
strated the presence of the viral particles in the CSF of COVID-19 
patients. Therefore, the RT-PCR positivity of the CSF samples for 
the SARS-CoV-2 RNA does not necessarily imply the presence of 
the entire infectious viral particles in there, as clearly demonstrated 
by the inability to detect the full-genome consensus in the CSF sam-
ples, where only 1,580 nucleotides of two fragments from ORF1a 
were sequenced (Domingues et al., 2020). Despite all this, the data 
collected so far support the BBB breach as an important SARS-
CoV-2 entry route. Furthermore, it is possible that the SARS CoV-2 
infection could be more persistent in the CNS, which is clearly an 
immunoprivileged site (Domingues et al., 2020). Another possibil-
ity for the SARS-CoV-2 to cross the BBB and pass into the CNS is 
via the infection of the blood cells capable of BBB crossing (Zubair 
et al., 2020).

Observation of the virus-like particles in blood vessel ECs of 
BBB may point to a hematogeneous route of entry of the virus 
into the nervous system (Paniz-Mondolfi et al., 2020). Neuronal 
retrograde and hematogeneous routes were considered for the 
entry of neurotropic respiratory viruses into the CNS (Desforges 
et al., 2019). In the hematogeneous route, viruses gain access 
to the CNS by using inflammatory cells as “Trojan horses,” or by 
infecting ECs of the BBB or epithelial cells of the BCSFB in the 
CP (Desforges et al., 2019). In the neuronal retrograde route, vi-
ruses undergo retrograde axonal transport to reach the neuron 
cell bodies in the peripheral and or CNS (Desforges et al., 2019). 
For example, analysis of the MERS-CoV tissue pantropism (i.e., 
the ability of a virus to indiscriminately affect many kinds of tis-
sues) has shown that MERS-CoV can enter the bloodstream after 
endothelial infection in vivo (Hocke et al., 2013). This hypothesis 
is further supported by the presence of SARS-CoV-2 in the CSF 
fluid of a COVID-19 patient presenting viral encephalitis (Vonck 
et al., 2020; Zhou et al., 2020).

11.2 | The blood–nerve barrier

The mammalian BNB is the second most restrictive vascular system 
after the BBB (Ubogu, 2020). Peripheral nerves are structurally di-
vided into three compartments: epineurium, where fenestrated mac-
rovessels directly derived from the extrinsic peripheral nerve blood 
supply are located; the inner perineurium, which surround the inner-
most endoneurium compartment of the peripheral nerve. The BNB, 
formed by the tight junction-forming microvessels within peripheral 
nerve endoneurium, allows for effective axonal signal transduction. 
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The restricted permeability of this barrier protects the endoneurial 
microenvironment from drastic concentration changes in the vascu-
lar and other extracellular spaces. This barrier supplies cover to the 
nerves everywhere in human body, constitutes the ECs, and is char-
acterized by very compact structure (Figure 2d1,d2). The analysis of 
its transcriptome provided insights into the mechanisms of microbial 
entry from the bloodstream into peripheral nerves, human BNB re-
sponse to injury, and response to viral infections.

Inflammatory and metabolic diseases, as well as traumatic le-
sions of the nervous system, are accompanied by BNB/BDB (blood 
dorsal ganglion barrier) opening. Opening of the BNB (or permeable/
leaky BNB) can be the first sign preceding neuropathic pain, which 
synchronizes with many agents, such as cytokines, growth factors, 
and microRNAs (Reinhold & Rittner, 2020). Because ECs forming the 
BNB are the only cells that come into direct contact with the blood 
constituents in the PNS, ECs can be easily manipulated via system 
circulation, or indirectly via pericytic activity, including release of 
various cytokines and chemokines that influence endothelial func-
tion (Ubogu, 2020). The BNB ECs could transport the IgG, RNA, 
chemokine, hormones, and delivery drugs while the large molecular 
weight antibody subclasses (sIgM and sIgA) do not undergo human 
BNB transport under standard physiological condition, which may 
modulate in pathophysiological conditions. BNB ECs respond to 
physiological cytokine/chemokine stimulus and normal/pathologic 
leukocyte trafficking across the BNB (Palladino et al., 2017).

Some neurotropic viruses have been found to be able to hijack 
the peripheral nerve barrier, such as herpes simplex virus and swine 
hemagglutinating encephalomyelitis virus (HEV) (Li et al., 2012, 
2013; Matsuda et al., 2004). Although there are no data concerning 
SARS-CoV-2 trafficking across the BNB, some observations con-
cerning the barrier permeability may point to the ability of SARS-
CoV-2, or at least its proteins, to target the BNB and to modulate 
its peripheral nerve immunosurveillance in COVID-19 pathogenesis. 
In fact, several disorders, such as Guillain-Barré syndrome (GBS), 
chronic inflammatory demyelinating polyradiculoneuropathy, acute 
inflammatory demyelinating polyradiculoneuropathy, and vasculitic 
neuropathy are characterized by hematogeneous leukocyte infiltra-
tion (predominantly monocytes and T cells) into peripheral nerves 
via the BNB, with resultant demyelination and axonal degeneration 
(Ahmad & Rathore, 2020; Chen, Wu, et al., 2020; Conde Cardona 
et al., 2020; Lai et al., 2020; Mao et al., 2020; Vonck et al., 2020; 
Zubair et al., 2020). Therefore, it seems that leukocyte extravasa-
tion alone can impact junctional protein expression in the BNB. 
The chemokine-mediated and/or hyperproduction of interleukin-6 
signaling has been implicated in the autoimmune neuropathies 
pathogenesis (Cardona & Ubogu, 2013; van Doorn et al., 2008; 
Ubogu, 2013). Clinically, GBS is characterized by limb or cranial nerve 
weakness, loss of deep tendon reflexes, sensory, and dysautonomic 
symptoms due to peripheral nerves and root demyelination, and/or 
axonal damage. About 60% of all GBS are preceded by respiratory or 
GI complications, with a presentation latency varying from 3 days to 
6 weeks (van Doorn et al., 2008), which corresponds with COVID-19 
GBS patients (Agosti et al., 2020). The suggested infection-mediated 

immune response that results in higher circulation of pro-inflam-
matory cytokines (Agosti et al., 2020; Ahmad & Rathore, 2020; van 
Doorn et al., 2008) reaches the peripheral nerve through the BNB.

Finally, the GBS and other peripheral nerve symptoms reveal that 
the PNS can be hijacked by SARS-CoV-2 through direct attack of mi-
crovessel ECs, or indirect attack via immune-mediated response. As 
ACE2 is widely expressed on the epithelial cells of the oral mucosa, 
SARS-CoV-2 can breach the BNB accessing the CNS via the cranial 
nerve using axonal transport machinery (Zhou et al., 2020). The up-
regulated vascular endothelial growth factor VEGF (C and A) is asso-
ciated with COVID-19 endothelial barrier dysfunction (Ackermann 
et al., 2020; Yin et al., 2020), and specifically with the BNB (Lim 
et al., 2014). As VEGF is also related to angiopoietins (Ang I and Ang 
II), accumulation of Ang II facilitates the elevation of VEGF and in-
versely augments Ang II, which forms a vicious cycle in the release of 
inflammatory cytokines including TNF-α, IL-1β, IL-6, IL-8, and ICAM-
1, which causes BBB and BNSB disruption (Yin et al., 2020).

11.3 | Blood–cerebrospinal fluid barrier

The CP of the BCSFB displays fundamentally different properties 
in comparison to the BBB. With a brisk blood flow (10 times higher 
than that of the brain) and highly permeable capillaries, the human 
CP provides the CNS with a high turnover rate of fluid (~400 ml/
day) that contains peptides, micronutrients, and hormones for neu-
ronal networks. BCSFB cells are the CP epithelium cells that line the 
cerebral ventricles and the arachnoid epithelium that line the brain 
vasculature in the subarachnoid space (Abdul Razzak et al., 2019). 
CP epithelial is considered to be less electrically resistant compared 
to the BBB endothelial, and is somewhat “leaky.” Therefore, it is the 
prime target for viral entry into the CNS. Tight junctions (TJs) allow 
for EC occlusion and strict permeability by sealing off the intercellu-
lar space between the ECs lining the microvessel. TJs (e.g., occludins, 
claudins, and junctional adhesion molecules) are transmembrane 
proteins that bind intracellularly to the actin component of the fila-
mentous cytoskeleton and extracellularly to identical transmem-
brane proteins in adjacent ECs (Abdul Razzak et al., 2019).

As discussed under the BBB route, the SARS-CoV-2 particle could 
not be isolated and/or detected in the CSF, although the RT-PCR 
was positive and two fragments from ORF1a of the 1,580-nucleo-
tide were obtained (Domingues et al., 2020; Moriguchi et al., 2020), 
the CSF of those patients showed an albuminocytologic dissociation 
with increased protein level (98 mg/dl, reference value: 8–43 mg/
dl) and normal cell count (2 × 106/L, reference value: 0–8 × 106/L) 
(Agosti et al., 2020; Dalakas, 2020; Ellul et al., 2020). Eleven COVID-
19–GBS patients from Wuhan, Italy, Spain, and France were ana-
lyzed. Although they all had very high concentrations of protein in 
CSF, in seven of 11 tested patients, the virus was not detected in 
the CSF, suggesting that there is no direct root of intrathecal viral 
replication or infection. However, as intravenous immune globulin 
helped improve the condition of several patients, and one patient 
exhibited the presence of antibodies to the ganglioside GD1b, it 
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appears that a post-viral-triggered immune response similar to other 
post-viral-induced GBS cases or other post-viral autoimmune neu-
rologic disorders occurred (Dalakas, 2020). As SARS-CoV-2 spike 
protein interacts with ganglioside dimers and the GalNAc residue of 
GM1 for anchoring to cell surface gangliosides, cross-reactivity be-
tween epitopes within the SARS-CoV-2 spike-bearing gangliosides 
and signature sugar residues of surface peripheral nerve glycolipids 
is very likely. Similar molecular mimicry has been shown between 
peripheral nerve glycolipids and Campylobacter jejuni or Zika virus 
(Dalakas, 2020). This raised many questions, such as how does this 
SARS-CoV-2 genomic material reach the CSF? Is it through the 
BCSFB? Is it accompanied by the delivery of the translated SARS-
CoV-2 proteins? Are the increased CSF protein concentration and 
cell counts in COVID-19 linked with BCSFB and BNB permeability as 
immune-mediated responses?

12  | LYMPHATIC BR AIN DR AINAGE 
ROUTE

A third way SARS-CoV-2 can enter the CNS could be via the spread-
ing of the virus in the lymphatic drainage system of the brain 
(Bostanciklioglu, 2020). Although the glymphatic vessel structure 
mainly contains endothelial lining cell systems, this pathway is 
rather contradictory at the moment, and other researchers do not 
confirm lymphatic draining entry (Li, Guan, et al., 2020). The lym-
phatic/glymphatic brain system (which is a glial-dependent waste 
clearance pathway in the brain that serves as a “front end” for the 
waste clearance connected downstream to an authentic lymphatic 
network) was discovered rather recently (Benveniste et al., 2019). It 
has a vascular histological structure, which is quite similar to that of 
the endovascular blood system (Aspelund et al., 2015; Da Mesquita 
et al., 2018). Importantly, endothelial lining cells of this system ex-
press both the ACE2 and TPMRSS2 genes, where the SARS-CoV-2 
can access it. In line with these features, electron microscopy analy-
sis revealed the presence of viral inclusion structures in ECs (Varga 
et al., 2020b). The lymphatic/glymphatic system is different from 
traditional blood circulation since it is an open, afferent (one-way) 
system. The major function of this system is to collect the soluble 
waste proteins and metabolic products from the CNS and drain them 
away. This unidirectionality raises an important and logical question, 
namely, how can it bring the viral particles to the CNS tissue, being a 
one-way drainage system? In addition, the lymphatic drainage func-
tion is impaired in age-dependent manner (Da Mesquita et al., 2018).

Therefore, the aforementioned BBB route is more favorable for 
CNS infection by SARS-CoV-2, especially in patients with severe 
COVID-19 complicated with the cytokine storm, which increases the 
BBB permeability, thereby facilitating the immune cell efflux into the 
affected tissues. At least in the severe cases, the virus (free or in 
vacuoles) is disseminated into many organs including the vasculature 
system, and can cause endothelilitis by attacking the endothelium. 
This may explain the frequently observed prothrombotic state with 
in situ clot formation and the impaired microcirculatory function 

across different organs in COVID-19 patients. Based on these ob-
servations, it was suggested that one of the approaches to affect 
the course of COVID-19 would be to take some steps to stabilize 
the endothelium during viral replication, specifically in vulnerable 
patients with preexisting endothelial dysfunctions, which are com-
monly associated with the male sex, smoking, hypertension, diabe-
tes, obesity, and established cardiovascular disease, all being linked 
to adverse outcomes in COVID-19 (Varga et al., 2020b).

13  | PERIPHER AL NERVE OR NEURONAL 
RETROGR ADE ROUTE: ACCESSING CNS VIA 
ENTERIC ,  LUNGS, AND KIDNE Y NERVES 
ROUTES

Although the direct neuroinvasion via hematogeneous spread or mi-
gration of SARS-CoV-2 through the olfactory tract are possible in-
fection routes to the CNS (Wu et al., 2020; Wu & McGoogan, 2020), 
the virus could also gain access from the periphery (Esposito 
et al., 2020). It has been postulated that brain stem invasion may 
occur via the vagal afferents from the upper airways, lung, and GI 
(Esposito et al., 2020; Li, Bai, et al., 2020). Furthermore, one cannot 
exclude the role of GI tract involvement (a notion giving some tribute 
to the prospective gut-brain connection). In fact, the GI represents 
an important but mostly underestimated niche for SARS-CoV-2 rep-
lication. This is because the GI epithelium has higher relative expres-
sion of ACE2 receptor than the lungs. Furthermore, SARS-CoV-2 
can directly infect the intestinal cells and efficiently replicate there. 
Finally, it was pointed out that the clinical outcome was worse for 
COVID-19 patients with concomitant GI symptoms who required 
mechanical ventilation due to increased acute respiratory distress 
(Jin et al., 2020). One study suggests that SARS-CoV-2–related diar-
rhea and the GI dysfunction are not merely accessory symptoms, but 
serve as a possible marker of the involvement of the enteric nervous 
system/enteric glial cell (ENS/EGC) in pathogenesis, and suggests an 
alternative pathophysiological mechanism underlying SARS-CoV-2 
neuroinvasion (Esposito et al., 2020). Here, the gut might serve as 
the “entrance door,” by which viruses may either directly neuroin-
vade or indirectly immunologically prime the ENS or ascend to the 
CNS through intestinal vagal afferents (Esposito et al., 2020). This 
hypothesis is supported by the fact that there is a strict intercon-
nection between the ENS and the EGCs and that the gut epithelium 
is part of a neuroepithelial unit crucial for gut homeostasis (Esposito 
et al., 2020).

It was also established that in the case of MERS-CoV infection, 
the enteric involvement could take place before the respiratory 
infection (Zhou et al., 2017). Furthermore, brain infection was ob-
served in mice infected with MERS-CoV either intranasally or by 
intragastric inoculation (Zhou et al., 2017). Although finding brain 
infection in mice with intranasal MERS-CoV injection is not surpris-
ing and was actually expected, the fact that mice that underwent 
intragastric inoculation with MERS-CoV showed infectious virions 
in both brain and lung homogenates 5 days after the inoculation was 
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rather surprising (Zhou et al., 2017). The retrograde axonal transport 
and transsynaptic transfer are well-documented for other types of 
coronavirus such as the avian bronchitis virus and the swine HEV (Li 
et al., 2013; Matsuda et al., 2004).

EGCs express the major histocompatibility complex class II and 
functionally work as antigen-presenting cells for both innate and 
adoptive immune cells localized in the gut-associated lymphoid tissue 
(GALT) (Lee et al., 2020). GALT houses many types of immune cells, 
such as T lymphocytes (γδ T lymphocytes). Upon activation by viral 
infection, GALT could initiate many immunological responses, such 
as transition of native CD4+ lymphocytes into different subtypes 
(Th1, Th2, Th17, Treg, Tsup, and CD8+). Furthermore, an enormous re-
lease of IL-6 and other inflammatory mediators also occurs upon ac-
tivation, contributing to the acute respiratory distress as observed in 
the COVID-19-induced cytokine storm (Esposito et al., 2020; Mehta 
et al., 2020) and to the increase in the endothelium permeability, as 
aforementioned.

It was shown that the susceptibility to the SARS-CoV-2–inflicted 
GI damage of the inflammatory bowel disease (IBD) patients is deter-
mined by the dysregulated mucosal ACE2 and TMPRSS2 expression 
in the colon and ileum in IBD (Krzysztof et al., 2020). This deregu-
lation was further enhanced by advanced age, smoking, and active 
disease that served as potential additional risk factors defining the 
vulnerability of IBD patients to COVID-19 through alterations in re-
ceptor expression (Krzysztof et al., 2020).

Furthermore, it was established that both SARS-CoV and SARS-
CoV-2 can efficiently infect enterocyte linage cells in human small 
intestinal organoids (hSIOs, which are the 3D structures that are 
grown from adult stem cells (ASCs) and recapitulate key aspects of 
the organ from which the ASCs were derived) (Lamers et al., 2020). 
This efficient infection of enterocytes in hSIOs by SARS-CoV and 
SARS-CoV-2 was demonstrated by confocal- and electron-mi-
croscopy, since the clusters of the extracellular viral particles (80–
120 nm) were detected in the lumen of organoid and in the apical side 
of enterocytes associated with double membrane vesicles (Lamers 
et al., 2020). Could the viral particles of these disintegrated-infected 
cells somehow reach and infect the glial intestinal cells, which are 
known to express ACE2 and TMPRSS2/furin? Could this scenario be 
repeated in other organs such as the heart, lungs, kidney, and even 
cutaneous tissues? Similar to SARS-CoV and SARS-CoV-2 infecting 
the human intestinal epithelial organoid (Lamers et al., 2020), SARS-
CoV-2 was shown to directly infect engineered human blood vessel 
organoids in vitro (Monteil et al., 2020). Using both immunochem-
istry and electron microscopy, SARS-CoV-2 viral particles were 
found in skin endothelium of patients presenting with chilblains (the 
painful inflammation of small blood vessels in the skin) (Colmenero 
et al., 2020). As SARS-CoV-2 multiplies in the vascular cells of the 
skin area, can it go through the blood withdrawn by a mosquito bite? 
Ultrastructural examination identified typical CoV particles charac-
terized by the spike structure in cytoplasm of hepatocytes in two 
COVID-19 cases (Wang, Liu, et al. 2020). Also, SARS-CoV-2 parti-
cles were found in heart, kidney, and lung autopsy of postmortem 
samples (Pesaresi et al., 2020). Therefore, SARS-CoV-2 may first 

infect blood vessels’ ECs prior to infection of local tissues (Monteil 
et al., 2020), and then be disseminated into many organs, includ-
ing the human nervous system (Colmenero et al., 2020; Monteil 
et al., 2020; Varga et al., 2020b).

14  | SOMAL C ARGO ROUTES

14.1 | Macrophage/monocytes cargo route

Some viruses are neurotropic, being able to invade nervous tissues 
and cause infections of immune-functioning macrophages, microglia, 
or astrocytes in the CNS (Al-Obaidi et al., 2018; Soung & Klein, 2018). 
Respiratory viruses may enter the CNS via a hematogeneous or a 
neuronal retrograde route. In the first route, the virus disrupts the 
nasal epithelium and reaches the bloodstream and leukocytes, and—
by manipulating the innate immune system—invades other tissues, 
including the CNS. Furthermore, in this route, leukocytes may act as 
a reservoir for viral transmission for neuroinvasive CoVs (Desforges 
et al., 2019). In the second route, the virus could infect peripheral 
neurons and access the CNS through retrograde transsynaptic neu-
ronal dissemination (Desforges et al., 2019). It is known that both 
alveolar and interstitial macrophages in the lungs express the ACE2 
receptor and the TMPRSS2/Furin proteases, as well as ADAM-17, 
which acts as sheddase of ACE2. In the presence of all components 
of viral activation and binding, the virus can replicate in human mac-
rophages (Abassi et al., 2020) and dendritic cells (Yang, Chu, et al., 
2020), but the mature viral particles could not detected intra or ex-
tracellular from both of cells type. Furthermore, the electron micro-
scopic postmortem examination of the lung tissues clearly showed 
that the SARS-CoV particles and SARS-CoV-2 antigens are present 
and distributed in both alveolar macrophages, as well as in the lymph 
nodes and the spleen (Chen, Feng, et al., 2020; Shieh et al., 2005). 
Previous data from 15 autopsies indicated that the SARS viral par-
ticles and genomic sequences were detected in a large number of 
circulating monocytes, lymphocytes, and lymphoid tissues. They 
were also found in the mucosa of the intestine, the epithelial cells of 
the respiratory tract, the neurons of the brain, the epithelium of the 
renal distal tubules, and macrophages in different organs, suggest-
ing that the virus could infect multiple cell types in different organs 
(Gu et al., 2005). One interesting find was that a large proportion of 
lymphocytes in the circulation and lymphoid organs contained the 
virus, as observed in the TEM image of a circulating T lymphocyte 
in a patient who had SARS 6 days after onset of a fever, which may 
indicate that these circulating lymphocytes carrying viral molecules 
could reach the CNS and PNS via BBB, BCSFB, or BNB, or through 
all of these barriers. Based on this interesting result the mechanism 
of SARS pathogenesis was postulated (Gu et al., 2005), which ap-
peared to be working until today. It is likely that the viral infection 
may convert these cells into long living macrophages (Mφ) and pro-
mote their migration into extrapulmonary organ/tissues, where they 
become infected resident cells (viral reservoir) and as inflammatory 
signals producer, serve as a Trojan horse in other organs (Abassi 
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et al., 2020), with others cell types such as leukocytes, ECs, smooth 
muscle cells, pericytes, inflammatory cells, neurones, or glial cells 
(Jaunmuktane et al., 2020). A CD68 immunostain revealed that the 
macrophage infiltrated the cerebral hemispheres and subcortical 
white matter lesion associated with an axonal injury, and a perivas-
cular acute disseminated encephalomyelitis (ADEM)-like appearance 
(Jaunmuktane et al., 2020; Reichard et al., 2020).

14.2 | Double membrane vesicles cargo route

Many viruses have been shown to enter the extracellular double-
membrane vesicle (EDMV) or exosome avenues during intrahost 
spreading and synthesis (Badierah et al., 2020). As previously re-
viewed in detail, all positive-sense single-stranded RNA viruses (in-
cluding SARS-CoV and MERS-CoV) use, redirect, and rearrange host 
cell membranes as part of the viral genome transcription and replica-
tion tactic, harnessing their nonstructural protein apparatus nsp1-16 
(Elrashdy et al., 2020). This tactic allows them to produce double-
membrane vesicles of different size and configuration, carrying dif-
ferent levels of viral particle structures, from dsRNA to full mature 
viral particles, which would be released as EDMV or exosomes dur-
ing the release from the host cells, or as a result of the post cell-host 
rapture. SARS-CoV-2 seems to be using a similar avenue of replica-
tion and release. This conclusion is based on the careful postmor-
tem histopathological electron microscopy analysis, and further 
confirmed using the in vitro SARS-CoV-2 cultured on Vero E6 cells 
(Ogando et al., 2020). In fact, electron microscopy revealed that the 
ultrastructural changes induced by both SARS-CoV and SARS-CoV-2 
are very similar and take place at comparable times after infection. 
However, the important differences between the two viruses were 
the facts that, (a) SARS-CoV-2 generated higher levels of intracellu-
lar viral RNA, but 50-fold less infectious viral progeny was recovered 
from the culture medium, (b) upon passaging in Vero E6 cells, SARS-
CoV-2 was apparently under strong selection pressure to acquire 
adaptive mutations in its spike protein gene (Ogando et al., 2020). 
These mutations changed or deleted a putative furin-like cleavage 
site in the region connecting the S1 and S2 domains of the S-protein 
and resulted in a very prominent phenotypic change in plaque assays 
(Ogando et al., 2020).

Of note, SARS-CoV-2 could infect almost all human body or-
gans and tissues (Ackermann et al., 2020; Colmenero et al., 2020; 
Elrashdy et al., 2020). The infected cells are shedding the exosomes 
(EDMVs). Furthermore, apoptotic or the diffuse damage of infected 
cells can lead to the release of their contents in a form of differ-
ent types of EDMVs containing different viral structures (ranging 
from viral dsRNA to mature viral particles), to infected the adja-
cent new cells/tissues and expanded to circulate systemically and 
disseminate to reaching distant tissues (Elrashdy et al., 2020). This 
hypothesis is supported by Bulfamante et al., 2020; Colmenero 
et al., 2020; Paniz-Mondolfi et al., 2020, where viral particles were 
detected in ECs of lungs, kidneys, skin chilblains, and CNS of vascu-
lar system and organs-cross talk via the vascular system. The TEM 

analysis of the postmortem frontal lobe brain sections showed the 
presence of viral particles. Pleomorphic spherical viral-like particles 
having variation in the size and shape were found either individually 
or within the small vesicles of ECs. The possible active pathogen 
transcellular penetration (entry-transit process) across the brain 
microvascular ECs into the neural niche was evidenced as blebbing 
of viral-like particles coming in/out of the EC wall. Neural cell bod-
ies exhibited distended cytoplasmic vacuoles containing enveloped 
viral particle exhibiting electron dense centers with distinct enve-
lope projections ending in round “peplomeric” structures typical of 
a coronavirus particle (Paniz-Mondolfi et al., 2020). In the light of 
these findings, it seems logical that the virus can access the brain 
directly through the permanent destabilization of the BBB, spe-
cifically in patients with very severe viral infection complications 
accompanied by systemic inflammatory responses, in its free form 
or vacuolated in double membrane vesicles. In turn, not only viral 
particles but the peripheral cytokines can gain entry to the CNS, 
and consequently exacerbate or trigger neuroinflammation that can 
result in many neurological manifestations, including encephalitis 
(De Felice et al., 2020).

The isolated EVs released from DENV-2 infected U937 macro-
phage cell line carrying the viral NS3 protein and different miRs in-
duced an increase in the polarization of the endothelial (EA.hy926) 
monolayer cells permeability, as well as changes in the expression of 
ICAM and the VE-cadherin, also leading to an increase in the levels 
of the IP-10, TNF-α, RANTES, IL-10, and MCP-1 secretion, even in 
the absence of the virus (Velandia-Romero et al., 2020), suggesting 
that a pro-inflammatory status was involved in the endothelial per-
meability alteration. The miRs most frequently counted within the 
vesicles obtained from such DENV-infected cells include the miR 21, 
miR 92a, and miR 191, which are strongly associated with many bi-
ological pathways involving EC processes, such as tubular network 
formation, angiogenesis, and brain microvascular reparation. Such 
vesicles obtained from the DENV-infected cells induced an endo-
thelial activation, possibly determined by the miR that they contain 
(Velandia-Romero et al., 2020).

Different cultured glial cell types released the EDMVs, as well 
as EDMVs of different sizes were detected in CSF. EDMVs are able 
to cross the BBB in both directions, though it is unclear what the 
route of transfer is. Also, the peripheral EDMVs can interact with 
the BBB leading to changes in the barrier's properties. EDMVs can 
enter the brain parenchyma at the CP and to facilitate folate import 
into the brain. Of note, the inflammatory conditions often associ-
ated with a leaky BBB facilitated the entry of peripheral EDMVs into 
the brain, resulting in genetic modulation of the target cells of the 
CNS. These results indicate to that the EDMVs may act as a means 
of the nonsynaptic neuronal cell communication, hence the EDMVs 
released from neurons are likely involved in the transfer of biomol-
ecules across synapses. Furthermore, all types of macroglia and 
microglia (phagocytic cells) contributing to CNS tissue homeostasis 
can secrete EDMVs in the form of exosomes or microvesicles (re-
viewed in (Basso & Bonetto, 2016; Saint-Pol et al., 2020; Yanez-Mo 
et al., 2015)).
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14.3 | COVID-19 brain access via nicotinic 
acetylcholine receptor (nAChR)

It is known that there are functional connections between the ACE2 
expression and nicotine exposur

e in lungs and other organ systems, such as the kidneys and heart. 
It is likely that because of these functional connections and due to 
the capability of nicotine to interact with the components of other 
renin angiotensin system, smoking can promote COVID-19 cellular 
entry through the nAChR signaling pathway. Notably, nAChRs are 
found on the surfaces of many of the same cells that express ACE2 
in the kidneys, lungs, circulation, and in the brain, and immune cells 
(Changeux, 2010; Nordman, Muldoon, et al., 2014; Nordman, Phillips, 
et al., 2014; Tolu et al., 2013). Therefore, smoking can impact COVID-
19 pathophysiology and have a clinical outcome in several organ sys-
tems (Kabbani & Olds, 2020). As ACE2 is expressed in the brain and 
functionally interacts with nAChRs (Ferrari et al., 2007, 2008; Oakes 
et al., 2018), it was hypothesized that if neural cells, such as epithelial 
cells, are more vulnerable to infection in smokers since nicotine stim-
ulation of the nAChR can increase ACE2 expression within them (Olds 
& Kabbani, 2020). This is an important point since it was shown that 
mRNA from the closely related SARS-CoV, which also binds ACE2 as a 

mechanism of cell entry, can be detected in brain and CSF of infected 
individuals (Chong et al., 2004; Inoue et al., 2007; Zhang et al., 2003). 
Furthermore, SARS-CoV’s ability to enter neurons was established in 
the experimental systems using recombinant human ACE2 as the point 
of entry (Kaparianos & Argyropoulou, 2011; Netland et al., 2008). 
Considering this scenario, Olds and Kabbani (Kabbani & Olds, 2020; 
Olds & Kabbani, 2020) asked important questions, such as: can the 
COVID-19 infection lead to long-term neural damage in both symp-
tomatic and asymptomatic individuals? And if it can, then can the 
chronic nicotine exposure through smoking habits and addiction in-
crease the risk of the developing of COVID-19-associated neuropa-
thology through interactions between nAChRs and ACE2 in neurons 
and glia? These important questions still wait for their answers.

15  | IMMUNE-MEDIATED RESPONSES 
AND SARS- CoV-2 NEUROLOGIC AL 
COMPLIC ATIONS

Figure 3 represents three escalating phases of COVID-19 dis-
ease progression. Increased vascular permeability is also a hall-
mark change that occurs in the process of a cytokine storm (Ye 

F I G U R E  3   Classification of COVID-19 disease stages. The figure illustrates three escalating phases of COVID-19 disease progression, 
with hypothesis of blood–endothelial/epithelial barriers integrity/permeability scale associated with age and comorbidities diseases over 
the three stages. The blood–endothelial barriers are representative for all body barriers and specifically for blood–nervous system barrier 
(BNSB). Progressive increase in inflammatory cytokine and chemokines eventually leads to cytokine storm in a profile similar to in sepsis 
cases, which eventually leads to endothelial barrier dysfunction. Many other biomarkers molecules (in addition to the cytokine storm 
elements) have a direct effect on the BNSB as discussed in text. The times on the x axis are approximate. The figure designed based on 
and adapted from (Akhmerov & Marban, 2020; Delaney & Campbell, 2017; Doran et al., 2013; Elrashdy et al., 2020; Li, Liu, et al., 2020; 
Siddiqi & Mehra, 2020). + to >4+ indicative for barrier integrity/permeability like scale, IIA (stage II without hypoxia) IIB (Stage II with 
hypoxia). Tumor necrosis factor (TNF-α), interleukin 1β (IL-1β), IL-6, GCSF: granulocyte-colony stimulating factor, interferon gamma-induced 
protein-10, monocyte chemoattractant protein-1, and MCA-protein 1: macrophage inflammatory proteins 1-α [Color figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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et al., 2020). Although it is known that the cytokine storm (hyper-
cytokinemia) has devastating effects on the respiratory system pro-
moting hyperinflammation and acute respiratory distress syndrome 
(ARDS), and serves as one of the major causes of the fatal outcomes 
of the disease, the neurological effects of the cytokine storm are 
less understood. For example, it is not clear if acute or subacute 
CNS involvement can be caused by the cytokine storm occurring 
during the final stage of the disease. A case was reported, where 
a COVID-19 patient developed acute necrotizing hemorrhagic en-
cephalopathy after several days with altered mental status, cough, 
and fever (Poyiadji et al., 2020). Although at this stage, the patient 
demonstrated BBB disruption and the intracranial cytokine storm, 
no direct viral invasion of the CNS was observed in this case (Poyiadji 
et al., 2020).

Importantly, the nervous system seems to be affected by the 
alterations in the neuroinflammatory mechanisms. In fact, immune 
mechanisms similar to those initiating the cytokine storm in SARS 
are known to be related to the pathogenesis of multiple neurolog-
ical diseases, such as cerebrovascular disease, PNS disorders, and 
postinfectious immune-mediated encephalitis (Serrano-Castro 
et al., 2020). Furthermore, a pro-inflammatory environment is known 
to play a role in the pathogenesis and progression of a wide range 
of neurodegenerative diseases, such as AD, amyotrophic lateral 
sclerosis, Huntington disease, multiple sclerosis, and PD, where a 
chronic neuroinflammation causes high levels of cytokines/chemok-
ines (Serrano-Castro et al., 2020). Many of these neurodegenerative 
diseases are age-related, and the efficiency of the innate immune 
response is decreased in older age, increasing the vulnerability of 
these patients to infection (Boe et al., 2017). Older individuals also 
demonstrate greater severity of the immune response against SARS-
CoV-2 infection. All this indicates that there is a potential association 
of the development and progression of neurodegenerative diseases 
with SARS-CoV-2 infection that requires careful analysis and better 
understanding.

Furthermore, although children and adolescents typically 
demonstrate rather mild COVID-19 course, one cannot exclude the 
possibility that the SARS-CoV-2 infection may have prospective 
long-term neurological consequences in these population groups 
as well, triggering some cognitive and psychiatric disorders. In fact, 
synaptic pruning during childhood and adolescence can be distorted 
by the immunological alterations associated with SARS-CoV-2 infec-
tion, causing problems that will only become apparent in adulthood 
(Serrano-Castro et al., 2020).

Both, adaptive and innate immune responses against SARS-
CoV-2 infection and virus itself may cause damage within the CNS or 
PNS. In fact, both ECs of the BBB and epithelial cells of the BCSFB in 
the CP located in the ventricles of the brain can be targeted by the 
virus. Furthermore, similar to other viruses (Koyuncu et al., 2013) 
SARS-CoV-2 can use leukocytes as an intermediate host cell be-
fore spreading into CNS from circulatory system (Huang, Zheng, 
et al., 2020). In fact, such “Trojan horse” mechanism (McGavern & 
Kang, 2011), where circulating leukocytes are used by viruses to 
carry them across the BBB, was described for HIV (Kaul et al., 2001), 

Zika virus (Ayala-Nunez et al., 2019), and HCoV-229E (Collins, 2002; 
Desforges et al., 2007; Patterson & Macnaughton, 1982). In other 
words, SARS-CoV-2 is potentially able to establish a reservoir in leu-
kocytes converting them into the delivery vehicles disseminating in-
fection outside the respiratory tracts and spreading it into the other 
tissues including CNS (Huang, Zheng, et al., 2020).

Transmission electronic microscopy analysis of a brain tissue 
specimen obtained from the SARS patient succumbed to enceph-
alopathy revealed the presence of SARS-CoV-like viral particle, and 
a SARS-CoV strain was isolated from this sample, clearly demon-
strating the neurotropic potential of this virus (Xu et al., 2005). 
Furthermore, cytokine/chemokine assay showed elevated expres-
sion of a cytokine, monokine induced by interferon-γ (MIG), and 
interferon-γ–inducible protein 10 in this sample, and the immunohis-
tochemical analysis revealed that a major source for MIG production 
in the brain was gliocytes (Xu et al., 2005). These findings supported 
the idea that viral entry to CNS might trigger the infiltration of im-
mune cells and the release of cytokines and chemokines, which con-
tribute to the BBB permeability and/or damage.

Therefore, there is clearly an important interplay between 
the SARS-CoV-2 and the immune system, where dysfunctional 
immune responses contributes to the disease progression (Tay 
et al., 2020). For example, rapid viral replication and secondary 
cellular injury during the SARS-CoV-2 promoted the increase in 
the secretion of inflammatory cytokines, such as IL-4, IL-10, IFN-
γ, IL-1β, and TNF-α, and the cytokine storm is initiated when the 
levels of released cytokines are injurious to host cells. The pres-
ence of a cytokine storm in severe COVID-19 patients is suggested 
by their high plasma levels of the inflammatory cytokines (Huang, 
Wang, et al., 2020). The presence of a cytokine storm combined 
with the elevated d-dimer (which is a fibrin degradation fragment 
produced when a blood clot gets dissolved in the body, and which, 
therefore, serves as a reflection of the presence of thrombosis 
(blood clotting) and/or thrombotic embolism) and ferritins lev-
els were also reported in SARS-CoV-2–infected patients (Mehta 
et al., 2020; Xu et al., 2020).

Previous studies on sepsis revealed that sepsis-associated cogni-
tive impairment and other neurological symptoms can be triggered 
by the cytokine storm-induced BBB disruption and resulting neu-
roinflammation (Nwafor et al., 2019). This clearly indicates that the 
activation of the immune system is not only protecting the organism, 
but also is capable of inducing serious harm, thereby representing a 
double-edged sword. Contributing factors to the harmful side are 
the overactivation of the immune system, infection-induced cyto-
kine storm, and the increased immunoglobulin levels in CSF (Wang, 
Shen et al., 2020). In line with these mechanisms, neurologic fea-
tures in severe SARS-CoV-2 infection were shown to be combined 
with the elevated IgG levels and the presence of the oligoclonal 
bands (which are defined as at least two CSF electrophoresis bands 
seen in the CSF samples with no corresponding band present in the 
serum) in the CSF (Wang, Shen, et al., 2020). Furthermore, the de-
velopment of acute necrotizing encephalopathy or GBS in virus-in-
fected patients can be associated with intracranial cytokine storms 
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leading to the breakdown of the BBB without direct viral invasion of 
the CNS (Dalakas, 2020). In the classic view, acute lung injury and 
ARDS represent an inflammatory disruption of the epithelial and 
endothelial cellular barriers of the alveolar-capillary unit, with ensu-
ing microvascular hyperpermeability and flooding of alveolar spaces 
(Matthay & Zemans, 2011).

Another illustration of the double-edged sword concept of im-
mune response activation in SARS-CoV-2 infection is given by the 
complement system, activation of which represents the first re-
sponse of the host immune system against SARS-CoV-2 infection. 
However, “everything is good, which is good in moderation,” and 
uncontrolled complement activation can be harmful as well. In fact, 
the virus infection of the lungs and other organs can cause comple-
ment overactivation leading not only to the acute and chronic in-
flammation, but to the vasculopathy, for example, EC dysfunction, 
intravascular coagulation, and thrombus formation, thereby contrib-
uting to the multiple organ failure and death (Noris et al., 2020). In 
other words, such uncontrolled complement activation might initiate 
some terminal pathways accounting for what clinicians and pathol-
ogists are observing in COVID-19 patients, that is, “although the 
lungs are ground zero, the virus reach can extend to many organs, 
including the heart and blood vessels, kidneys, gut, and brain” (Noris 
et al., 2020; Wadman et al., 2020). The activation of complement 
component C3 exacerbates SARS-CoV–associated ARDS (Gralinski 
et al., 2018), whereas C3-C5 complement deposits are abundant in 
the lung biopsies from patients with COVID-19 (Risitano et al., 2020). 
C5a signaling through its G-protein coupled receptor C5aR1/CD88 
increased BBB permeability in neuroinflammatory disease settings 
in vivo (Jacob & Alexander, 2014). It is highly likely that “inflamm-ag-
ing” (which is a chronic progressive increase in the pro-inflammatory 
status associated with the aging process (Franceschi et al., 2000)) is 
correlated with increased risk of a cytokine storm in some critical 
elderly patients with COVID-19 infection (Meftahi et al., 2020).

16  | CONCLUSIONS

There are numerous pathways that can be utilized by SARS-CoV-2 
to breach the body's defenses reach the PNS and CNS. SARS-CoV-2 
or its components reach the nervous system through direct contact 
specifically in severe COVID-19 cases, or indirect contact through 
multiple mechanisms of immune-mediated responses in mild-to-
moderate COVID-19 cases. We are discussing here that there are at 
least seven candidate routes, which the mature or immature SARS-
CoV-2 components could use to reach the CNS and PNS, utilizing the 
within-body cross talk between organs. Obviously, utilization of any 
one of these routes is sufficient to make SARS-CoV-2 neurotropic.
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