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ABSTRACT Clinical data are crucial for any medical case to study and understand a patient’s condition
and to give the patient the best possible treatment. Pervasive healthcare systems apply information and
communication technology to enable the usage of ubiquitous clinical data by authorized medical persons.
However, quality of clinical data in these applications is, to a large extent, determined by the technological
context of the patient. A technological context is characterized by potential technological disruptions
that affect optimal functioning of technological resources. The clinical data based on input from these
technological resources can therefore have quality degradations. If these degradations are not noticed, the
use of this clinical data can lead to wrong treatment decisions, which potentially puts the patient’s safety
at risk. This paper presents an ontology that specifies the relation among technological context, quality of
clinical data, and patient treatment. The presented ontology provides a formal way to represent the knowledge
to specify the effect of technological context variations in the clinical data quality and the impact of the
clinical data quality on a patient’s treatment. Accordingly, this ontology is the foundation for a quality of data
framework that enables the development of telemedicine systems that are capable of adapting the treatment
when the quality of the clinical data degrades, and thus guaranteeing patients’ safety even when technological

context varies.

INDEX TERMS Context, ontology, telemedicine, quality of data.

I. INTRODUCTION
Data, clinical data in particular, is essential to create clinically
relevant information in healthcare for treatment’s diagnosis
and prognosis besides other concerns, such as the informa-
tion of potential conflicting treatments or contraindication
drugs. As technology advances, new ways of acquiring and
processing clinical data are emerging to better enable patient
care. Pervasive healthcare, for example, uses Information
and Communication Technology (ICT), to obtain clinical
data from remotely monitored ambulatory patients and it
often employs automated Clinical Decision Support
Systems (CDSS) to process the data at the point of care. This
way the patient is more ‘closely’ treated, while financial and
human resource requirements are lowered.

However, the CDSS needs to deal with uncertainties
in order to provide safe and efficient care to the patient.

The sources of uncertainty are diverse: from patients who
cannot describe their situation to laboratories that report erro-
neous clinical data [1]. The quality of the clinical data (QoD)
contributes to the decisions uncertainty. In case the clinical
data quality is unknown, the clinical decisions can be done
based on the assumption that the clinical data fulfils the
medical requirements, resulting in a certain but erroneous
decision. In the traditional medical practice, in intramural
settings (such as a hospital), medical domain experts usually
trust the clinical data used for their decision making process
since they study and evaluate the data before using it in their
decision making process. In case they determine that the data
is suspicious (e.g. erroneous, noisy or out of date), they per-
form additional measurements or make use of complementary
data. Nevertheless, in some cases the medical domain experts
store erroneous or incomplete data in medical registries
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or laboratory report results may contain errors [1], [2].
Furthermore, performance issues regarding ICT-based
technological resources (e.g. weak internet signal or low
device battery) might cause QoD degradation [3], [4].
QoD-unawareness can thus lead to risky treatment guidance,
particularly in extramural settings where the ambulant outpa-
tient is guided by an automated CDSS, and where the CDSS
makes use of ICT-based clinical data. Moreover, in the extra-
mural settings, there are no quality controls from hospitals or
medical domain experts. Accordingly, nobody supervises the
data at the point of care, which further increases the possi-
bility of unnoticed quality problems. This paper, therefore,
addresses the problem of QoD degradation in extramural
settings for pervasive healthcare.

In order to develop a telemedicine system resilient to
technological disruptions we need to build a QoD-framework
that defines the relation between clinical treatments and
technological context characterized by the performance of
ICT-based technological resources. This work proposes an
ontology to describe this relation. This ontological char-
acterization of the clinical and technological relation pro-
vides a formal way to represent the knowledge, which is
to be used by the QoD-aware telemedicine system. The
developed ontology is the output of a refined requirements
elicitation (RE) method supported with a layering tech-
nique [4].

The following section summarizes the RE method and
layering technique to build a QoD-framework for telemedicine
systems. Section III presents the hierarchical ontology that
contributes to the QoD-framework development. Section IV
presents the application of the QoD-framework in a
telemedicine study and its results. Finally, Section V
discusses the potential impact of the presented methodology
for telemedicine systems and future work directions.

Il. METHODS AND PROCEDURES
Quality of Data (QoD) is addressed in several healthcare

studies [2], [5]-[10]. There are several ways of addressing
QoD in healthcare. Some studies cope with uncertainties
in the knowledge representation and inference schemes for
CDSS [11]. The QoD is one of the uncertainties that health-
care must study in order to provide best treatment to the
patients. GRADE [12] considers the necessity to involve
quality of evidence (QoE) and strength of recommenda-
tion (SoR) in clinical guidelines in order to guarantee best
evidence-based care to patients. Other studies focus on how
to determine the quality of data stored in medical databases,
such as for electronic health records, and its impact on health-
care [2], [5]. Additionally, the impact of the performance
of technological resources on clinical data quality or in the
treatment is studied in [8], [13], and [14].

Telemedicine systems often aim to provide treatment guid-
ance to ambulatory outpatients in extramural settings for
pervasive healthcare. These systems are data-driven and their
guidance at the point of care is mainly based on the monitored
clinical data by using body area networks (BAN), which
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consist of sensors, actuators, communication and processing
facilities that are connected via a wireless network [15],
and personal medical devices, such as Blood Pressure (BP)
monitors or Heart Rate (HR) sensors. We refer to all
these ICT-based components and facilities as technological
resources. Telemedicine systems highly depend on the clini-
cal data used to guide patients remotely. Therefore, the quality
of this data also has a significant effect on the guidance and its
degradation may negatively affect the treatment, putting the
patient’s safety at risk. In order to prevent such a treatment
risk increment by erroneous treatment guidance, we present
a method to build a QoD-framework for these telemedicine
systems to make them QoD-aware.

There are several factors that can influence the quality of
clinical data. Some of the factors are related to the perfor-
mance of the technology used to obtain the data (i.e. internal
factors), and other factors are related to the usage of the
technological resources by the user (i.e. external factors).

Firstly, we study performance properties, i.e. quality of
service (QoS) of technological resources. In this paper,
QoS of technological resources is described by a set of
Resource Qualifying Parameters (RQP). Since the quality
of the data that is provided by a technological resource
will depend on the QoS of this resource, RPQs are used to
compute QoD. For example, the mobile internet coverage,
the robustness against noise, or the battery capacity of a
specific technological resource may influence the clinical
data quality used for the treatment. Furthermore, other
factors, such as environmental circumstances also contribute
to the technological resources’ performance and they are
modeled as RQPs. For example, the temperature of the place
where the measurement is done may influence the perfor-
mance of a device, or a rainy weather can alter the internet
connectivity to transmit the data causing data transmission
delays or data loss, which characterize the quality of the
clinical data. Therefore, we propose a QoD computation
model which is based on RPQs.

Secondly, we also study the usage of technological
resources (by the user) since its usage has an influence
on the quality of the clinical data. Accordingly, user char-
acteristics are modeled as RQPs used to compute QoD.
Patient education is one of these characteristics that influence
the proper usage of a device. For example, BP must be
measured sitting and in a relaxed condition to provide an
accurate BP measurement. If the patient is not educated to
make the measurement correctly and stands up, the QoD of
BP degrades and the BP value may not be clinically valid.
Patient trustworthiness is another user characteristic that
influences the QoD. Some patients for example, perform
measurements at their convenience in order to obtain the
clinical data values that they are content with. Besides, when
the data is input manually, potential typing errors might occur.
Therefore, the trustworthiness value (used to compute QoD)
for manual input is set Medium whereas for automatic device
input it is set to High. Additionally, the system checks if the
value is within range given by the BP monitor manufacturer to
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prevent accidental typing errors (e.g. 1000 instead of 100) and
determine the final QoD. Therefore, in the ontology presented
in Section III, we model these user characteristics as RQPs of,
for example, manual input device, which can be categorized
under a sensing or a processing component.

All these characteristics or RQPs comprise what we
call technological context, defined as technical information
provided by a collection of technological resources that char-
acterizes patient’s treatment [3], [16]. We focus on the impact
of technological context on the QoD and the impact of QoD
on the treatment in order to build a QoD-aware telemedicine
system. To achieve such a system, we develop an ontology
that represents the relation between clinical data at the
technological level and clinical data at the clinical decision
making level. This ontology is the result of applying a refined
RE method and the layering technique from [4], which is
summarized here.

A. RE METHOD FOR QoD AWARENESS

To acquire requirements of the envisioned QoD-aware
telemedicine system we adopt the role of requirement engi-
neers and apply the iPACT-FICS RE method [3], [4], [17].
This method has been applied in several healthcare projects,
since it was easily understood by medical domain experts and
produced successful results.

Here, we summarize the iPACT-FICS RE method as
follows. iPACT describes the intention of the envisioned
system’s usage (e.g. supporting out-patients’ treatment
guidance) by People who directly interact with this system
(e.g. patient) and their treatment related Activities (e.g. walk-
ing physical exercise) in a particular Context (e.g. outdoors
exercise activity) supported by Technology, which is the
envisioned system (e.g. a mobile patient guidance system).
This iPACT analysis is used to build a medical scenario
from a user perspective; i.e., the thread of main activities
for the patient treatment prescribed by the medical practi-
tioner using the envisioned system. Next, we focus on the
FICS analysis. FICS stands for Functionality of the intended
telemedicine system, user-system [Interactions, Content of
these interactions, and the intended system’s Services which
are constituted by the interactions [17]. The FICS analysis
is concluded with an augmented iPACT scenario, which
describes the people-envisioned system interactions. The
iPACT-FICS scenario is finalized after approval from medical
domain experts.

In order to study the influence of the technological context
on the treatment and incorporate adaptation mechanisms in
the system, this RE method is applied as follows. In the
first iPACT-FICS iteration the envisioned technology is a
telemedicine system assumed to perform without disrup-
tions (i.e. Ideal Case) and the context has no influence on
the system performance. In the second iteration we focus
on the technological resources’ disruptions (i.e. Non-Ideal
Case), which leads to a new technological Context (iPACT),
and their impact on patient treatment. Now we introduce a
telemedicine system, which is QoD-aware as the selected
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technology (iPACT). Additionally, we make medical domain
experts aware about the potential technological disruptions
that can occur. Next, these medical domain experts determine
how to adapt patient treatment activities (iPACT), by taking
precautionary actions to ensure patients’ safety and system
efficacy. Therefore, this results in a new iPACT’-FICS’,
where the intention of the envisioned system and the people
involved in the scenario remain the same. Medical practi-
tioners considered the requirements presented in this new
iPACT’-FICS’ scenario as a guarantee of patient safety.
Therefore, these requirements must be implemented into the
system.

In the Ideal Case, the context corresponds to the treatment
activities and the patient where no possible technological
disruptions occur. Accordingly, the envisioned system and
the treatment activities are not affected. However, in the
Non-Ideal Case, the context also involves the technological
context variations. Consequently, this new (technological)
context leads to a new technology which needs to be
QoD-aware and further leads to new treatment activities that
must guarantee patients safety.

For example, for both cases, the intention (iPACT) can
be to support out-patient’s physical exercise treatment guid-
ance and the people (iPACT) can be a cardiac out-patient.
In the Ideal Case, the activity is to perform physical exer-
cise in an outdoors context with the support of the envi-
sioned telemedicine system fechnology. In contrast, in the
Non-Ideal Case, the context is an outdoors exercise with
degraded quality of the data caused by data communication
disruptions. Consequently, the envisioned system is a
QoD-aware telemedicine system technology, which provides
treatment adaptation mechanisms, so that the physical
exercise activity is modified by informing the patient to slow
down or stop the physical exercise treatment.

As presented in [4], the RE method refinement to design
technological context and QoD-aware telemedicine systems
focuses on the detailed specification of the iPACT Context
analysis. This makes the technological context an explicit
part of the medical activities context that triggers an addi-
tional RE cycle, i.e., iPACT’-FICS’. As a result, the intended
telemedicine system is QoD-aware, set for technological
disruptions.

B. LAYERING TECHNIQUE

The layering technique, described in [4], defines the
functional (i.e. conceptual) relation and non-functional
(i.e. qualitative) relation between clinical layer and techno-
logical layer of a telemedicine system. We summarize the
concepts of the functional and non-functional aspects.

1) FUNCTIONAL RELATION

The functional relation refers to the direct dependency
between the data being used in the clinical layer and
technological layer. As presented in [4], the clinical
layer comprises clinical abstractions, which are high-level
medical concepts (events) obtained typically from temporal
patterns of elementary clinical variables. The elementary
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clinical variables (e.g. BP, HR) are the concepts of clinical
data that require additional patient and treatment context
information to become a meaningful clinical information,
i.e. clinical abstractions. The clinical abstractions are used by
the clinical decision making agents (e.g. medical practitioners
or CDSS) to treat patients. Hence, the clinical abstraction
is the data in the clinical layer that can trigger clinical
recommendation from the CDSS for the treatment guidance.
An example of a clinical abstraction is the over-exertion
of a patient during physical exercise, defined as the event
when monitored heart rate (HR) is above the recommended
target HR range for more than 30 seconds. As a result the
decision making agent, such as the CDSS, may send a clinical
recommendation to the patient to slow down.

The technological layer comprises fechnological
variables, which are ‘unprocessed’ raw data handled by tech-
nological resources that do not apply or require any clinical
interpretation. Technological resources measure data at point
of monitoring, (pre)process and transfer these technological
variables. For example, a sensor monitors the electrode signal
technological variable, which is processed and transported by
other technological resources. At the point of decision, where
the CDSS is executed, technological variables are interpreted
as clinical variables, usually represented by patient’s vital
signs, like the HR.

2) NON-FUNCTIONAL RELATION

Complementary to the functional relation is the non-
functional relation between QoD of clinical abstraction,
clinical variables and technological variables.

Being QoD vulnerable to technological disruptions, as seen
in [4], the technological context plays a significant role in
this non-functional relation. In the first phase of this non-
functional relation of the data, the technological context is
compliant with the medical requirements (i.e. Ideal Case).
This means that the QoS of the technological resources fulfil
the requirements to provide high quality data. Thus, the QoS
of the relevant technological resources is specified in this
phase, so that the QoD of technological variables, and as
a consequence the QoD of clinical variables and clinical
abstractions, fulfil the clinical quality requirements.

In the second phase (i.e. Non-Ideal Case), the potential
technological disruptions that alter the technological context
and their effects on the QoD are studied. Thus, the QoS of the
technological resources affects the QoD of the technological
variables in the technical layer. This has an effect on the QoD
of clinical variables and ultimately on the QoD of clinical
abstractions used for the treatment in the clinical layer.
In order to ensure the patient’s safety and maintain
treatment’s efficacy, treatment adaptation mechanisms
are developed by applying the RE method described
in Section II. A.

IIl. RESULTS: THE QoD-FRAMEWORK ONTOLOGY
The applied RE method refinement and the layering
technique results in an ontology, which we refer to as
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the QoD-Framework ontology. This ontology captures the
necessary knowledge for QoD-aware telemedicine systems
that aim at preventing the risk of treatment increment
when the technological context varies. As described by
Paganelli and Giuli [18], ontologies may help in:
1) specifying contextual knowledge in terms of classes of
objects, relationships, and constraints on their properties;
2) describing contexts semantically in a way which is inde-
pendent of programming languages, underlying operating
systems, or middleware; 3) enabling formal analysis of
domain knowledge, i.e. context reasoning using first-order
logic, or temporal logic; 4) deriving fresh knowledge and
facts through reasoning on context data by using inference
engines; and 5) enabling knowledge reuse, as ontologies of
different domains can be composed and extended with new
concepts in order to produce new ontologies without starting
from scratch.

There are existing ontologies that represent the con-
text for smart home applications [19] and healthcare [18].
In [18], Paganelli and Giuli presents a personal context
ontology for a specific home care application that supports
patients in ‘alert’ situations where patients might require
assistance. The context entities include persons (e.g. patient,
medical practitioner) and locations (e.g. patient’s home and
care center); and the related context items include infor-
mation on the patient’s biomedical parameters (e.g. vital
signs) and home living environment (e.g. temperature). The
‘alert’ situations are attributed to the patient’s clinical status
(e.g. heart rate out of range) or external environmental situa-
tions (e.g. temperature out of range). Other studies address
QoD related ontologies, which describe the QoD dimen-
sions [20] that represent different aspects of QoD. Moreover,
in recent years ontologies have been often used to represent
clinical guidelines [21], [22]. The usage of clinical guidelines
in information systems, such as CDSS, has contributed to this
ontology application. The formalization of the guideline in an
ontology supports the implementation of a computer inter-
pretable guideline (CIG), applied in guideline-based CDSS
(Section IV. B).

We target an ontology that captures the relations between
the following three concepts — technological context, quality
of clinical data, and patient treatment — in order to repre-
sent the knowledge for a QoD-aware telemedicine system.
However, most of the studied ontologies address either
clinical guidelines, quality of data, or personal (user) context.
Therefore, the QoD-Framework ontology presented here
(Fig. 1) covers these three concepts and differs from the
currently existing ontologies. Fig. 1 illustrates the overview
of the QoD-Framework ontology.

The QoD-Framework ontology has been specified with
the Web Ontology Language (OWL) [23]. In Fig. 1, the
OWL ontology is represented by means of Unified Modeling
Language (UML) class diagrams. UML classes represent
OWL classes, UML class attributes represent OWL datatype
properties, and UML associations among classes are used for
representing OWL object properties.
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FIGURE 1. QoD-framework ontology overview.

The QoD-Framework ontology is designed to formalize
the relation between the technological context and the
clinical context and support the delivery of specific guid-
ance based on the technological context. Additionally, the
QoD-Framework ontology was validated and used by medical
practitioners to understand and formalize these relations. The
QoD-framework is based on the layering technique and it
consists of two parts: A) the technical domain ontology,
which captures the knowledge on the technological layer,
including the relation between the technological context and
the QoD relevant to clinical variables; and B) the clinical
domain ontology, which captures the knowledge on the
clinical layer, including the relation between the QoD relevant
to clinical variables and the patient treatment.

A. TECHNICAL DOMAIN ONTOLOGY

The technical domain ontology is illustrated in the lower part
of Fig. 1. As described before, the ICT-based technologi-
cal resources make it possible to obtain clinical data from
remotely monitored ambulatory patients. On the other hand,
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the technological context is characterized by the performance
of ICT-based technological resources. Additionally, the tech-
nological context, which comprises technological resources,
provides clinical variables with QoD related information.

The performance of each technological resource, deter-
mined by resource qualifying parameters (RQP), corresponds
to the quality of service (QoS) of each technological resource.
Each technological resource can have one or more RQPs.
As discussed in [3], the RQPs are either static or dynamic.
The static RQPs are usually given by the technological
resource manufacturer and represent the constant properties
of the device. For example, the BioHarness sensor manufac-
turer provides the specification of the sensor [26], such as
the sample frequency of the general log data (e.g. 1Hz). The
dynamic RQPs are obtained during system execution time
and can vary. For example, the battery level of the BioHarness
sensor at a particular moment in time. The RQPs have a
name, type (static or dynamic), a maximum and minimum
value (usually for static RQPs), a unit and a value
(see Fig. 1 and Table 2).

The RPQs of the technological resources, which are given
in a specific technological context, are associated with one
or more QoD dimensions of the provided clinical vari-
ables [3], [4]. Accordingly, Fig. 1 shows that the QoD of
the clinical variable uses RQPs for its QoD dimensions com-
putation. To select the required QoD dimensions, we first
did a literature survey [12], [20], [24], [25], where we came
up with potential relevant quality dimensions for the applied
study. Secondly, we conducted discussions with the medical
practitioners of the MobiGuide project to ascertain the QoD
dimensions that needed consideration. Medical practitioners
request limited QoD dimensions that can cover their
necessities. As a result, it was agreed to adopt the following
five QoD dimensions: Accuracy, Timeliness, Dependability,
Cost, and Quality of Evidence. These QoD dimensions also
cover other similar quality dimensions (e.g. delay under
timeliness), which may be applicable in other studies and
do not overwhelm the system or medical practitioners with
additional QoD information.

By using the RQPs in the computational models
presented in [3], we calculate the scalar value of each QoD
dimension. The output is a scalar value, which is assigned
a quality grade — High, Medium, Low, or Very Low — by
using the stratification model described in [3]. These grades,
commonly used in the medical practice and identified by
GRADE healthcare working group [12], were also easily
understood and validated by the medical practitioners
involved in the study. The stratification model is treatment
context specific, and therefore, the medical practitioner is
the one in charge of determining the scalar value ranges that
correspond to each quality grade. For example, the scalar
value (e.g. 85%) of a computed dependability QoD dimension
is based, among others, on the HR sensor battery level
(e.g. 50%), which might have different interpretations
depending on the treatment context. In a treatment context
that consists of an outdoors 1 hour duration physical exercise,
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where the mobile HR sensor needs to have a battery level
higher than 49%, this dependability QoD dimension scalar
value of 85% is mapped to High quality grade. In contrast, in
a 24 hours monitoring treatment, the dependability of 85%
corresponds to Medium quality grade since the mobile
HR sensor needs to have a higher battery level to provide the
HR data for the 24 hour monitoring treatment. The overall
QoD is based on the five QoD dimensions and it is used to
obtain an easier QoD interpretation.

The technological context can vary not only due to
the performance variation of the technological resources,
but also due to the specific technological resources used.
In certain scenarios, it is possible to choose between alter-
native technological resources in the complete technologi-
cal resource configuration chain. These alternative resources
(e.g. Wi-Fi or 4G connection for data communication) have
the same functionalities, but different RQP characteristics.
Therefore, depending on the chosen technological resource,
the RQPs (e.g. subscription cost, transmission delay, and
trustworthiness) will differ and consequently, we will have a
different technological context that provides the same data but
potentially with QoD grade variations. These technological
resource configuration chains are often used to optimize the
output data quality [25].

We address ICT-based technological resources that influ-
ence QoD from the technological context point of view,
since the focus of the paper is the impact of technologi-
cal context on QoD. Hence, we exclude other technological
resources that may deal with other issues, such as technologi-
cal resources integration and security. Accordingly, this study
classifies the technological resources into three high-level
categories: sensing components, processing components and
communication components.

Sensing components comprise of a comprehensive set
of sensors and data acquisition devices, which provide all
relevant ‘raw’ physiological measurements of the patient
(e.g. electrocardiogram signals). These are located at the
point of monitoring. An instance (individual) of a sensing
component can be the BioHarness 3 sensor device [26] which
provides RQPs, such as the battery level and noise related
information (see Table 2).

Processing components comprise of algorithms or pro-
cesses that can analyze and interpret the sensed “‘raw’ data.
Usually the output consists of clinical variables or higher level
clinical data abstractions. For example, the BioHarness (BH)
processor is a processing component. First, it acquires
an electrocardiogram signal and detects, for example, the
R peaks of the electrocardiogram, which are higher level
clinical data abstractions. The accurate R peak detection is
essential in signal processing for HR measurement. Hence,
it applies signal processing functions to determine the HR.
This BH processor can have RQPs, such as robustness against
noise, determined by sensitivity and specificity.

Communication components are composed of wire and
wireless components that enable data transmission between
the set of sensing and processing components from the
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point of monitoring to the point of decision. The wireless
communication involves, for instance, Bluetooth, Wi-Fi
and 4G, and wire communication involves fiber-optic
communication among others. RQPs that may characterize
the performance of the communication components are the
data transmission cost, bandwidth and availability.

TABLE 1. Example of the technological context.

CLASS Individual

Technological Context
Technological Resource

Resource perform failure type 2

Subclass Sensing BH sensor
Processing BH processor
Communication  Bluetooth

TABLE 2. Example of individuals of technological resources.

Class Individuals
RQP (BH - rqp_name: BH_sensor_battery, rqp_type:dynamic,
sensor) max:100, min:0, unit:%, value: 5

- rqp_name: BH_sensor_SNR, rqp_type:dynamic, max:30,
min:-30, unit:dB, value: 0
RQP (BH - rqp_name: BH_processor_battery, rqp_type:dynamic,
processor) max:100, min:0, unit:%, value: 86
RQP
(Bluetooth)

rqp_name: Bluetooth_range, rqp_type:static, max:10,
min:0, unit: meter, value: -

- rqp_name: Bluetooth range value, rqp_type:static,
max:10, min:0, unit: meter, value: 5

TABLE 3. Example of the QoD of the clinical variable.

Class Datatype Individual
Clinical Variable Name heart_rate
Content value 85
unit bpm

QoD accuracy Low
timeliness High
dependability Very Low
cost Low
qoEvidence High
overallQoD Low

TABLE 4. Example of the treatment adaptation.
CLASS Individual

THRmax = 0.6 x HRmax
THRmin = 0.5 x HRmax

Treatment delay: 1 hour

Treatment

In the following tables (Table 1, Table 2, Table 3
and Table 4), we present a simplified example of a use
case study used in the QoD-aware system development.
Table 1 presents an example of a technological context, which
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comprises three technological resources, Table 2 provides the
RQPs of each of these technological resources and Table 3
lists the provided clinical variable and its associated QoD.

Table 2 contains the RQP individuals of each technological
resource presented in Table 1, which characterize the perfor-
mance of the technological resources, and consequently the
technological context. The RQP individuals of Table 2 are
specified by the RPQ datatype properties (name, type, a max-
imum and minimum value, a unit and the value). These RQP
individuals are used to compute the five QoD dimensions’
grade (Fig. 1), and based on these five QoD dimensions, the
overall QoD. Table 3 presents the heart rate clinical variable
and its associated QoD grades of the five QoD dimensions
and the overall QoD.

B. CLINICAL DOMAIN ONTOLOGY

In the upper part of Fig. 1, we present the clinical domain
ontology, which corresponds to the treatment adaptation
knowledge acquired during the RE method (Section II. A).
Fig. 1 illustrates the main classes of this domain. The
clinical domain ontology shows that a patient receives a
treatment, and has one medical practitioner, who provides
the treatment. The treatment class has a context, i.e. treatment
context, which makes use of clinical variables to conduct the
treatment. The QoD of the clinical variables characterize
the treatment context, and consequently it has an impact on
the treatment activities, which are adapted based on the
medical requirements (see Section II).

Adding to the previous example, on the one hand, the
clinical variable has certain quality grades (Table 3), which
are based on a specific technological context. On the other
hand, the treatment (e.g. a physical exercise treatment) is
provided by a medical practitioner (e.g. Peter the cardiologist)
to a patient (e.g. cardiac patient John). In a treatment context
that consists of an unsupervised outdoor physical exercise
with degraded QoD of the HR clinical variable (Table 3),
the telemedicine system that supports John needs to adapt the
treatment according to this clinical variable QoD degradation.
Therefore, the clinical domain ontology, which is the clinical
knowledge used by the system, specifies the treatment adap-
tation mechanisms caused by degraded QoD defined during
the RE method.

Table 4 presents some of the potential treatment adapta-
tions that are described in the ontology, which are triggered
when the treatment context uses the HR clinical data with
QoD grades of Table 3 in an unsupervised outdoors physical
exercise treatment. For example, target heart rate parameters
(THRmax, THRmin), which are the clinical abstractions used
to determine the intensity level of the prescribed physical
exercise treatment based on a measured patient maximum
HR (HRmax), are lowered (Table 4). Consequently, the QoD-
aware system ensures that the patient will not be recom-
mended to perform a strenuous exercise due to the unreli-
able HR measurement. Besides, due to a Very Low grade of
dependability QoD dimension, the treatment is being request
to be delayed for 1 hour (Table 4).
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IV. QoD-FRAMEWORK ONTOLOGY

APPLICATION IN MOBIGUIDE

This work has been implemented in the MobiGuide (MG)
European project [27]. MG aims to develop QoD and context-
aware evidence-based CDSS for guiding mobile patients
during their treatments ubiquitously. Hence, one of the
challenges addressed in this paper is to develop a QoD and
context-aware telemedicine system to adapt the treatment
according the patients’ technological context.

As discussed before, the technological context character-
izes the quality of the clinical data used by the system to
guide the patient during his/her treatment activities. In order
to design and develop a QoD-aware telemedicine system we
require two main components: (1) QoS Broker, which is a
component that translates the technological context informa-
tion into QoD, and (2) CDSS, which is a component that uses
potentially relevant information, such as the clinical data and
its quality, to guide patients during their treatment (Fig. 2).
The QoD-Framework ontology represents the knowledge
required by the QoD Broker schemas and CDSS schemas
in order to provide the ‘correct’ service. Based on inputs
from practitioners, we validated the QoD-Framework ontol-
ogy iteratively during the implementation phase. We made
extensions or modification to the ontology whenever incon-
sistencies between the current ontology and information
from the medical practitioners were found. Additionally, this

Patient

QoD-aware treatment
support

CCC

clinical
data

treatment

QoD Manifesto, QoD

Manifesto

QoD-Aware
Telemedicine
System |

Technological
Resources

FIGURE 2. High level design of the QoD-aware telemedicine system
with QoD-Framework knowledge ontology formalized in the
CCC and QoD Manifesto.
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ontology was used in the MG prototype, resulting in several
instances of the QoD-Framework ontology.

The presented ontology in Section III represents the
QoD Broker knowledge schema and the CDSS knowledge
schema (Fig. 2).

1) QoD BROKER — QoD MANIFESTO

QoD Broker, which is the MG telemedicine system
component in charge of translating technological context
information into QoD, computes the QoD of clinical
variables based on the acquired technological resources’
specific performance information (i.e., RQPs), and by apply-
ing computational models described in [3]. The knowledge
used by QoD Broker is specified in a so-called generic
QoD Manifesto, XLLM file, which contains the Technical
Domain Ontology described in Section III, A.
Depending on the treatment, QoD Broker will run the spe-
cific treatment QoD Manifesto, so that the computation of
QoD corresponds to the specific treatment requirements. The
computed QoD information is sent to the MG CDSS, so that
the CDSS can process the QoD together with the clinical data
in order to provide QoD-aware treatment support (Fig. 2).

2) CDSS - CONTEXT CUSTOMIZED CLINICAL GUIDELINE
The MG CDSS uses evidence based clinical guidelines
to provide the best treatment guidance to the patient.
As described by Peleg er al. [28], these guideline-based
CDSS need to create a computer interpretable representation
of the clinical knowledge contained in the guidelines,
i.e. a computer interpretable guideline (CIG). The presented
Clinical Domain Ontology (Section III.B) is merged with
the original guideline, therefore augmenting the CIG with
technological context. This results in a Context Customized
CIG (CCC) [27], which has been developed in Asbru CIG
modeling language [21].

As aresult, the CDSS will receive the guideline knowledge
that corresponds to each treatment (Fig. 2), and the output
of the CDSSs will be a safe QoD-aware treatment guidance
induced by the technological context in terms of the QoD and
the clinical data. The guidance (usually implemented in terms
of clinical recommendations) will be adapted when necessary
to the QoD to ensure patient’s treatment safety (see Table 4).

V. CONCLUSION

This paper describes the effects that technological resources
disruptions have on the clinical data quality (QoD) and the
potential impact of this QoD degradation on patient treat-
ment. As discussed in the paper, pervasive healthcare often
deals with uncertainties, namely the quality of the clinical
data used to treat patients. This paper shows how to cope
with this QoD uncertainty in order to provide ‘best’ quality
care to patients, even when QoD does not fulfil the medical
requirements due to undesirable technical disruptions that
modify the technological context. In telemedicine systems
that support ubiquitous (unsupervised) patients’ guidance, the
QoD has a major role. The clinical data is the core to guide the
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patients with a telemedicine system. Therefore, an unreliable
(i.e. low QoD) clinical data can lead to an erroneous treatment
guidance, potentially putting the patient at risk.

To formalize this knowledge and develop a QoD-aware
telemedicine system resilient to technological disruptions,
we present a QoD-Framework ontology. This ontology is
the result of applying a RE method together with the lay-
ering technique described in Section II. QoD-Framework
ontology covers both the technological domain knowledge
to translate technological context into QoD and the clinical
domain knowledge to interpret the QoD into a treatment. This
knowledge is provided in a separation of concerns fashion.
This separation of concerns is necessary since medical prac-
titioners are not used to specific technical information and
clinical guideline should not be ‘polluted’ with technological
information.

Besides, the chosen approach makes it possible to discuss
technological context issues in terms of QoD with medical
practitioners, who understand this quality concept. As a
result, the ontology has been validated in a participatory
design fashion involving the medical practitioners of the
MG project. The medical practitioners defined the adap-
tation mechanisms needed to guarantee patient’s safety
for all instances addressed in the applied ontology. This
was conducted via semi-structured interviews carried out
by requirement engineers with medical practitioners, who
systematically derived the requirements in an iterative
process for completeness and requirements confirmation.
Consequently, the presented ontology has been partially
validated. Additionally, this study will be further validated
through independent trials in order to obtain empirical
evidence.

Furthermore, the QoD-Framework ontology locates
the clinical domain ontology in the CDSS knowledge
based — CCC — and the technical domain ontology in the
QoD Broker knowledge based — QoD Manifesto, avoiding
the clinical guideline being polluted. Both domains are linked
by the clinical data and their QoD (Fig. 1). We present a
simple use case where a particular technological context
characterized by the performance of technological resources
leads to a clinical variable quality that affects the treatment
(Section III). This use case shows that the approach per-
forms as we expected. The use case also illustrates how the
technical domain ontology can be stored in a software agent
that outputs QoD and also shows how the clinical domain
ontology can be stored in a different software agent that uses
QoD and other relevant clinical information (e.g. clinical
data) to provide patient treatment guidance (Section IV). This
separation of concern makes it possible to include, on the one
hand, additional technological resources information into the
QoD Manifesto without the necessity of moditying the CCC
and, on the other hand, augment the CCC without modifying
the QoD Manifesto.

In this paper we do not address the clinical data quality
optimization. Nevertheless, in future works, we plan to extend
this ontology with QoD optimization mechanisms, such as
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the method provided by Widya et al. [25] or with simpler
strategies (e.g. send technological recommendations to the
patient in order to improve the performance of the system, and
hence, the QoD). Furthermore, the overall QoD computation
and potential QoD management requirements will be detailed
in future work.

We have shown that the proposed QoD-Framework
ontology for developing a QoD-aware telemedicine system
is feasible and validated by domain experts. Our vision of
the future is a whole QoD-aware healthcare system, where
medical experts and telemedicine systems not only make
use of the clinical data, but also its associated QoD, since
quality of the clinical data may have a major effect on
patient treatment. Therefore, our QoD-Framework ontology
represents knowledge of a QoD-aware telemedicine system
that can be used to support development of future pervasive
healthcare applications that are resilient to technological
resources disruptions.
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