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Allogeneic Hematopoietic stem cell transplantation (allo-HCT) is a curative

platform for several hematological diseases. Despite its therapeutic benefits,

the profound immunodeficiency associated with the transplant procedure

remains a major challenge that renders patients vulnerable to several

complications. Today, It is well established that a rapid and efficient immune

reconstitution, particularly of the T cell compartment is pivotal to both a short-

term and a long-term favorable outcome. T cells expressing a TCR heterodimer

comprised of gamma (g) and delta (d) chains have received particular attention

in allo-HCT setting, as a large body of evidence has indicated that gd T cells can

exert favorable potent anti-tumor effects without inducing severe graft versus

host disease (GVHD). However, despite their potential role in allo-HCT, studies

investigating their detailed reconstitution in patients after allo-HCT are scarce.

In this review we aim to shed lights on the current literature and understanding

of gd T cell reconstitution kinetics as well as the different transplant-related

factors that may influence gd reconstitution in allo-HCT. Furthermore, we will

present data from available reports supporting a role of gd cells and their

subsets in patient outcome. Finally, we discuss the current and future strategies

to develop gd cell-based therapies to exploit the full immunotherapeutic

potential of gd cells in HCT setting.
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Introduction

Over the past 5 decades, allogeneic hematopoietic stem cell transplantation (allo-

HCT) has evolved rapidly; over 1 million HCTs have been performed worldwide since

the first successful allo-HCT in 1959 (1). This remarkable progress was the result of

several factors including the introduction of less toxic conditioning regimens and

improved understanding of the immune system (2). Besides being established as an
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efficient therapeutic option for several hematological and non-

hematological disorders, allo-HCT has also served as a platform

to develop novel personalized cell therapies (3, 4).

Despite the tremendous improvement in allo-HCT outcome

over the past years, several challenges remain, preventing the full

therapeutic benefit. Among these challenges, primary disease

relapse, graft versus host disease (GVHD), and infectious

complications represent the main leading causes of transplant-

related morbidity and mortality (5, 6). These complications are

linked to the profound immunocompromised state encountered

after allo-HCT (7). Therefore, efficient restoration of a functional

immune system is central for beneficial outcome (8). In line with

this, several studies have indicated that T cells are of key

importance in allo-HCT outcome as prolonged lymphopenia

after allo-HCT is associated with severe adverse effects (5, 8–10).

Proper understanding of T cell reconstitution kinetics and the

factors affecting this process following allo-HCT are crucial to

improve HCT outcome.

Following allo-HCT, the T cell compartment is restored

through a complex and dynamic process that involves two

distinct pathways. During the early phase after transplantation

T cells recover mainly through the homeostatic proliferation of

donor-derived mature T cells co-infused with the stem cell graft

(11). This process is also known as the thymic-independent

pathway to distinguish it from the thymic-dependent pathway

which involves de novo generation of naïve T cells from donor

progenitor stem cells (12, 13).

Although homeostatic proliferation offers a faster route to

replenish the virtually empty T cell pool, the T cells reconstituted

in this fashion are relatively inferior to their de novo generated T

cell counterparts. It has been shown that T cells originating from

donor-derived mature T cells offer limited protection against

infectious pathogens possibly because of their limited TCR

diversity (14–16). Furthermore, they are more prone to

activation-induced cell death (17), and can most likely induce

GVHD as they are potentially alloreactive (18). On the contrary,

de-novo generated T cells undergo TCR rearrangement and the

stringent selection steps in the thymus resulting in a more

diverse repertoire of cells which are self-tolerant (19–21).

However, thymopoiesis is a slow and age-dependent process;

thus it can take up to several months or years especially in elderly

patients. Furthermore, the thymic stroma is extremely sensitive

to transplant-related insults such as GVHD, infections, and

conditioning regimen (20, 22, 23).

Although T cell reconstitution has been extensively

investigated, most studies have focused on the role of

conventional ab T cells while unconventional T cells remain

under scrutinized. During the past decades, a subset of T cells

known as gamma delta (gd) T cells has become the focus of

increasing interest due to their proven role in stress

immunosurveillance (24), as well as their emerging roles in

tissue homeostasis, wound healing, and heat regulation

(25–29). However, their detailed reconstitution after allo-HCT
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remains poorly understood. In the next sections we shed light on

their main reconstitution features, the factors affecting them, and

their role after allo-HCT.
Immunobiological features of
gamma delta (gd) T cells

Gamma delta (gd) T cells comprise a distinct lineage of T

lymphocytes that can be distinguished from conventional T cells

through their TCR that encompasses g and d chains instead of

the a and b chains (30, 31). Together with T and B lymphocytes,

gd T cells have been conserved across species for millions of

years (32). Similar to their ab T cell counterparts, the

development of gd T cells within the thymus entails somatic

rearrangement of the V(D)J segments of their TCR CDR3 region

by the recombination activating gene (33). Human gd TCR is

encoded by two distinct gene segments: TRG gene segment

located on chromosome 7 encoding 6 functional Vg genes, and
the TRD gene segment embedded within the TRA locus at

chromosome 14 encoding 8 functional Vd genes (31). Based

on the Vd chain usage gd T cells are classified into two major

subsets; the Vd2+ subset and the non-Vd2 subset of which Vd1+
gd T cells are the predominant fraction (34). In the peripheral

blood, 1-10% of total T cells are of gd T cell lineage, the vast

majority of which express the semi-invariant phosphoantigen

reactive Vg9Vd2 TCR (35, 36). The non-Vd2 subsets are found

predominantly in epithelial tissue compartments such as skin,

intestine, and reproductive system and unlike their Vd2+
counterparts their activating ligands and the underlying

recognition mechanisms have, so far, remained incompletely

understood (37).

Whether gd T cells align best with innate or adaptive biology

remains undecided. Classically, gd T cells were described as an

interface between innate and adaptive immunity as they share

features of both systems (38). Nonetheless, fundamental data

from recent studies support distinct innate-like and adaptive-

like immunobiological paradigms (39, 40). For instance, several

recent studies revealed an antigen-driven clonotypic focusing of

certain gd T cells subsets upon encountering their cognate

antigen, alongside transition to an effector memory phenotype

supporting adaptive-like paradigm (41–43).
Receptors and effector functions of
gd T cells

Unlike ab T cells, the majority of gd T cells do not express

CD4 or CD8 molecules and recognize their antigens in an HLA

unrestricted manner (30). Apart from TCR-mediated activation,

gd T cells can be activated in a TCR-independent mechanism

(44). Beside toll-like receptors, gd T cells also express a wide
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array of NK receptors such as NKG2D, DNAM-1, and the

natural cytotoxicity receptors, allowing gd T cells to react

rapidly in response to “altered-self” signals. These features

placed gd T cells in the front line of defense against pathogens

and transformed/tumor cells (41, 45).

Upon activation, gd T cells exert their effector functions

either directly or indirectly. The direct cytotoxic effects can be

executed through the death receptors (FAS/FAS ligand and

TRAIL/TRAIL receptor) triggering target cell apoptosis and/or

through perforin/granzyme mediated tumor cell lysis (34, 46).

Additionally, gd T cells express the FcRgIII (CD16) that can

mediate direct target cell lysis via antibody-dependent cellular

cytotoxicity (ADCC) (33, 44). Indirect mechanisms are

mediated mainly through cytokines secreted by gd T cells such

as IFN-g, TNFa, IL-17, and IL-22 (47). These cytokines allow gd
T cells to interact with and modulate the activity of other

immune cells. In addition, gd T cells can promote dendritic

cell maturation, take up, process and cross-present antigens to

other immune cells, and enhance anti-infectious activities of

other immune cells such as NK cells and macrophages (48–50).
Reconstitution of gd T cells after
allo-HCT: Current understanding

The rate of immune cell recovery after allo-HCT varies from

one cell type to another. In general, cells of the innate immune

system such as neutrophils, monocytes, and NK cells recover

earlier (within weeks), while the recovery of the adaptive

immune cells is more prolonged, taking months or even years

to entirely recover (51, 52). Only a limited number of studies

have focused on the reconstitution of gd T cells following allo-

HCT. In this regard, numerous studies consistently

demonstrated that gd T cell reconstitution occurs in the initial

few weeks after transplantation (1, 11, 53–55). In pediatric

haplo-identical HCT patients that received ab T cell-depleted

(TCD) grafts, Airoldi et al. showed that gd T cells expand

quickly, reaching up to 90% of the initial T cell pool, and

subsequently decline as ab T cells start to recover. Further

characterization of the gd T cell composition one month post

HCT showed that Vd2 cells were the predominant fraction,

indicating that gd T cell composition did not differ significantly

from that present in peripheral blood of the donors or healthy

adults (56). Likewise, studying gd T cell reconstitution at the

clonal level showed that reconstituted gd T cell repertoire

remained very stable over time after transplantation (54, 57).

However, it remains unclear whether reconstituted gd T cells

in allo-HCT patients have originated from the peripheral

expansion of donor gd T cells infused within the stem cell

grafts or whether they have originated from thymopoiesis. The

quick reconstitution of gd T cells shortly after allo-HCT suggests

a peripheral expansion of donor-derived gd T cells.
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Corroborating this, gd T cell reconstitution has been shown to

be delayed in patients that received OKT3 TCD grafts (58).

Furthermore, by examining the CDR3 size distribution pattern

in 23 allo-HCT recipients, Hirokawa et al. identified 2 gd T cell

clones in the donor grafts that were found as well in the recipient

blood after allo-HCT, but not before (54). Consistently,

chimerism analysis in the first 2-3 weeks after haplo-identical

HCT indicated donor-origin of the reconstituted gd T cells (56).

Altogether, these data strongly support that initial gd T cell

reconstitution occurs mainly through the homeostatic

peripheral expansion of donor-derived mature gd T cells.

On the other hand, it has been shown that the proportion of

naïve gd T cells increases as early as 2-3 months after HCT (59).

In a recent study, Raven et al. used high throughput RNA-based

next generation sequencing to in-depth evaluate the TCR

repertoires of 6 allo-HCT patients and their corresponding

donors. Their results indicated the presence of heterogenous

overlapping sequences in donor/recipient pairs, yet most of

patient/donor pairs displayed no specific correlation of their

repertoires, supporting de novo generation of gd T cells (57).

Altogether, these data suggest that gd T cell reconstitution

involves both thymic-dependent and independent

mechanisms, even though gd T cells rely principally on

homeostatic proliferation during the early phase post allo-HCT.

Some questions remain which warrant further investigation.

To what extent does the thymus contribute to gd T cell

reconstitution especially in long-term survivors and do de-

novo generated gd T cells provide a more favorable

patient outcome?
Factors affecting gd T cell
reconstitution

Unlike ab T cells, the impact of different transplant-related

factors, such as graft source, GVHD, conditioning regiment etc.

on gd T cell reconstitution and TCR diversity remains largely

unknown (Table 1). In a recent retrospective study of 202 adult

AML patients, Klyuchnikov and colleagues identified several

transplant-related factors associated with gd T cell reconstitution

after allo-HCT (60). Their results indicated that younger

recipient/donor age, sex mismatch, use of a matched donor,

and CMV reactivation were factors associated with faster gd T

cell reconstitution. Additionally, they showed that the use of

post-transplantation cyclophosphamide was associated with

lower levels of gd T cells compared to ATG (60). Of note, the

impact of cytomegalovirus (CMV) infection/reactivation on gd T
cell reconstitution and TCR repertoire after allo-HCT has been

discussed thoroughly in multiple studies including a recent

review by our group (68).

Whether graft source impacts the rate of gd T reconstitution

after allo-HCT has only been adequately investigated in a
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handful of publications (Table 1). Perko et al. examined different

variables associated with gd T cells reconstitution post allo-HCT

in 102 pediatric patients with acute leukemia. Their results

indicated significant impact of donor source on gd T cells

reconstitution (62). Another study by De witte et al. showed

that gd T cells were significantly fewer in umbilical cord blood

recipients compared to recipients of HLA matched siblings or

unrelated donors (55). Furthermore, in allo-HCT pediatric

patients, the recovery of gd T cells was delayed in recipients of

CD34+ selected PBSC compared to recipients of unmanipulated

BM grafts from HLA identical siblings (63, 69). However, it is

difficult to conclude whether this is the effect of the graft source

per se or due to the manipulation of PBSC graft.

To further examine the impact of graft manipulation on

immune reconstitution after HCT, Lamb et al. assessed gd T cell

reconstitution after ex vivo T cell depletion using T10B9 mAb
Frontiers in Immunology 04
(ab depletion) and OKT3 mAb (anti-CD3). They showed better

gd T cell reconstitution in patients that received ab TCD grafts

(58). In line with this, Airoldi et al. showed that gd T cells were

significantly higher in haplo-identical allo-HCT pediatric

patients that received ab TCD grafts compared to patients

that received CD34+ enriched grafts (56). Conversely, results

by Keever-Taylor et al. indicated no differences in gd T cell

recovery between al lo-HCT patients that rece ived

unmanipulated BM grafts or ab TCD grafts, although they

showed that the reconstitution of NK cells was faster in the

TCD group (64).

The effect of stem cell mobilization using granulocyte colony

stimulating factor (G-CSF) on gd T cells has been scarcely

investigated. Otto et al. showed that gd T cell effector

functions were not impaired in G-CSF mobilized stem cell

grafts (65). In line with this, Bian et al. examined phenotypic
TABLE 1 Factors affecting gd T cell reconstitution.

Study Study Cohort Factors examined Impact on gd

Klyuchnikov
et al. (60)

Adult AML patients (n = 202) Median follow-up (28 months) Younger recipient/donor age ↑

Sex mismatch ↑

use of a matched donor ↑

CMV reactivation ↑

The use of ATG ↑

Cela et al. (61) 31 recipients of TCD BMT GVHD No

Infection (viral/fungal) ↑

Perko et al. (62) Retrospective study including 102 Pediatric ALL/AML patients Mean
follow-up (2.7 years)

donor type (MRD vs others) ↑

gender No

diagnosis No

GVHD No

CD3 number ↑

de Witte et al.
(55)

MSD/MUD cohort (n= 28) and UCB (n=26) UCB vs other ↓

CMV infection ↑ (vd2- T cells)

Eyrich et al.
(63)

Prospective study of 25 pediatric patients; 13 received CD34+
selected PBSC from unrelated donors, 12 received unmanipulated
BM from matched siblingsMedian follow-up 1157 days

PBSC recipient’s vs unmanipulated
BM recipients

↓

Lamb et al. (58) 43 patients received ex vivo T cell depletion using T10B9 mAb (ab depletion)
and 100 patients received TCD grafts using OKT3 mAb (anti-CD3)

ab TCD grafts vs OKT3 TCD
grafts

↑

Airoldi et al.
(56)

Prospective study including 27 allo-HCT pediatric patients that
received ab TCD grafts from haplo-identical donors. compared to 9 children that
received CD34+ enriched grafts

ab TCD grafts vs CD34+ enriched
grafts

↑

Keever et al.
(64)

A total of 195 that received either unmanipulated BM grafts (n=100), ab TCD grafts
(n=67), and elutriated grafts (n=28)

unmanipulated BM grafts vs ex-
vivo ab TCD grafts

No diff.

Otto et al. (65) PBMC obtained from 6 donors after G-CSF G-CSF gd T cells retained
their effector
function

Bian et al. (66) 20 donors before and after G-CSF mobilization G-CSF no change in
proportions
or functions

Minculescu
et al. (67)

49 donors before and after G-CSF mobilization G-CSF ↑ naïve and terminally
differentiated effector

(TEMRA) gd T cells and
↓ memory cells
↑, increase; ↓, decrease.
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characteristics of gd T cells in the peripheral blood of 20 donors

before and after G-CSF mobilization. They showed that gd T

cells retained their homeostatic proportions and IFN-g secreting
capabilities following G-CSF (66). Conversely, a more detailed

analysis by Minculescu et al. showed that G-CSF preferentially

mobilized naïve and terminally differentiated effector (TEMRA)

gd T cells over memory cells with a preferential increase in the

non-Vd2 subset while also increasing the proportion of HLA-DR

expressing gd T cells (67). Regarding the impact on TCR

repertoire, it has been shown that G-CSF was associated with

TCR repertoire disturbances in the form of alteration of

distribution and clonality of some TRG and TRD subfamilies,

suggesting a potential immune modulatory effect (70). Further

investigations are required to elucidate the detailed impact of G-

CSF mobilization on different gd T cell subsets.
gd T cell reconstitution and clinical
outcome after allo-HCT

Multiple studies have highlighted the importance of

conventional ab T cell recovery and its impact on clinical

outcome post allo-HCT, but the role of gd T cells has not been

well described. Whether gd T cells are beneficial or not especially

in the context of GVHD has been a matter of debate, particularly

among earlier studies that showed controversial results. For

instance, Viale et al. showed that percentages and total

numbers of gd T cells were increased in patients that

developed acute GVHD up to 3 months after allo-HCT (71).

Likewise, other studies in mice have suggested a role for gd T

cells in GVHD pathogenesis (72–74). For instance, using an

experimental GVHD murine model, Maeda et al, showed that

host gd T cells exacerbate GVHD by enhancing the alloreactive

capacity of DCs in a cell contact dependent manner (74).

However, several lines of evidence from both murine and

human studies support that gd T cells are not involved in the

initiation or severity of GVHD (44, 53, 75, 76). In their study,

Drobyski et al. found that lethally irradiated mice that were

infused with large doses of gd T cells did not develop GVHD

(75). Likewise, similar findings in human studies were reported.

Cela et al. didn’t find any significant correlation between gd T

cells and the incidence of GVHD in the first 12 months

posttransplant (61). Corroborating this, Lamb et al. showed

that donor-derived gd T cells were able to recognize and lyse

primary ALL blasts but did not proliferate when cultured with

allogeneic cells in a mixed lymphocyte reaction, suggesting a

graft vs leukemia (GVL) activity in the absence of an allogeneic

response (76). Additionally, several studies showed decreased

incidence of GVHD in recipients of ab TCD grafts.

In the same context, the impact of GVHD on gd T cell

reconstitution has not been adequately addressed after allo-

HCT. Although previous studies have shown that GVHD and/
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or its treatment can impair thymic function and thus T cell

recovery (77, 78), it remains unclear to what extent gd T cell

reconstitution is affected by GVHD. In an earlier study that

included 31 recipients of TCD BM grafts no significant impact of

GVHD on the pattern of gd T cell recovery was found (61). Of

note, in-depth analysis of gd T cell reconstitution might reveal a

potential impact of GVHD on gd T cells at functional or

clonal level.

It was not long before the anti-tumorous capabilities of gd T
cells were confirmed in human studies after it was first reported

in an experimental mice model (79). In fact, the ability of gd T

cells to exhibit potent anti-tumor responses in the absence of the

unwanted alloreactive immune response as well as their

potential to bypass tumor immune evasion mechanisms (e.g.

HLA down regulation) have made gd T cells a subject of great

interest in the field of allo-HCT (80). Several research groups

have shown that elevated gd T cells early post-transplantation

was associated with improved leukemia-free survival and overall

survival (81, 82). In fact, the earliest clinical report that suggested

favorable gd T cell role post allo-HCT, in terms of enhanced

GVL effect and favorable survival outcome, was published in

1996 by Lamb et al. (81). In this study that included 43 leukemia

patients that received ab TCD grafts from partially mismatched

related donors, the authors showed that disease-free survival was

significantly improved in patients that developed high

proportion (> 10%) of gd T cells during the first 6 months

after transplantation compared to patients with normal gd T cell

proportion. In a subsequent follow up (3 years) of this study, the

authors confirmed the previous results and further showed that

Vd 1 cells were the predominant gd T cell population in patients

with high gd T cell proportion (58). In an extension of this study

with additional patients and longer follow up (up to 8 years),

Godder at al. confirmed the long-term survival advantage with

no increased incidence of acute GVHD in patients with higher

numbers of gd T cells (82). Likewise, Perko et al. reported

decreased incidence of infection and improved event-free

survival in patients with elevated gd T cells (62).

Corroborating these findings in pediatric setting, a long-term

prospective study of children with acute leukemia that

underwent ab T- and B-cell–depleted haplo-HCT after a

myeloablative regimen showed decreased incidence of both

acute and chronic GVHD as well as, reduced incidence of

none relapse mortality, conceivably due to the spared gd T

cells and NK cells transferred with the graft (83). Similarly, in

pediatric haplo-identical HCTs with ab TCD grafts, Park et al.

showed improved relapse-free survival in acute leukemia

patients that recovered with high percentage of gd T cells at

day 30 compared to those with low percentage of gd T cells (84).

In the context of a potential pathogen protective role, it has

been confirmed in multiple studies that CMV reactivation

induces clonal expansion of non-Vd2+ T cells (85, 86).

Likewise, several studies have highlighted the role of Vd1 T

cells in CMV immunosurveillance after allo-HCT (85, 87).
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Furthermore, a more recent study in pediatric patients indicated

that patients with a low percentage (≤21%) of gd T cells at day 30

had significantly higher incidence of CMV reactivation

compared to patients with a high percentage (84).

Additionally, a possible role for gd T cells in EBV immune

response was suggested by De Paoli et al. (88). In a recent

systematic review and meta-analysis we addressed whether gd T

cell reconstitution is associated with clinical outcome after allo-

HCT. Out of 2412 studies, 11 studies (919 patients, median

follow-up of 30 months) met the eligibility criteria for the meta-

analysis. Results of the meta-analysis confirmed the benefit of

having higher levels of gd T-cells in peripheral blood after HCT

in terms of less disease relapse, fewer viral infections, and

improved overall and disease-free survivals, whereas there was

no association with the incidence of acute GVHD (89).

Given that donor gd T cells co-infused within the stem cell

(SC) grafts substantially contribute to the reconstituted gd T cell

pool after allo-HCT, investigating gd T cells graft composition

can provide insight into clinical outcome. In this context, an

earlier study showed increased cumulative incidence of acute

GVHD II-IV in patients that received PBSC grafts with higher gd
T cells content (90). However, in this study gd T cells were

examined in total and the impact of different subsets was not

investigated. Given that gd T cells comprise heterogenous

subsets, we recently analyzed the composition of gd cell

subsets in 105 donor stem cell grafts. We found that patients

that received SC grafts containing higher proportions of CD8+gd
T cells had an increased cumulative incidence of acute GVHD II-

III, suggesting a potential alloreactive role of this subset (91). In

the same study, we found an inverse correlation between CD27+

gd T cell graft content and the incidence of both relapse and

CMV reactivation post allo-HCT (91). Though we have not

assessed the functional properties of this subset, previous studies

on murine gd T cells have shown that CD27 demarcates IFNg
producing gd cells (92). Altogether, these data suggest that the

composition of intra-graft gd T cell subsets can impact patient

outcome after allo-HCT.

In addition to gd T cell proportion, gd TCR repertoire has

been suggested to play a role in clinical outcome as it has been

shown that gd T cells expressing polyclonal TCR repertoire

comprise different affinities and hence different functional

capabilities (46). In line with this assumption, Grunder et al.

showed that Vg9Vd2 T cells with a polyclonal TCR repertoire are

inferior to cells that express a monoclonal repertoire (93). In a

recent study, we examined the impact of intra-graft gd T cell

repertoire composition on the outcome of 20 adult AML patients

that underwent allo-HCT. Analysis of the TCRg repertoire by

NGS indicated that grafts given to non-relapsed patients

featured a more public repertoire and an increased presence of

long sequence clonotypes. Further analysis of the amino acid

sequences showed that 12 public and 4 private sequences were

exclusively found in high frequencies in grafts given to non-
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relapsed patients most of these sequences were 42-54 amino acid

long (94). Altogether, these data suggest that specific gd TCR

clonotypes might play important role in patient outcome after

transplantation, adding another layer of complexity to the

already intricate landscape.
Concluding remarks and
future directions

In general, most of the ongoing and future directions to

harness gd T cells in allo-HCT fall under two main categories:

strategies that aim to enhance gd T cell reconstitution, and

strategies that aim to exploit their anti-tumor properties by

redirecting their immune responses against tumors. We briefly

highlight some of these approaches. For more comprehensive

information the readers are directed to these reviews (30, 46, 48,

95, 96).

The notion that gd T cell-enriched grafts are associated with

better gd T cell reconstitution and more favorable outcome has

encouraged researchers to develop strategies that enhance gd T

cell recovery post-HCT. Beside the use of ab TCD grafts,

another strategy that has been investigated is the adoptive

transfer of autologous or allogeneic gd T cells. In this strategy

gd T cells are enriched and re-infused either directly or after in

vitro expansion. An example of such strategy is the use of ab
TCD donor lymphocyte infusion. This strategy would have the

benefit of retaining higher numbers of gd T and NK cells without

the unfavorable alloreactive donor T cells. Our group has

investigated the use of ab TCD grafts as post-transplant

boosters to treat secondary graft failure in 5 allo-HCT

patients. The results were promising as there was no signs of

GVHD or other side effects (97). A subsequent follow up of this

study with more patients and longer follow up time supported

the same conclusion (98).

Accumulating evidence indicates that the thymus is, to a

certain extent, implicated in the reconstitution of gd T cells after

allo-HCT (57). Therefore, it is reasonable to assume that

enhancing thymic regenerative capacity would positively

improve gd T cell recovery. Even though the clinical benefit of

gd T cells reconstituted through the thymic-dependent pathway

is still unknown, enhancing the thymic function would still be

beneficial for conventional T cell reconstitution. There are

several reviews that have discussed the different strategies that

are investigated to enhance thymic regenerative capacity, and the

reader is referred to some publications for further information

(20, 99, 100).

Since the first observation of the ability of aminobisphosphonate

to selectively expand Vd2Vg9 T cells in multiple myeloma patients

(101), several clinical trials have been conducted in solid and

hematological cancers using zoledronate (ZOL) and low dose IL-2
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for either in vivo or ex vivo expansion of Vd2Vg9 cells (30, 49).

Although the use of Zol/IL-2 in these trials proved to be safe and

tolerable, the resulting outcome was limited. This could, in part, be

due to the functional plasticity, the infusion of polyclonal TCR

repertoire, and/or cell exhaustion, emphasizing the need for further

optimization of current protocols. In this regard, several strategies

have been suggested to enhance the proliferative and functional

capacity of ex-vivo expanded gd T cells. For instance, a recent study

showed that gd T cell expansion was more efficient when a

bisphosphonate prodrug was used. Furthermore, several studies

have investigated the role of common g-chain family cytokines

such as IL-15. Results showed that gd T cells expanded in

presence of IL-15 displayed enhanced cytotoxic capabilities (102),

and upregulated CD56, a marker associated with better cytotoxic

effector function (103). Although TGF-b is generally regarded as an

immunoregulatory cytokine, recent reports showed enhanced

cytotoxicity and IL-9 secretion in TGF-b-treated, phosphoantigen
activated gd T cells (103). Besides, the administration of vit C during

gd T cell expansion has been recently explored (104).

Unlike Vd2Vg9 cells, protocols for Vd1+ expansion have not

been explored until recently due to the lack of specific agonist for

Vd1+ cells. So far, only a limited number of large-scale protocols

for Vd1+ expansion have been described (105, 106). In this

regard, Wu et al. developed a protocol for preferential expansion

of Vd1+cells from PB of healthy donors and colon cancer

patients using phytohemagglutinin (PHA) and IL7. To develop

a GMP-compatible protocol that can be clinically adapted,

Almeida et al. described a 3 week expansion protocol known

as delta one T cell (DOT). Unlike previous protocols they did not

use mitogenic stimulators like PHA, instead they used TCR

stimulation and a defined cytokine cocktail. This protocol

resulted in up to 2000-fold expansion of Vd1+ cells that

displayed antitumor capabilities with no IL17 production (107).

The redirection of T-cell responses against specific tumor

antigens represents one of the mainstays of modern personalized

precisionmedicine. Although the use of gd T cells has lagged behind

abT cells in this field, they offer an attractive alternative due to their

rapid innate like response and lower alloreactivity. In this regard,

engineering gd T cells to express a chimeric antigen receptor (CAR)

is currently under clinical development. In fact, gd T cells that

express a first-generation CAR directed against GD2 were first

described in 2004 (108). Another interesting approach is the use of

T cells engineered with defined gd TCRs (TEG). Unlike the CAR gd
T cells, in this strategy ab T cells are transduced to express a high-

affinity Vg9Vd2 TCR providing features of both conventional and

unconventional immune cells (109). A phase I trial is currently

ongoing to test the safety of TEG in patients with a relapsed/

refractory AML, high-risk Myelodysplastic Syndrome (MDS) or

relapsed/refractory Multiple Myeloma (MM) (NTR 6541). Finally,

redirecting gd T cell against tumor antigens can be achieved using

bispecific antibodies. These are nano constructs that comprise 2
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single chain (sc) Fv domains where one scFv binds to the effector

and the other binds its target (e.g. tumor antigen). In this regard,

[HER2 ×Vg9] bispecific T cell engager (BiTE) has been developed

and tested by Oberg et al. (110). The same group have also

developed and tested a Tribody [(HER2)2 × CD16] that redirect

CD16-expressing gd and NK cells against HER2-expressing cancer

cells. The new tribody was shown to be effective in enhancing gd T
cell and natural killer cell cytotoxicity (111).

In conclusion, the inevitable favorable role of gd T cells in

allo-HCT setting has stimulated researchers to exploit their full

immunotherapeutic benefits. However, as we discussed above,

caution should be paid as to which subset and what function it

may exert. Therefore, a better understanding of the functional

heterogeneity of the gd T cell compartment, mechanisms of

antigen recognition, and gd TCR ligands are fundamental to

exploit the full therapeutic benefit of gd T cells.
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