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Abstract 

Background:  This study was intended to investigate the genomic landscape of the immune microenvironments of 
brain metastases in breast cancer.

Methods:  Three gene expression profile datasets (GSE76714, GSE125989 and GSE43837) of breast cancer with brain 
metastases were downloaded from Gene Expression Omnibus (GEO) database. After differential expression analysis, 
the tumor immune microenvironment and immune cell infiltration were analyzed. Then immune-related genes were 
identified, followed by function analysis, transcription factor (TF)-miRNA–mRNA co-regulatory network analysis, and 
survival analysis of metastatic recurrence.

Results:  The present results showed that the tumor immune microenvironment in brain metastases was immuno‑
suppressed compared with primary caner. Compared with primary cancer samples, the infiltration ratio of plasma 
cells in brain metastases samples was significantly higher, while the infiltration ratio of macrophages M2 cells in brain 
metastases samples was significantly lower. Total 42 immune-related genes were identified, such as THY1 and NEU2. 
CD1B, THY1 and DOCK2 were found to be implicated in the metastatic recurrence of breast cancer.

Conclusions:  Targeting macrophages or plasma cells may be new strategies for immunotherapy of breast cancer 
with brain metastases. THY1 and NEU2 may be potential therapeutic targets for breast cancer with brain metastases, 
and THY1, CD1B and DOCK2 may serve as potential prognostic markers for improvement of brain metastases survival.
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Background
The incidence of brain metastases in cancer patients is 
rising, which may be due to the improvements in system-
atic therapies to control extracranial disease and prolong 
the survive of patients. Thus, patients who previously 
may have died sooner from other manifestations of the 
disease may develop brain metastases [1]. Breast cancer 
is the second most common cause of brain metastases 
following lung cancer [2]. It has been estimated that 20 to 

30% of breast cancers develop brain metastases [3]. Brain 
metastases are serious complications of cancer with 
median survival of about 15 months and there is no effec-
tive long-term treatment [4, 5]. Therefore, brain metasta-
ses have become a major limiting factor in life expectancy 
and quality of life for many patients [2]. Understanding 
the biological mechanisms of brain metastases is crucial 
to predict patients at risk of brain metastases and to iden-
tify new therapeutic targets.

The interactions between immune and tumor cells have 
played an important role in malignant progression [6]. 
The brain was previously considered as an immunologi-
cally privileged organ because the intact brain has almost 
no lymphocytes [7]. Actually, the central nervous system 
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is an immune specialized site under a tight regulatory 
network linking astrocytes, microglia, and lymphocytes 
[8]. T cells and B cells have been found around the tumors 
of brain metastases [9]. Despite the immune microenvi-
ronments of brain metastases in breast cancer have been 
studied [10, 11], the genomic landscape of breast cancer 
with brain metastases remains to be investigated.

In this study, we downloaded three gene expression 
profile datasets of breast cancer with brain metasta-
ses from Gene Expression Omnibus (GEO) database 
and analyzed the tumor immune microenvironment at 
genetic level (Fig.  1). Some immune-related genes were 
identified, which may contribute to the development of 
immunotherapy to treat breast cancer patients with brain 
metastases.

Methods
Data sources
Three expression profile datasets (GSE76714 [12], 
GSE125989 [1] and GSE43837 [13]) were downloaded 
from GEO database. GSE76714 included 71 triple 

negative breast cancer samples, including 48 primary 
triple negative breast cancer samples and 23 triple 
negative breast cancer with brain metastases samples, 
which was based on the platform of GPL14951 Illumina 
HumanHT-12 WG-DASL V4.0 R2 expression beadchip. 
GSE125989 contained 16 primary breast cancer samples, 
16 paired breast cancer with brain metastases samples. 
The detection platform was GPL571 [HG-U133A_2] 
Affymetrix Human Genome U133A 2.0 Array. In 
GSE43837, there were 19 HER2 + primary breast cancer 
samples and 19 HER2 + breast cancer with brain meta-
static samples. The platform was GPL1352 [U133_X3P] 
Affymetrix Human X3P Array.

Data downloading and preprocessing
The series matrix file(s) of GSE76714 was downloaded 
and normalized using quantile normalization with the 
beadarray library in R. The probe ID was converted into 
gene symbol using illuminaHumanWGDASLv4 package 
in R. The probes that did not correspond to gene sym-
bol were removed. For the case where different probes 

Fig. 1  The flow diagram of the analysis



Page 3 of 13Lu et al. J Transl Med          (2020) 18:327 	

mapped to the same gene, the mean value of different 
probes was taken as the final expression value of the 
gene. The FactoMineR package [14] was used for prin-
cipal component analysis and clustering. The processing 
flows of GSE125989 and GSE43837 datasets were similar 
to that of GSE76714. GSE43837 data were transformed 
by log2(x + 1), and GSE125989 data were normalized 
by MAS5 algorithm of R language package, and trans-
formed by log2. The microarray annotation packages of 
the GSE125989 and GSE43837 datasets were u133x3p.db 
and hgu133a2.db, respectively.

DEGs identification
The modified empirical Bayes t test method provided by 
limma package [15] (version 3.40.6) was used for differ-
ential expression analysis of brain metastasis group vs. 
cancer group. All RNAs (including mRNAs and lncR-
NAs) were analyzed to obtain the p value and log fold 
change (FC). The thresholds of DEGs screening were set 
as follows: p value < 0.05 and |logFC| > 0.585.

The ggscatter function of ggpubr package [16] (version 
0.2.2) was used to draw the volcano plot, and the DEGs 
with the top 10 |logFC| were labeled in the volcano plot. 
The clustering heatmaps of DEGs were drawn using the 
pheatmap package [17] of R language.

Tumor immune microenvironment analysis
The stromal score, immune score and ESTIMATE score 
of all samples were calculated using the ESTIMATE algo-
rithm [18] (version 1.0.13). The difference of these scores 
between brain metastatic tumor and primary tumor tis-
sues were analyzed through T test, and the boxplot was 
drawn by using the R package ggpubr. Additionally, the 
cytolytic activity score of all samples was calculated and 
the differences of score between brain metastatic tumor 
and primary tumor tissues were also analyzed using T 
test. The boxplot was drawn by the R package ggpubr as 
well. Validation for the above scores was performed in 
the GSE125989 and GSE43837 datasets.

Immune cell infiltration abundance analysis
The abundance matrix of immune cells in the samples 
was estimated using the CIBERSORT deconvolution 
algorithm [19], and the infiltration abundance of immune 
cells in the samples was analyzed, with parameters of 
perm = 200 and QN = FALSE. The proportion difference 
of immune cell subgroups between two groups was cal-
culated, and relevant landscape map (barplot), clustering 
heatmap (pheatmap), correlation heatmap (corHeatmap), 
and violin plot (vioplot) were drawn by R language. The 
immune cell subgroups with significant differences 
between groups were screened with threshold of p 

value < 0.05. The datasets of GSE125989 and GSE43837 
were used for validation.

Identification of immune‑related DEGs
Using the R corrplot package [20], spearman correlation 
test was conducted on the DEGs and infiltration abun-
dance of differential immune cell subsets, and the DEGs 
with p value < 0.05 and correlation coefficient |r| > 0.30 
were screened, which were considered as the DEGs 
related to immune cell subgroup. The ggboxplot func-
tion of the ggpubr package in R language was used to plot 
the boxplot of the expression of immune-related genes 
between two groups, and the differences of these genes 
between the two groups were further analyzed by T test. 
The datasets of GSE125989 and GSE43837 were used for 
validation.

Function and pathway enrichment analyses
These immune-related DEGs were subjected to Gene 
Ontology (GO) [21] and KEGG [22] pathway using Clus-
terProfiler [23] (version 3.12.0). The GO analysis results 
included biological process (BP), cellular component 
(CC) and molecular function (MF). The significance 
threshold was p value < 0.05, and the enrichment num-
ber (count) was at least 2. The compareCluster function 
of the clusterProfiler package was applied to visualize the 
top 10 GO BP and KEGG enrichment results.

Transcription factor (TF)‑miRNA‑mRNA co‑regulatory 
network analysis
The miRNAs in the 3′UTR region of immune-related 
DEGs were predicted using relevant databases (miR-
Walk3.0 [24], TargetScan [25], miRDB [26], mirTarBase 
[27]), with a threshold score of > 0.95. Combining the 
results from each database, miRNAs that were validated 
(MirTarBase) and predicted in at least one other database 
were selected as the final mRNA-miRNA relationship 
pairs. HMDD V3.2 database [28] was used to retrieve the 
keyword “breast neoplasms” (synonyms of breast cancer) 
to further validate the predicted miRNAs. Then based 
on the online database TRRUST [29], the TF-mRNA 
pairs associated with immune-related DEGs and possible 
action mode (activation, suppression or unknown) were 
predicted. The mRNA-miRNA relationship pairs and TF-
mRNA relationship pairs were integrated to construct 
the network using Cytoscape [30]. Additionally, GO and 
KEGG analyses were performed for the TF and immune-
related DEGs in the network.

Breast cancer associated pathway screening and gene 
annotation
According to the breast neoplasms related pathways 
included in Comparative Toxicogenomics Database 
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(CTD) [31], further screening was conducted for the 
KEGG pathways enriched by immune-related genes as 
well as transcription factors and immune-related genes 
in the network. The R package pathview [32] (version 
1.24.0) was applied to draw the pathway map.

Protein‑protein interaction (PPI) network analysis
The interaction between gene coding proteins was pre-
dicted and analyzed using STRING database [33] (ver-
sion 11.0). The input gene set was immune-related genes, 
and the PPI score was set as 0.4 (medium confidence). 
After the PPI relation pairs were obtained, Cytoscape 
software was used to construct a network. Network 
topology properties (betweenness, closeness and degree) 
were analyzed using CytoNCA [34] plug-in of Cytoscape 
software. Functional modules in the network were identi-
fied using MCODE [34] plug-in of Cytoscape. Parameters 
were set as default, and the sub-network modules were 
screened according to score ≥ 4.

Drug‑gene interaction prediction
DGIdb 3.0 [35] (version 3.0.2) database was applied to 
predict the drug-gene interaction of immune-related 
genes, and the parameters were set as default. The drug-
gene interaction network was constructed through 
Cytoscape. The predictive drug information was retrieved 
in the DrugBank [36] database.

Metastatic recurrence survival analysis of key genes
The bc-GenExMiner v4.4 [37] online tool was used for 
breast cancer gene expression data mining, and the 
immune-related genes that were verified by data were 
subjected to metastatic recurrence survival analysis. The 
parameters were as follows: baseline like (PAM50) and/or 
triple-negative breast cancer (IHC) prognostic analysis; 
DNA microarrays samples (n = 10,001); metastatic recur-
rence; segmentation criteria of median.

Literature retrieval of key genes
The genes in PPI network and TF-miRNA–mRNA net-
work were considered as key genes. The Biopython 
Python package [38] was used to access the NCBI Entrez 
database, and GenCLiP 2.0 database [39] was used to 
summarize the breast cancer associated literatures 
related to these key genes. The title and abstract were 
retrieved, and the literatures were considered as relevant 
literatures if both gene and disease keyword appeared.

Results
Data preprocessing and DEGs analysis
After preprocessing, the overall expression pattern of 
the samples was similar for each dataset. There was no 

significant batch effect among the samples in each data-
set (Fig. 2a).

A total of 153 DEGs were obtained from the GSE76714 
dataset, including 117 upregulated and 36 downregu-
lated genes. Total 1898 DEGs were obtained from the 
GSE43837, including 563 upregulated and 1335 down-
regulated genes. Additionally, 954 DEGs were obtained 
from the GSE125989, including 311 upregulated genes 
and 643 downregulated genes. The volcano plots for 
DEGs are shown in Fig. 2b. The bidirectional hierarchical 
clustering heatmaps of DEGs is shown in Fig. 2c.

Tumor immune microenvironment analysis
In GSE76714, the stromal score of brain metastases 
group was significantly lower than that of primary can-
cer group, while the immune score, ESTIMATE score, 
and cytolytic activity score showed no significant differ-
ence between two groups (Fig.  3a). For the datasets of 
GSE43837 and GSE125989, the stromal score, immune 
score, and ESTIMATE score in brain metastases group 
were significantly lower than that in primary cancer 
group. Additionally, cytolytic activity scores for the two 
groups were not significantly different (Fig.  3b, c). The 
result may indicate the difference of immune microenvi-
ronment between two groups.

Immune cell infiltration abundance analysis
The infiltration abundance matrix of 22 kinds of immune 
cells in all samples of GSE76714 was estimated using 
Cibersort algorithm. The result showed that among the 
71 samples, 60 were valid, including 40 cases of PC and 
20 cases of BM. The immune cell infiltration abundance 
for GSE76714 is shown in Fig.  4. The barplot (Fig.  4a) 
and clustering heatmap (Fig.  4b) showed that the infil-
tration rates of T cells gamma delta (green), T cells CD4 
naive (yellow) and mast cells activated cells (pink) in each 
sample were relatively high. The correlation heatmap 
indicated that there existed difference in immune cell 
infiltration pattern between PC and BM groups (Fig. 4c). 
For instance, the correlation between NK cell activated 
and T cell helper in BM was very low (r = 0.02), while 
it was relatively higher in PC (r = 0.6). The violin plot 
showed that the infiltration ratio of plasma cells in brain 
metastases samples was significantly higher than that in 
primary cancer samples (p = 0.026), while the infiltra-
tion ratio of macrophages M2 cells in brain metastases 
samples was lower than that in primary cancer samples 
(p = 0.003) (Fig.  4d). For GSE43837 and GSE125989, 
there was not enough CIBERSORT for analysis.

Identification of immune‑related genes
Correlation analysis was conducted between mac-
rophages M2 cell infiltration and the expression of 
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DEGs, and 42 immune-related genes were screened. 
T-test revealed that 27 genes, such as THY1, present 
significant differences in expression levels between two 
groups. These genes were significantly enriched in BP 
term associated with positive regulation of GTPase activ-
ity (ALDH1A1, APC2, DOCK2 and THY1). Addition-
ally, other glycan degradation pathway was significantly 
enriched (Fig. 5).

TF‑miRNA‑mRNA network analysis
A total of 9 miRNA-mRNA pairs were predicted, 
which included 5 mRNAs and 9 miRNAs, such as 
miR-520a and miR-361-3p. In addition, 12 TF-mRNA 
pairs were obtained, involving 8 mRNAs and 11 TFs. 
Based on the miRNA-mRNA and TF-mRNA intrac-
tion pairs, a TF-miRNA-mRNA regulatory network 
was constructed (Fig.  6a). Function analysis showed 
that the TFs and mRNAs in the network were signifi-
cantly enriched in lipid homeostasis, and cholesterol 

homeostasis associated BP terms (Fig.  6b). Moreover, 
they were involved in 8 pathways, such as transcriptional 
misregulation in cancer, PPAR signaling pathway, AMPK 
signaling pathway, and breast cancer (Fig. 6c).

PPI network analysis
Based on the immune-related genes, 46 PPI pairs were 
obtained and the constructed PPI network included 
31 nodes (21 up-regulated and 10 down-regulated 
ones) (Fig.  7). Among the 31 nodes, NEUROD1, THY1, 
ALDH1A1, GBX2, MIXL1, CDH8 and ASPN had degrees 
more than 5, and were considered as hub nodes.

Drug‑gene interaction analysis
A total of 10 drug-gene interaction pairs were identified 
based on the immune-related genes, which involved 10 
drugs (busulfan, retinol, tretinoin, zanamivir, deferoxam-
ine, temazepam, diazepam, oxazepam, bromazepam and 
nitrazepam) and 5 mRNAs (PRSS1, ALDH1A1, NEU2, 

Fig. 2  a Clustergrams of principal component analysis for three datasets. b The volcano plots for differentially expressed genes (DEGs) in three 
datasets. The red square represents upregulated DEGs, the blue circle represents downregulated DEGs, and the black triangle represents non-DEGs. 
The transverse dashed line is the p value, and the longitudinal dashed line is the fold change. The genes with the top tenfold changes are shown in 
the figure. c The heatmap of DEGs in three datasets. Red represents high expression and blue represents low expression
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NEUROD1 and GABRQ). In detail, GABRQ interacted 
with temazepam, diazepam, oxazepam, bromazepam and 
nitrazepam; ALDH1A1 interacted with tretinoin and reti-
nol; NEU2 interacted with zanamivir; PRSS1 interacted 
with busulfan (Fig. 8).

Metastatic recurrence survival analysis of key genes
The Venn diagram of the intersection of DEGs in the 
three datasets and immune-related genes is shown in 
Fig.  9a. The genes verified by GSE43817 dataset were 
DOCK2, HCN4, HASPIN, STK33 and KYNU. The gene 
verified by GSE125989 dataset was THY1. The genes 
verified by the two datasets were ASPN and CD1B. These 
genes were considered as key genes and were performed 
metastatic recurrence survival analysis. Based on the 
analysis of the bc-GenExMiner v4.4 database, CD1B, 
THY1 and DOCK2 were found to affect the metastatic 
recurrence of triple-negative breast cancer. As shown 

in Fig.  9b, high expression of THY1 was more likely to 
cause metastasis of breast cancer, while low expression 
of CD1B and DOCK2 was likely to cause metastasis of 
breast cancer.

Literature retrieval of key genes
Among the key genes, ASPN, DOCK2, THY1 and KYNU 
were found to be associated with breast cancer based on 
NCBI Entrez database. Based on the GenCLiP 2.0 data-
base, only THY1 was associated with breast cancer.

Discussion
Brain metastases commonly originate from breast, 
lung, and melanoma. However, brain metastases are 
hard to treat because most drugs cannot penetrate the 
blood brain barrier and often affect multiple areas of the 
brain [40]. Therefore, identification of new biomarkers 
may contribute to the development of individualized 

Fig. 3  Box plots for stromal score, immune score, ESTIMATE score, and cytolytic activity score between brain metastases (BM) and primary cancer 
(PC) groups in GSE76714 (a), GSE43837 (b), and GSE125989 (c)



Page 7 of 13Lu et al. J Transl Med          (2020) 18:327 	

treatment. The present study is the first time to explore 
the immune-related genes in breast cancer with brain 
metastases. The present results showed that the tumor 
immune microenvironment in brain metastases was 
immunosuppressed compared with primary caner. 
Compared with primary cancer samples, the infiltra-
tion ratio of plasma cells in brain metastases samples 

was significantly higher, while the infiltration ratio of 
macrophages M2 cells in brain metastases samples was 
significantly lower. Total 42 immune-related genes were 
identified, such as THY1 (Thy-1 cell surface antigen) 
and NEU2 (neuraminidase 2). THY1 was a hub protein 
in the PPI network. NEU2 interacted with zanamivir. 
CD1B (CD1b molecule), THY1 and DOCK2 (dedicator 

Fig. 4  The barplot (a), clustering heatmap (b), correlation heatmap (c), and violin plot (d) of immune cell infiltration in GSE76714
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of cytokinesis 2) were found to be implicated in the met-
astatic recurrence of breast cancer.

The brain has long been regarded as an immune 
privileged organ, whereas, this view was revised since 
a lymphatic vessel network of brain tissues was found 
in the dura mater in mice [41, 42]. Our study sug-
gested an immune suppressive environment in the 
brain metastases, partly exemplified by significantly 
decreased stromal score, immune score, and ESTI-
MATE score in brain metastases samples compared 
with that in primary cancer group. Our results were in 
accordance with a recent study of Kudo et al. [43], who 
coupled immune gene expression profiling and topo-
logical gene–gene network analysis and demonstrated 
an immune suppressive microenvironment in the brain 
metastases of non-small-cell lung cancer.

Tumor microenvironment is composed of vari-
ous nonmalignant stromal cells, among which tumor-
associated macrophages are the most prominent type 
of migratory hematopoietic cells [44]. In breast, the 
tumor-associated macrophages are primarily pro-
tumorigenic M2-like macrophages, which promote the 
progression and metastasis of breast cancer by releas-
ing various cytokines [45]. Plasma cells can affect 
antitumor immunity by regulating T-cell responses, 
or excluding immune-suppressive cell types to pro-
vide a permissive tumor microenvironment for CD8+ 
tumor-infiltrating lymphocytes, the key mediators of 
antitumor immunity [46]. Our results may devise new 
strategies for immunotherapy of breast cancer with 

brain metastases—by targeting macrophages or plasma 
cells.

In this study, 42 immune-related genes were identified, 
such as THY1, NEU2, CD1B and DOCK2. THY1 was one 
of hub proteins in the PPI network. In PPI network, the 
topological placement of a protein is connected with its 
biological essentiality. The densely connected hub pro-
teins are more likely to be essential proteins, which is 
referred to as the “centrality-lethality rule” [47]. THY1 is 
a glycophosphatidylinositol-anchored protein, which has 
been proposed to play important roles in cancers [48]. 
Function analysis showed that THY1 was significantly 
enriched in function associated with positive regulation 
of GTPase activity. GTPases can be activated when bind-
ing to GTP. Once activated, GTPases carry out many 
functions in cells, such as the regulation of cell prolif-
eration, apoptosis, and differentiation [49]. It has been 
reported that in the case of tumor progression, muta-
tions in Ras related small GTPases can increase the pro-
liferation, survival, and adhesion of tumor cells, tending 
toward a metastatic phenotype [50]. Additionally, high 
expression of THY1 was more likely to cause metasta-
sis of breast cancer. Taken together, we speculated that 
THY1 may play a role in brain metastases of breast can-
cer via positive regulation of GTPase activity. Addition-
ally, it mays sever as a prognostic indicator to predict the 
metastasis of breast cancer.

NEU2 was involved in the pathway of other glycan 
degradation. In mammalian tissues, glycans exist in free 
forms or conjugated forms, which participate in various 

Fig. 5  The GO function (a) and KEGG pathway (b) enriched by the immune-related genes
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Fig. 6  a The constructed transcription factor (TF)-miRNA-mRNA regulatory network. The red round nodes represent upregulated differentially 
expressed genes (DEGs); the blue round nodes represent downregulated DEGs; the green triangle nodes represent miRNAs; green rhombus nodes 
represent TF. The gray lines represent the interaction relationship; the red lines represent the activation relationship of TF-mRNA; the blue lines 
represent the inhibition relationship of TF-mRNA. B and C: The GO function (b) and KEGG pathway (c) enriched by the TF-mRNA
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biological processes, such as host–pathogen interactions, 
cell migration and metastasis, and initiation of immune 
response [51]. Study has reported that glycan changes 
in malignant cells take many forms and mediate key 
pathophysiological events during various stages of tumor 
progression [52]. In the tumor environment, glycosyla-
tion changes allow tumor cells to usurp many develop-
ment events, allowing tumor cells to invade and spread 
throughout the organism. Thus, we speculated that the 

upregulation of NEU2 may be involved in brain metas-
tases of breast cancer through pathway of other glycan 
degradation. Drug-gene interaction analysis showed that 
NEU2 interacted with zanamivir. Zanamivir is an inhibi-
tor of the enzyme neuraminidase, a surface glycoprotein 
necessary for the replication of type A and B influenza 
viruses [53]. Its role in cancer is rarely reported. Now we 
speculated that zanamivir may serve as an antineoplastic 
drug in breast cancer with brain metastases by targeting 
NEU2.

CD1B belongs to the group 1 CD1 family of trans-
membrane glycoproteins, and is associated with major 
histocompatibility complex class I-like molecules. CD1 
molecules regulate the expression of some self- and for-
eign-lipid antigens to T-cell receptors on T cells [54]. A 
recent study has indicated that there are different expres-
sion patterns of CD1 molecules between tumor cells and 
normal cells [55]. More recently, low expression of CD1B 
was reported to be correlated with poorer biochemical 
recurrence-free survival in prostate cancer. Similar result 
was found in our study, that was, low expression of CD1B 
was likely to cause metastatic recurrence of breast cancer.

DOCK2 is a member of the CDM protein family, 
which can regulate cell motility and cytokine produc-
tion by activating Rac in mammalian hematopoietic 
cells. Additionally, DOCK2 plays a critical role in the 
modulation of the immune system [56]. Hu et  al. [57] 
have reported that low expression of DOCK2 is associ-
ated with poorer prognosis of acute myeloid leukemia. 
Recent study reported that DOCK2 hypermethyla-
tion was associated with biochemical recurrence after 
radical prostatectomy in prostate cancer [58]. To 
our knowledge, there was no study about the role of 
DOCK2 in breast cancer. Together with our results, we 

Fig. 7  a The constructed protein–protein interaction (PPI) network of 
differentially expressed genes (DEGs) associated with macrophages 
M2. The triangle nodes represent upregulated DEGs; the red node 
represents DEGs associated with macrophages M2. b The thickness 
of the line is positively correlated to the relationship score obtained 
by STRING

Fig. 8  The constructed drug-gene interaction network. The red nodes represent the upregulated differentially expressed genes (DEGs) in 
macrophages M2. Blue nodes represent downregulated DEGs in macrophages M2. The green nodes represent small molecule drugs
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speculated that DOCK2 may be a prognostic marker of 
metastatic recurrence in breast cancer.

Despite these findings, there existed a limitation in 
this study. Due to lack of adequate clinical samples, 
there was no experimental evidence to support our 
analysis results. Thus, further experimental studies are 
needed to confirm our results.

Conclusions
Our study indicated that tumor immune microenviron-
ment in brain metastases of breast cancer was immu-
nosuppressed compared with primary caner. Targeting 
macrophages or plasma cells may be new strategies for 
immunotherapy of breast cancer with brain metastases. 
THY1 and NEU2 may be potential therapeutic targets 
for breast cancer with brain metastases, and THY1, 
CD1B and DOCK2 may serve as potential prognostic 
markers for improvement of brain metastases survival.
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Fig. 9  a Venn diagram of differentially expressed genes (DEGs) and DEGs in macrophages M2. b Metastatic recurrence survival curve for CD1B, 
THY1, DOCK2, HCN4, HASPIN, STK33 and KYNU 
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