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Abstract: Stress urinary incontinence (SUI) is a significant health concern for patients affected,
impacting their quality of life severely. To investigate mechanisms contributing to SUI different
animal models were developed. Incontinence was induced under defined conditions to explore the
pathomechanisms involved, spontaneous recovery, or efficacy of therapies over time. The animal
models were coined to mimic known SUI risk factors such as childbirth or surgical injury. However,
animal models neither reflect the human situation completely nor the multiple mechanisms that
ultimately contribute to the pathogenesis of SUI. In the past, most SUI animal studies took advantage
of rodents or rabbits. Recent models present for instance transgenic rats developing severe obesity,
to investigate metabolic interrelations between the disorder and incontinence. Using recombinant
gene technologies, such as transgenic, gene knock-out or CRISPR-Cas animals may narrow the gap
between the model and the clinical situation of patients. However, to investigate surgical regimens
or cell therapies to improve or even cure SUI, large animal models such as pig, goat, dog and others
provide several advantages. Among them, standard surgical instruments can be employed for
minimally invasive transurethral diagnoses and therapies. We, therefore, focus in this review on
large animal models of SUI.

Keywords: urinary incontinence; disease models; animal; cell therapy

1. Introduction

Stress urinary incontinence is the most common form of incontinence. Despite in-
tensive research over the last decades, causal treatments suitable for a substantial part
of the patients affected are not available. Therefore, preclinical studies utilizing animal
models deepen our knowledge on pathomechanisms contributing to the development of
urinary incontinence, including especially SUI [1,2]. A general draw-back of most animal
models is the fact that the anatomy of the lower pelvic floor of quadruped animals differs
significantly from the anatomy of primates [3–6]. In addition, in quadruped animals the
abdominal mass does not directly burden the pelvic floor, thus pressure on the urinary
bladder is lower compared to bipedal species. However, ethical concerns limit studies with
primates exploring the etiology of SUI, its diagnosis and therapy. However, a few detailed
analyses provided evidence that rhesus monkeys share some important similarities in
anatomy and physiology of the urethral sphincter muscles with higher primates, including
male and female specificities [7]. Therefore, rhesus monkeys were included as animal
models in a few specific SUI studies [8–11]. In these studies, the efficacy of SUI therapy
by injection of muscle precursor cells was corroborated. In addition, functional sphincter
recovery after application of chemokines was shown as well [11]. The studies confirmed
earlier research indicating that not only cells differentiating possibly in muscle tissues but
also bioactive components such as cytokines, activating intrinsic regenerative mechanisms,
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may contribute to SUI amelioration [12]. Activation of urethral satellite cells plays a key
role in cytokine-driven sphincter repair [12].

However, rhesus monkeys inherit some specific disadvantages in the context of SUI
research as well. Besides ethical issues, the efforts for breeding and husbandry of such
animals are a concern. Therefore, most studies published on urinary incontinence uti-
lized rodents [1,2,13,14]. The public attention to animal studies with rodents and raising
awareness of their possible clinical benefit can be conveyed easier when compared to
studies with monkeys or animals of affection, such as dogs or cats. To address this, several
large animal studies were performed with “agricultural livestock”, sheep, goats and pigs.
Again, these species offer advantages and disadvantages. Breeding and husbandry of farm
animals are rather simple and well established. Researchers therefore can take advantage of
herds of animals which translates into large cohorts, distinct regimens and robust statistics.
Another advantage of such large species is the fact that standard surgical instruments can
be used for most interventions. Large animals facilitate transurethral minimally invasive
surgery instead of laparoscopic interventions or open surgery as required for studies in
rodents, rabbits or other small animals. However, in contrast to rodents, knowledge and
tools for analysis of blood and tissue samples such as specific antibodies, information on
gene expression or genes themselves is not established in most institutes dealing with
urological research. When designing an animal study to investigate pathomechanisms,
diagnosis or therapy of urinary incontinence, these and many other aspects must be taken
into consideration to yield a balanced and resilient project.

In this review, we will summarize current knowledge on well-established methods to
induce experimental incontinence in animals, on determination of sphincter insufficiency
and on pre-clinical studies to explore different regimens to ameliorate the sequela of
malfunction of the urethral sphincter complex.

2. Large Animal Models to Study Urinary Incontinence
2.1. Different Methods to Establish Urinary Incontinence in Animals

Mechanical load and stretching of the lower pelvic floor as caused by pregnancy and
vaginal delivery are known to increase the risk of developing SUI significantly. Therefore,
early studies were designed to mimic injuries to the sphincter apparatus of the urethra by
vaginal distension in female rats [13,15]. To this end a balloon catheter is introduced in
the vagina of female rats (in deep anesthesia), inflated with variable amounts of fluid and
slowly retracted. In this model, urethral sphincter injury included damage of the urethral
smooth muscle and neuronal tissue [1,15]. Vaginal distension studies were performed in
rats with quite different protocols: the balloon dilatation diameter (2 mL to 5 mL filling),
dilatation time (up to 4 h), age/weight, or breeding status (virgin rats versus retired
breeders) of the female animal employed varied quite considerably [15,16]. Injury of nerves
in the lower pelvic floor is associated with surgical intervention to the prostatic gland
in men, but it also occurs in mothers after complex delivery. Especially forceps-aided
deliveries inherit a significant risk of damaging the sphincter complex [17]. Accordingly,
in animal models, dual injury was applied to study insufficiency of the urethral closure
apparatus [18]. To this end, pudendal nerve damage enforced by nerval crush—and
urethral stretch—simulated by vaginal balloon dilatation—were performed as single and
combined intervention [18]. While balloon dilatation injures the complete length of the
urethra, local injury may also contribute to SUI symptoms. This was investigated by
applying heat as used for coagulation of blood vessels during surgery. The so-called
periurethral electrocautery of the middle stretch of the rat urethra caused a transient
reduction of the leak point pressure. Histological analyses suggested that the effect noticed
was a combined but locally defined tissue destruction of the rhabdosphincter muscle and
the nerval connection [19].

In rats, a long-lasting urinary incontinence was also established by surgical removal of
parts of the sphincter muscle, called urethrolysis [20]. This produced SUI-like symptoms for
about 6 months. A different approach in rats was utilized when the pubo-urethral ligament
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was surgically transected. Here, in the short-term (approx. 1 week) and mid-term (approx.
4 weeks) leak point pressure was reduced [21,22]. A rather recent approach utilized old
female rats expressing a transgene to cause severe obesity [23]. Transgenic rats presented
increased voiding frequency, reduced leak point pressure and histological abnormalities in
the sphincter muscle tissue. This suggested that obesity facilitates urinary incontinence by
atrophy and possibly by distortion of urethral muscles [23]. In humans, obesity, including
visceral intraabdominal fat affecting the pelvic floor vs. extra-abdominal adipose tissue
with minor direct effects on the pelvic muscles, is sometimes noted in individuals with
little physical activities and a not age-appropriate life style. This may facilitate a general
decline of tissue qualities, including possibly sphincter deficiencies.

For experimental induction of urinary incontinence female animals were employed
in most studies. However, in old male rats incontinence was induced by electrocautery
of the rhabdosphincter. Electrocautery caused an irreversible destruction of the urethral
muscle and nerve endings [24]. Transplantation of muscle sheets or muscle-derived cells
regenerated sphincter function [24]. In male rabbits, urinary incontinence was induced
by urethrolysis of the sphincter complex [25]. By cystometry and leak-point pressure
measurements, incontinence and spontaneous functional regeneration were determined.
Loss of continence was associated with a significant decrease in smooth muscle tissue and
increased collagenous fibrosis [25]. To the best of our knowledge, this latter model was not
employed in cell therapy studies so far.

Canine models of SUI were established as well using nerval injury or urethrolysis [26–28].
Urethral insufficiency was observed for approximately 2 to 7 months during follow up. In
cats, SUI was induced by unilateral and bilateral neural lesions. Upon bilateral nerval injury,
permanent urine leakage and significant reduction of urethral pressure were recorded [29].
Despite its clear outcome, this feline SUI model was not included in experimental therapy
studies to the best of our knowledge.

Others used pigs to establish an SUI model by either urethral dilatation, or by urethral
dilatation in combination with transurethral electrocautery of the closure complex [30,31].
In these animals, spontaneous regeneration of the sphincter deficiency was not observed
for at least 3–4 weeks. A very interesting SUI model utilized aged multipari goats [32].
This model omits an experimental induction of sphincter insufficiency but relies on ure-
thral dysfunction induced by mechanical stress of many deliveries and on the loss of
tissue elasticity and muscular strength associated with aging [32]. With all limitations,
an animal model comprises, this latter model probably reflects the pathology of SUI in
postmenopausal multipari mothers better than all other quadruped animal models studied
so far. In contrast, surgical induction of sphincter deficiency by injury of muscle tissue or
peripheral nerves may come closer to the SUI of men after prostate surgery (Table 1).

Table 1. Animal models to investigate etiology, diagnosis and therapy of SUI.

Induced Models

Transient/Short Term Permanent/Long Term

urethral dilatation urethrolysis
local electrocautery pubourethral ligament transsection
vaginal distension pudendal nerve transsection
pudendal nerve crush bilateral nerve resection

enforced electrocautery
urethral sphincterectomy

Spontaneous Models
multipari old female animals

Genetic Models
transgenic animals
knock-out animals



Int. J. Mol. Sci. 2021, 22, 6092 4 of 13

2.2. Determining Incontinence in Animals

Stress urinary incontinence is defined by the International Continence Society (ICS) as
“the complaint of any involuntary loss of urine on effort or physical exertion or on sneezing
or coughing” [33]. Patients can report urges to urinate, animals cannot. In patients, the
upright posture facilitates involuntary loss of urine, while quadruped animals sometimes
fail to spontaneously discharge from urine even after surgically established sphincter
injury [34]. Moreover, dogs, cats and possibly a few other animals can be trained to avoid
spontaneous micturition. In some of such “continent” pets, incontinence was observed
when they were old and/or upon ovariectomy. However, such models of SUI seem less
well predictable, not clearly defined nor easily manageable for investigating therapy of
SUI. To examine continence versus incontinence in animals, experimental surrogates and
substitute measurements must be employed in most circumstances. This includes the
“sneeze testing” of animals and monitoring of the discharge, the tilt test of rodents, by
which animals are fixed on a posture and tilted upright to determine loss of urine over
time or determination of the urinary leak point pressure upon defined mechanical load [1].
However, such measurements on animals may be inconsistent and depend on the species
and SUI model employed. To compensate for this, large cohorts yield robust results. Here
rodents and other small animal models are advantageous. Last but not least, protocols
should be standardized as much as possible in all animal studies. This includes but is not
limited to (1) age, size, weight of the animals; (2) medication, anesthesia and positioning; (3)
surgical procedures; (4) determination of urodynamics; (5) normalization of data measured.

Moreover, urethral continence is maintained by active and passive components, includ-
ing smooth muscles of the lissosphincter as well as striated muscles of the rhabdosphinc-
ter [35]. Urinary continence is therefore partially under somatic neuronal control. When
determining incontinence by measuring the urethral wall pressure in animals in sedation
versus deep anesthesia, significant differences were noted disclosing the contribution of the
neuronal control and striated muscles to the overall closure pressure [36]. The contribution
of passive forces such as tissue tension, blood pressure to the overall continence is noticed,
when urodynamics are measured in animals in anesthesia and upon sacrifice (unpublished
observation). Still, determination of the leak point pressure and urethral wall pressure were
the preferred techniques to determine sphincter insufficiency in large SUI models [30–32].

2.3. Exploring Cellular Therapies for Stress Urinary Incontinence in Large Animal Models

Female dogs also served as pre-clinical model to investigate regeneration of surgically
induced SUI [2,28]. In one of these studies, the sphincter muscle was injured surgically to
establish a long-lasting insufficiency. By measuring the leak point pressure in sham-treated
versus myoblast-treated female dogs, sphincter regeneration was monitored. The best
results were achieved when myoblast therapy was combined with electrophysiological
stimulation [28]. This suggested that either the integration of myoblasts in the sphincter
complex and their differentiation to become myofibers, the nerval connection, or both
were improved by electrostimulation treatment [28]. Possibly also blood circulation and
neovascularization were improved by electrostimulation.

Others used female landrace pigs to induce sphincter deficiency by dilatation of the
urethra [30]. A significant reduction of the urethral closure pressure and of the functional
length were determined after 4 weeks. The same group extended these studies and injected
porcine muscle-derived cells in pigs pre-treated with sphincter insufficiency. In sharp contrast
to other studies [28], cell therapy with muscle derived cells only did not yield functional
recovery from SUI in these pigs [37]. This means that the outcome of both, experimentally
induced incontinence, as well as the therapeutic benefit, depending on the individual design
of the study. Nevertheless, using older multipari female goats as a SUI therapy model, a
combination therapy of muscle derived cells and bone marrow-derived mesenchymal stromal
cells yielded better regeneration when compared to mono therapies [32].

When investigating the efficacy of cell therapies of SUI and other diseases, the detec-
tion/localization of the cells applied, their viability and regenerative action are a concern.
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In many pre-clinical studies, cells were labeled by lipophilic, cell membrane-anchored
fluorescent dyes such as PKH26 or alike [32,37,38]. One advantage of this type of label is the
simple and straight forward method of labeling prior to the application intended: incubate
the cells with the respective components as required, remove the dye and wash the cells.
A suitable biosafety laboratory and a gene technology license are not required. This class
of dyes comes in different colors and it is characterized by brilliant excitation-emission
characteristics. The extinction coefficient ε of DIL and other lipophilic carbocyanides is
very high and reaches more than 125,000 cm−1M−1 at the absorption maximum. Therefore,
labeled cells can be detected easily with different visualization techniques in organs, tissue
pieces or cryo- and microsections [39]. Moreover, by using complementary fluorescence
labeled antibodies, detection of cells in one fluorescent channel can be combined with
detection of several antigens by immunofluorescence in other channels, and/or with de-
tection of cell nuclei stained e.g., by one of the Hoechst dyes, DAPI or alike. A general
disadvantage of membrane anchored fluorescent labels is the fact that they are diluted
with each cell division and therefore the label intensity may cease over time [31]. Of note,
when labeling non-dividing cells or erythrocytes, labeled cells can be detected in vivo/ex
vivo after several weeks of cell application. However, transfer of membrane anchored
labels to neighboring cells or extracellular matrix components was reported. This transfer
may occur from living cells and even more so from dead cells, including apoptotic cells or
apoptotic bodies [40]. Therefore, such labels are not highly specific for the cells originally
marked after in vivo application over time. Nevertheless, our recent studies indicated
that the viability, proliferation, attachment and differentiation capacities of mesenchymal
stromal cells were not modulated by the membrane-anchored fluorescent dyes PKH26 or
VybrantDil. However, migration of the cells was reduced by loading the cell membranes
by these labels [41].

Others utilized the expression of recombinant labels to visibly mark cells. To this end,
the cells were transduced or transfected with viral, DNA or RNA vectors expressing for
instance an enhanced green fluorescent protein (eGFP) [42]. By recombinant techniques,
the fluorescent protein expressed can be specifically directed to sub-cellular compartments
facilitating a localized coloring of cells predominantly in the nuclei, mitochondria, or
other compartments. However, eGFP and other fluorescent proteins display extinction
coefficients ε in the range of 55,000 cm−1M−1 at their absorption maximum, which is
considerably lower when compared to typical lipophilic labels. Moreover, cell membranes
provide a large area that can be charged with different intensities by lipophilic labels
without interfering with physiological processes [41]. In contrast, intracellular structures
such as nuclei or mitochondria are comparably small and cannot possibly be charged to
the same extent with fluorescent proteins without influencing their physiological function.
Therefore, recombinant labels grant lower fluorescence intensities in most experimental
settings. However, this may be compensated by the detection of the recombinant protein
by immune fluorescence. [43]. Recombinant fluorescent labels inherit other significant
advantages. As mentioned above, subcellular structures can be addressed depending on
the experimental need and their expression can be utilized as an indicator for an active
metabolism and viability of the cells under investigation. By use of reporter constructs in
combination with fluorescent protein expression in cells under exploration, modulation
of gene expression can be monitored in vivo. The application of recombinant fluorescent
labeled cells expands to the adoptive transfer of cells, tissues and even organs from trans-
genic, knock-in, knock-out or CRISPR-Cas-modified animals to e.g., wildtype animals.
However, this large field of cell applications is beyond the focus of this review.

Bleaching by intensive UV exposure is always a concern with organic fluorescent dyes.
Fluorescent nanoparticles (FNPs) are rather insensitive to bleaching. They also come with
a wide spectrum of emission spectra, and—most important—a choice of size and shape, a
feature not provided by other fluorescent labels. Nowadays, in different fields of biomedical
research FNPs, so-called quantum dots (QDs) replace more and more the classical organic
fluorescent labels [44,45]. Molecular interactions of proteins with proteins, proteins with
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nucleic acids, etc., or biosensing can be monitored by combinations of suitable QDs enabling
the transmission of excitation energy between adjacent nanoparticles by fluorescence
resonance energy transfer (FRET). However, FNPs can be picked up by cells through
endocytosis, larger particles (1000 nm to 500 nm) rather than by phagocytosis, smaller ones
by pinocytosis [46]. Therefore, in contrast to the recombinant labels described above, QDs
may spread in vivo and over time to neighboring cells and structures, thus adding a level
of complexity when critically evaluating the cell injection experiment. Additionally, QDs
are also diluted with each cell cycle comparably to lipophilic membrane dyes. Moreover,
labeling of cells by QDs may require a series of preliminary experiments to yield satisfactory
results. In contrast, cell labeling by lipophilic days is a rather simple technology and
optimized commercial kits are available for many and very diverse applications. The large
field of applications of QDs in biomedical research merits a specific review. Hence, an
in-depth discussion of QD labeling is beyond the horizon of this article. Some differences
between organic fluorescent dyes and QDs are summarized in Table 2. In the end, the
experimental design and aim, including especially the duration of follow-up of animal
studies, have an impact on the labeling strategy. Dilution of labels as seen with QDs and
lipophilic dyes is less critical for short-term follow-up and grants, in most circumstances,
bright fluorescent signals. Long-term cell therapies may require the application of a “genetic
label”, e.g., cells from suitable GFP-transgenic donors.

Table 2. Some basic characteristics of organic fuorescent dyes compared to quantum dots.

Properties Organic Dye Quantum Dot

Molecular absorption coefficient ε
moderate: 2.5 × 104 to

2.5 × 105 M−1cm−1 high: 1 × 105 to 1 × 106 M−1cm−1

Emmission spectra, width variable, 30 nm to 100 nm variable, 30 nm to 90 nm

Emmission histogram asymetric, often tailing to long
wavelength symmetric, Gaussian profil

Fluorescence duration short: 1–10 ns longer: 10–100 ns
Photochemical stability/bleaching sufficient/depending on UV input very high, photo-brightning possible

Toxicity to cells very variable, depending in part on
solvent

variable, depending on
structure/chemistry

Signal amplification possible, e.g., by immune fluorescence often not needed due to bright/stable
signals

Labeling method
very simple, commercial kits available

frommany providers for almost any
application

may require specific protocols for each
application, may need functional groups

on target molecules for interaction

2.4. Porcine Animal Models in SUI Research

In our studies female landrace hybrid pigs (fLHP) as well as female Göttingen minipigs
(fGMP) were included [31,34,38,43]. In a small feasibility study using cohorts of 2 or
3 female pigs each, we explored the muscular strength of the urethra of young virgin
fLHPs (approx. 3 months of age, ±35 kg weight), versus young virgin fGMPs (approx.
9 months of age, ±25 kg weight), versus aged and obese virgin fGMPs (approx. 30 months
of age, ±80 kg weight), versus retired multiparous breeder fGMP (approx. 24 months
of age, ±50 kg weight). The muscular strength of the urethral sphincter complex was
determined by measuring the urethral wall pressure. To this end, a catheter equipped with
pressure sensors is introduced through the urethra in the bladder and slowly retracted
while recording the pressure levels. This method is referred to as urodynamics (Figure 1).
The functional urethral length determines the part of the urethra with a local pressure above
the intravesical pressure in rest. Urethral closure pressure results from smooth muscle cells
with autonomic innervation of the urethra and striated voluntary innervated muscle cells of
the rhabdosphincter. Thereby, the maximum urethral closure pressure reflects the position
of the most condensed accumulation of primarily striated muscle cells [47]. In addition, the
area under the curve (AUC) reflects the definite integral of the urethral closure pressure
curve, which is currently more interesting from a scientific than a clinical point of view
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(Figure 1). When comparing the urodynamics of young fLHPs versus size-matched young
fGMPs, young versus old and obese virgin fGMPs, or old obese virgin versus normal
multiparous retired breeder fGMPs, differences in urodynamics were noted (Figure 2).
Interestingly, in contrast to obese rats [23], in our study old obese fGMPs did not show
a reduced pclo nor reduced pmax (Figure 2). Histological analyses of the corresponding
tissue samples are ongoing. However, the preliminary urodynamic data provide evidence
that not only the species by itself, but also differences in the individual breed of a given
species (here landrace hybrid versus Göttingen minipig), age, body mass, and breeder
status may influence the outcome of functional studies of the urethra, especially in the
context of diagnostic and therapeutic models of incontinence.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 7 of 14 
 

 

age, ±50 kg weight). The muscular strength of the urethral sphincter complex was deter-
mined by measuring the urethral wall pressure. To this end, a catheter equipped with 
pressure sensors is introduced through the urethra in the bladder and slowly retracted 
while recording the pressure levels. This method is referred to as urodynamics (Figure 1). 
The functional urethral length determines the part of the urethra with a local pressure 
above the intravesical pressure in rest. Urethral closure pressure results from smooth 
muscle cells with autonomic innervation of the urethra and striated voluntary innervated 
muscle cells of the rhabdosphincter. Thereby, the maximum urethral closure pressure re-
flects the position of the most condensed accumulation of primarily striated muscle cells 
[47]. In addition, the area under the curve (AUC) reflects the definite integral of the ure-
thral closure pressure curve, which is currently more interesting from a scientific than a 
clinical point of view (Figure 1). When comparing the urodynamics of young fLHPs ver-
sus size-matched young fGMPs, young versus old and obese virgin fGMPs, or old obese 
virgin versus normal multiparous retired breeder fGMPs, differences in urodynamics 
were noted (Figure 2). Interestingly, in contrast to obese rats [23], in our study old obese 
fGMPs did not show a reduced pclo nor reduced pmax (Figure 2). Histological analyses 
of the corresponding tissue samples are ongoing. However, the preliminary urodynamic 
data provide evidence that not only the species by itself, but also differences in the indi-
vidual breed of a given species (here landrace hybrid versus Göttingen minipig), age, 
body mass, and breeder status may influence the outcome of functional studies of the 
urethra, especially in the context of diagnostic and therapeutic models of incontinence. 

 
Figure 1. Determining the sphincter function by urodynamics. The functional urethral length deter-
mines the part of the urethra with a closure pressure above the intravesical pressure. The maximum 
urethral closure pressure describes the location of accumulation of sphincter muscle cells, which is 
mostly due to striated cells of the rhabdosphincter. The area under the curve (AUC), the area de-
scribed by the grey histogram and x-axis, determines the integral of urethral wall pressures of the 
functional urethral length. 

Figure 1. Determining the sphincter function by urodynamics. The functional urethral length
determines the part of the urethra with a closure pressure above the intravesical pressure. The
maximum urethral closure pressure describes the location of accumulation of sphincter muscle cells,
which is mostly due to striated cells of the rhabdosphincter. The area under the curve (AUC), the
area described by the grey histogram and x-axis, determines the integral of urethral wall pressures of
the functional urethral length.
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2.5. Porcine Animal Models in SUI Cell Therapy

Using the tools described above, we explored the potential of cell therapies for SUI
in female pigs. In one series of experiments, we investigated the injection of human bone
marrow-derived mesenchymal stromal cells in fGMP. These animals received immuno-
suppression by cyclosporine A (15 mg/kg body mass per day orally). Starting at about
9 months of age, the body mass of fGMP increased during follow-up of up the 12 months
from 15–20 kg to 25–37 kg. Thus, the fGMP can be handled without difficulties even
after extended incubation periods. Immediately after injection of 4 aliquots of 250 µL
medium each, the maximum urethral closure pressure (pmax) was significantly reduced
from 142.4 ± 31 cm H2O to 116 ± 38 cm H2O (p < 0.09; Figure 3). The AUC (p < 0.05;
Figure 4) and the functional length (not significant, not shown) was reduced as well.
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This indicated that injection of even small volumes of isotonic solvent caused a
significant irritation of the closure complex in this large animal model. Swelling or bulking
effects were not observed. We hypothesize that cell injection in smaller animals may be
even more detrimental. However, no significant differences in pmax were recorded in
sham-treated animals during follow-up for up to 12 months in fGMPs (Figure 5).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 9 of 14 
 

 

Figure 3. Maximal urodymanic closure pressure pmax determined by urodynamic pressure 
profilometry (UPP) before (left) versus immediately after injection of 4 aliquots of 250 μL me-
dium. The pmax determines the maximal muscular sphincter force and its localization in the 
urethra. 

 
Figure 4. Area under the curve (AUC) determined by urodynamics before (left) versus imme-
diately after injection of 4 aliquots of cells in 250 μL medium each. The AUC is calculated as 
the integral of the total urethral wall pressure over the total urethral length. 

This indicated that injection of even small volumes of isotonic solvent caused a sig-
nificant irritation of the closure complex in this large animal model. Swelling or bulking 
effects were not observed. We hypothesize that cell injection in smaller animals may be 
even more detrimental. However, no significant differences in pmax were recorded in 
sham-treated animals during follow-up for up to 12 months in fGMPs (Figure 5). 

 

Figure 5. Maximal urodymanic closure pressure pmax in sham-treated animals immediately after
sham-surgery (a) in comparison to animals during follow-up for 3 weeks (b), 3 (c), 6 (d) or 12 (e)
months after sham treatment. The pmax determines the maximal muscular sphincter force and its
localization in the urethra.
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The data suggested that needle injections of small aliquots of isotonic fluid caused
a significant short-term reduction of sphincter function but no long-term bulking. Our
histological analyses did not indicate that inflammation or fibrosis occurred [38].

In the next series of experiments, we injected human placenta-derived stromal cells
in healthy, i.e., not incontinent fGMPs. As seen in sham-treated fGMPs (Figure 5), three
weeks after injection a minor but significant slope of the maximal urethral wall pressure
was recorded (ANOVA: p < 0.04; Figure 7), followed by a transient but significant increase
of pmax (ANOVA: p < 0.03; Figure 7). However, upon Tukey–Kramer analysis only the
difference between 3 weeks and 3 months follow-up were significant (p < 0.024, Figure 7).
Significant differences in AUC and in functional lengths of the urethra were also observed
between controls and injected animals for some of the timepoints investigated (not shown).
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Figure 7. Maximal urodynamic wall pressure before (a) versus injection of human placenta-derived
mesenchymal stromal cells and during follow-up over 3 weeks (b), 3 (c), 6 (d) and 12 (e) moths
respectively. By Tukey–Kramer test only the increase in pmax between f/u of 3 weeks versus 3
months was significant, pmax at all other timepoints were not significant (right panel). The pmax
determines the maximal muscular sphincter force and its localization in the urethra.

In another series of experiments, porcine adipose-derived stromal cells [43] or muscle-
derived cells (unpublished results) were injected in fLHPs. In such pigs, induction of a
transient urethral insufficiency was generated by urethral dilatation and electrocautery
about 1–2 cm distal of the bladder neck [31]. This corroborated other studies [30]. Upon
combining urethral dilatation with electrocautery, urethral insufficiency lasted at least three
weeks [31]. Current studies are designed to transfer this method of induction of experimen-
tal SUI from fLHPs to fGMP to facilitate long term follow-up after cell therapy. We recently
noted that the differences in anatomy and probably physiology of bladder and urinary tract
may yield differences in the functional lengths, urethral wall pressure profiles and other
physiological parameters in different breeds of the same species (Figure 2). Moreover, pre-
liminary data also suggest that not only the breed but also age and multiple deliveries have
an impact on urodynamic parameters in different porcine breeds (Figure 2). This to the best
of our knowledge is not investigated in detail yet, but may of course influence the outcome
of cell therapy studies in both, experimentally or naturally incontinent animals after SUI
therapy in comparison to different control cohorts included in such pre-clinical studies.

3. Conclusions

In preclinical research, large animal models inherit several disadvantages and require
larger efforts to yield robust and statistically reliable results. Moreover, biological tools
such as specific antibodies, nucleic acid probes or alike and bioinformatic data are available
on a large scale for studies employing human and e.g., rodent samples, but are accessible
to a much lesser extent for studies with large farm animals including goats, sheep, or pigs.
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However, on the other hand, in SUI research, larger species grant several advantages in-
cluding transurethral surgery with standard instruments. This opens different possibilities
to develop novel or improved surgical instruments in pre-clinical studies, basically at a
1:1 scale. Therefore, for preclinical studies focusing on surgery or medical technology,
we highly recommend farm animal models. Studies dealing with SUI and physiology or
anatomy might require primate models of incontinence.
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Abbreviations

ADSC adipose tissue derived stromal cell
AUC area under the curve
fGMP female Göttingen minipig
FNPs fluorescent nanoparticles, often referred to as quantum dots (QDs)
fLHP female landrace hybrid pig
pclo urethral closing pressure
pmax maximum urethral closing pressure
QDs quantum dots
SUI stress urinary incontinence
UPP urethral pressure profilometry
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