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Background
Retailers and manufacturers identify the importance of pricing policy in a competitive 
environment. Adequate pricing and marketing policies may boost the company’s bot-
tom-line in such competition. Products such as fashion apparel, cosmetics, and winter 
wears become obsolete with the passing of time. Therefore, a pricing policy is required 
to ensure sale of the entire stock before entering the next cycle. Mostly, in a diminish-
ing market, the manufacturers put their efforts into uplifting sales by reducing the price 
through media and pricing policy when demand declines. Fergany and Wakeel (2006) 
considered a probabilistic lost sales inventory system where order cost is a function of 
order quantity and lead time demand follows the normal distribution by using Lagran-
gian method. Chiu et al. (2016) developed two extended economic manufacturing quan-
tity model to examine the production process, end product delivery and intra-supply 
chains.

Items that have a decreasing in quality or quantity over time are known as deterio-
rating items, and this process is called deterioration. One of the major assumptions of 
the inventory system is that the stock of goods can be indefinite, however some types 
of products either deteriorate or become obsolete with time, and the storage of such 
goods becomes difficult. This process can generally be seems in the case of commonly 
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used goods such as fruits, vegetables, meat, perfumes, alcohols, gasoline, radioactive 
substances, photographic films and electronic components where deterioration is usu-
ally observed during their normal storage period. Banu and Mondal (2016) considered 
an economic order quantity model for deteriorating items where the demand function is 
linked with the customers’ credit period and the duration of policy of such credit period 
is exponential in nature.

Blackburn and Scudder (2009) examined warehouse temperature according to ware-
house capacity constraints. Fergany (2016) proposed a probabilistic multi-item, single-
source inventory model with varying mixture shortage costs under two restrictions. 
Kouki et al. (2013) reveal that a continuous temperature control policy can be very effi-
cient for inventory management. Widyadana and Wee (2010) devised an EPQ model for 
deteriorating items by considering stochastic demand. In this model, lost sales will occur 
when the machine unavailability time is longer than the non-production time. Khedle-
kar et  al. (2014) developed a production inventory model for deteriorating items with 
production disruption and analyzed the system under different situations. Chandel and 
Khedlekar (2013) designed an integrated inventory model to optimize the total expendi-
ture for warehouse set-up. Shukla et  al. (2012) considered an optimal selling price for 
optimal profit in a certain business set-up and concluded that if demand for products is 
less price-sensitive, optimal profit will be greater but permit less price-setting. Khedle-
kar and Shukla (2012) developed a dynamic pricing model for products with logarithmic 
decline price-sensitive demand and found that β is the most significant parameter affect-
ing optimal profit and the respective number of price settings.

Chen and Zhang (2010) developed a three-echelon supply chain system consisting of 
suppliers, manufacturers and customers under demand disruptions by using a jump-dif-
fusion model. Furthermore, an improved analytical hierarchy process (AHP) studied for 
selection of the best suppliers based on quantitative factors such as optimal long-term 
total cost. The objective was to minimize the total cost under different demand disrup-
tion scenarios. Banerjee and Roy (2010) formulated a multi-objective inventory model 
for both exponential and uniform lead time where demand was taken, and it was found 
that fuzzy optimization obtained better results.

Roy and Chaudhuri (2011) introduced an economic production lot-sized model where 
the production rate depends on the stock and selling price per unit. In this model, dete-
rioration is assumed as a constant fraction allowing no shortages. Balkhi and Bakry 
(2009) devised a dynamic inventory model of deteriorating items in which each of the 
production, demand and deterioration rates were assumed to be general functions of 
time. Both inflation and time value of money were incorporated, and the optimal stop-
ping and restarting production times in any cycle could be determined.

Giri et al. (2003) extended the economic lot-scheduling problem where the production 
follows a normal distribution. Sarkar and Moon (2011) designed a classical EPQ model 
with stochastic demand under the effect of inflation. The model is described by consid-
ering a general distribution function. Chang et al. (2010) determined an EOQ model for 
deteriorating items by assuming that demand rate depends not only on the on-display 
stock level but also on the selling price per unit as well as the shelf or display space. They 
formulated two types of mathematical models to manifest the extended EOQ models for 
maximizing profits and derived the algorithms to find the optimal solution. The recent 
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development of some EOQ models [Shukla and Khedlekar (2015), He and He (2010) and 
Zang et al. (2014)] has been important in the current competitive market. Chang and Dye 
(1999) modeled a business with a constant deterioration rate and time-varying demand 
with the assumption that the shortages were partially backlogged and the backlogging rate 
was a decreasing function of the waiting time for the next replenishment. A continuous 
production control inventory model for deteriorating items with shortages was developed 
by Samanta and Roy (2004), they assumed demand and production rates are constant 
and the deterioration of an item follows an exponential distribution. Hence, this model 
is applicable to food items, drugs, pharmaceuticals, etc. Dye and Hsieh (2012) extended 
Hsu et al.’s (2010) model by incorporating a time-varying deterioration rate. He and Huang 
(2013) devised a model for deteriorating seasonal products whose deterioration rate can 
be controlled by investing in preservation efforts. This model suggests preservation tech-
nology investment and pricing strategies for deteriorating seasonal products. Zang et al. 
(2014) designed an inventory model wherein demand is dependent on selling price and 
time and deterioration can be controlled by preservation technology. There are numer-
ous studies on inventory models for deteriorating items under different conditions, such as 
Goswami and Chaudhuri (1991), Alamri and Balkhi (2007), Khedlekar et al. (2012), Chung 
and Huang (2007), Ouyang et al. (2005), and Kumar and Sharma (2012).

The study of a deteriorating inventory model is of extreme importance for the smooth 
and efficient running of any business organization. Deterioration may occur when goods 
decay, damage, spoil, or evaporate, or are obsolete or pilfered, all of which lead to loss 
of utility or loss of marginal value of commodities. The deterioration rate is assumed 
to be constant at the beginning of inventory modeling, but it varies according to time, 
weather, season, introduction of new technologies or new generation, such as grease, 
oil, petrol, alcohol, pharmaceutical substances, medicine, iron products, vegetables, per-
fumes, computer apparels, mobiles, and cosmetics. We apply preservation technology to 
protect the product from such types of deterioration, but this effort adds an additional 
cost to the total cost, known as the preservation technology investment cost.

The assumption of this study is that if we invest an optimal preservation cost u, the 
reduced deterioration rate becomes θ

(

1− f (u)
)

, which maximizes the total profit TP. 
Similarly, the demand rate is generally taken to be constant, but demand is never con-
stant in reality. Since demand is affected by time, season and weather, it is a very sensi-
tive factor related to any business management. Market price is highly related to market 
demand, so another assumption is that demand is considered time-dependent and lin-
early related to market price. Thus, here we assume the demand D(p, t) = α − at − βp is 
price sensitive, time dependent and linearly declining. Since the time horizon is taken as 
infinite in this study, we determined the optimal time for replenishment.

The main goal of this study is to determine the optimal selling price, the optimal length 
of the replenishment cycle and the optimal preservation technology investment simulta-
neously, such that the total profit per unit time is maximized.

The rest of the paper is organized as follows: In section “Assumption and notation”, the 
assumption and notations are presented. In section “Mathematical model”, a mathemati-
cal model to maximize the total profit per unit time is established, and three proposi-
tions are developed. In section “Numerical example”, two numerical examples are given. 
In section “Discussions”, the conclusion is presented to summarize the outputs.
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Assumption and notation
We assume that market demand is linearly related to market price and that it cannot be 
backlogged. Deteriorated products have no value, and the lead time is considered to be 
zero. The proportion of reduced deterioration rate f(u) is considered to be a continuous, 
increasing and concave function of item preservation technology parameter u, there for, 
f′(u) > 0, f ″(u) < 0 and f(0) = 0. Price sensitive, non-negative and exponentially declined 
demand rate D(p, t) = α − at − βp is considered in this model, where α > 0 the initial is 
demand and β > 0 is a price sensitive parameter. The model in this paper is built on the 
following assumptions:

p	� Market price per unit, where p > c
h	� Inventory holding cost unit per unit time
T	� Length of the replenishment cycle, where the end of the cycle inventory 

is zero
I(t)	� Inventory level at time t
Q	� Order quantity per cycle
K	� Replenishment cost per order
c	� Purchasing cost per unit
D(p,t)	� Demand rate is a function of both price and time
θ	� Deterioration rate, where 0 ≤ θ ≤ 1
u	� Preservation technology investment parameter per unit time to reduce 

the deterioration rate
f(u)	� Proportion of reduced deterioration rate, where 0 ≤ f(u) ≤ 1
TP(T, p, u)	� Total profit per unit time

Mathematical model
We have considered a single retailer inventory model of seasonal products. Deteriora-
tion is reduced by preservation technology investment. The decision variable is the sell-
ing price of the product and the preservation technology investment parameter u. If θ is 
the deterioration rate and f(u) is the proportion of reduced deterioration rate by invest-
ing preservation technology costs, then the inventory at time t is shown in Fig. 1 and fol-
lows this differential equation:

The boundary condition I(T) = 0, leads

(1)
∂I(t)

∂t
+ θ

(

1− f (u)
)

I(t) = −D(p, t) where D(p, t) = α − at − βp, 0 ≤ t ≤ T

In
ve
nt
or
y

tT T
Fig. 1  Graphical representation of the inventory system
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The on-hand inventory Q will be

The total profit TP(T, p, u) of the season can be formulated as

Sales revenue

The total revenue in time T can be formulated as

Purchasing cost

According to Eq. (3), we know the order quantity. Thus, the total purchasing cost can be 
formulated as

Inventory holding cost

The formulation of the total inventory holding cost is

Preservation cost

Preservation technology investment depends on the cycle length. For the inventory cycle 
T, the preservation technology investment cost is

Replenishment cost

The replenishment cost is

by Eq. (4), the total profit function per unit time is

(2)

I(t) =
(α − at − βp) eθ(1−f (u))(T−t)

θ
(

1− f (u)
) −

α − at − βp

θ
(

1− f (u)
)−

a

θ2
(

1− f (u)
)2

+
aeθ(1−f (u))(T−t)

θ2
(

1− f (u)
)2

(3)Q =
(α − aT − βp)eθ(1−f (u))T

θ
(

1− f (u)
) −

α − βp

θ
(

1− f (u)
) −

a

θ2
(

1− f (u)
)2

+
aeθ(1−f (u))T

θ2
(

1− f (u)
)2

(4)

TP(T , p, u) = Sales revenue (R)− Purchasing cost
(

cp
)

− Inventory holding cost (ch)

Preservation cost (Io) − Replenishment cost (K )

R = p

(

αT −
aT 2

2
− βpT

)

cp = cQ

ch = −

h
(

αT −
aT 2

2 − βpT
)

x
−

h(α − βp)

x2

(

1− exT
)

I0 = uT

c0 = K

(5)

TP(T , p, u) =
p

T

(

αT −
aT 2

2
− βpT

)

−
c

T

[

−
α − βp

x
−

a

x2
+

(α − aT − βp)exT

x
+

aexT

x2

]

+
h

Tx

(

αT −
aT 2

2
− βpT

)

+
h

Tx2
(α − βp)

(

1− exT
)

− u−
K

T
, where x = θ

(

1− f (u)
)
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Proposition 1  There exists a unique p* that maximizes the profit function TP(T , p, u) 
for fixed T and optimal u.

Proof  The first and second partial derivatives of the profit function TP(T , p, u) with 
respect to p are as follows:

Let dTP(T , p,u)
dp

 be zero and solve for optimal p*, we have

At point p = p*, we have

Thus, p* is the optimal market price that maximizes the profit function for fixed T and 
optimal u.

Proposition 2  The profit function TP(T , p, u) is concave in the replenishment cycle T.

Proof  The first and second partial derivatives of the profit function TP(T , p, u) with 
respect to T are as follows, where x = θ

(

1− f (u)
)

and

Hence, the total profit function is concave in T. Thus, there exists a unique optimal 
replenishment time T* that maximizes TP(T , p, u), and the optimal T* can be obtained 
by solving ∂TP(T , p,u)

∂T = 0.

Proposition 3  For any given feasible p and T, there exists a unique optimal preserva-
tion technology investment u* that maximizes TP(p,T,u).

Proof  The first and second partial derivatives of the profit function TP(p,T,u) with 
respect to u are

dTP(T , p, u)

dp
= α −

aT

2
− 2βp−

c

T

(

β

x
−

βexT

x

)

−
hβ

x
−

hβ

Tx2

(

1− exT
)

(6)p∗ =
α

2β
−

aT

4β
−

1

2xT

(

c +
h

x

)

(

1− exT
)

−
h

2x

∂2TP(T , p, u)

∂p2
= −2β < 0

∂2TP(T , p, u)

∂T 2
=

ac

T 3

(

α − βp

x
+

a

x2

)

−
c

x

[

(α − βp− aT )
x2

T
− 2(α − βp)

x

T 2
+

2

T 3
(α − βp)

]

exT

−
ac

x2

(

x2

T
−

2x

T 2
+

2

T 3

)

exT

−
h

x2
(α − βp)

[

x2

T
−

2x

T 2
+

2

T 3

(

1− e−xT
)

]

exT < 0
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Since f′(u) > 0 and f ″(u) < 0, it is clear from the above equation that ∂
2TP(p,T ,u)

∂u2
< 0.

Hence, the total profit is a concave function of the preservation cost.

Numerical example
Example 1

In this example, we have considered that the reduced deterioration rateis 
f (u) = 1− e−γ u, γ > 0. The parametric values of the inventory system are as follows: 
K = $10 per order, c = $10 per unit, h = $0.5 per unit per month, u = $5 per unit time, 
θ = 0.01, α = 500, β = 0.5, γ = 0.05, and ε = 0.0001. Then, the optimal selling price per 
unit is p* = $12.6834, the optimal replenishment time T* = 0.712, the total profit per 
unit time TP(T ∗, p∗, u∗) = $416 and the order quantity Q* = 26.

Next, we study the effects of changing the values of the system parameters on the p*, 
T*, TP(T ∗, p∗, u∗) and Q*. A sensitive analysis is performed by changing one param-
eter value by +40%, +20%, −20%, and −40%, and keeping the remaining parameters 
unchanged. For the simulation, the initial data are taken as in example 1, except the 
parameters c = $5, h = $1, u = $10, α = 100, and β = 5. The computational results are 
illustrated in Table 1.

∂TP(p,T ,u)

∂u
=





c(α − βp)

Tθ
+

h
�

α −
aT
2

− βp
�

θ





f ′(u)
�

1− f (u)
�2

+
2ac

Tθ2

f ′(u)
�

1− f (u)
�3

c(α − aT − βp)
f ′(u)eθ(1−f (u))T

�

1− f (u)
� −

�

c

Tθ
(α − aT − β)−

h(α − βp)

θ
−

ac

θ

�

f ′(u)eθ(1−f (u))T

�

1− f (u)
�2

−
2ac

Tθ2

f ′(u)eθ(1−f (u))T

�

1− f (u)
�3

−
2h(α − βp)

θ

f ′(u)
�

1− f (u)
�2

− 1

−
f ′2(u)

�

1− f (u)
�3

(α − βp)(c − hT )

Tθ
eθ(1−f (u))T

Table 1  Sensitivity analysis with respect to the major parameters

Input parameters Output param-
eters

−40% −20% 0% 20% 40%

α p 8.77 10.72 12.69 14.67 16.65

Q 17 22 26 30 33

T 1.050 0.830 0.712 0.633 0.576

TP 103 239 416 633 891

β p 19.34 15.18 12.69 11.03 9.85

Q 28 27 26 25 24

T 0.67 0.69 0.712 0.74 0.77

TP 765 549 416 325 258

γ p 12.685 12.684 12.6833 12.683 12.682

Q 26 26 26 26 26

T 0.712 0.712 0.712 0.711 0.711

TP 416.06 416.03 416 415.97 415.90

h p 12.65 12.67 12.68 12.70 12.72

Q 34 29 26 24 22

T 0.910 0.792 0.712 0.654 0.606

TP 420.24 418.18 416 413.79 411.70
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Discussions
Based on the results in Table 1, we observe the following facts:

The increasing initial demand α, the optimal total profit per unit time TP(T ∗, p∗, u∗) , 
the optimal selling price p*, and optimal order quantity Q* increase while the optimal 
replenishment time T*decreases. As a result, we have to maintain a high initial demand 
by ordering more quantity per replenishment cycle and shortening the replenishment 
cycle. Moreover, if the scaling factor α is getting low, then the enterprise terminates the 
order.

When the price sensitivity parameter β increases, the optimal TP(T ∗, p∗, u∗), p* and 
Q* decreases while the optimal length of replenishment cycle T* increases. Thus, demand 
declines with a higher market price. To maintain this demand, we must reduce the opti-
mal selling price.

When increasing value of parameter γ, the total profit per unit time TP(T ∗, p∗, u∗) 
and the optimal selling price p*decrease marginally. Therefore, this parameter does not 
change the model output.

When the holding cost per unit time h increases, the optimal selling price p* increases, 
while the optimal order quantity Q*, the optimal replenishment cycle T*and the total 
profit TP(T ∗, p∗, u∗) decrease. The minimum holding cost leads to maximizing the total 
profit.

Example 2

In this example, the parameters are the same as those in example 1, except for the deteri-
oration rate θ. For the given value of θ(=0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 
0.1), we find the corresponding optimal value p*, Q*, T*and TP(T ∗, p∗, u∗). The computa-
tional results are shown in Table 2.

Discussions
When the deterioration rate increases and reaches a certain value, it is obvious that we 
will increase the preservation technology investment per unit time according to the 
deterioration rate. We observed from Table 2, that as the deterioration rate increases, 
the optimal replenishment cycle T* decreases; therefore, we must order in as small of 
lots as possible. Additionally, the optimal order quantity Q* will decrease because the 

Table 2  Sensitivity analysis with respect to θ

θ T P TP Q

0.01 0.712 12.6833 416.00 26.10

0.02 0.708 12.6879 416.20 26.00

0.03 0.701 12.6914 416.30 25.75

0.04 0.691 12.6945 416.33 25.50

0.05 0.682 12.6974 416.36 25.16

0.06 0.773 12.7002 415.38 24.87

0.07 0.664 12.7028 414.40 24.57

0.08 0.656 12.705 413.39 24.31

0.09 0.648 12.708 412.38 24.05

0.10 0.639 12.711 411.38 23.75
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goods will either deteriorate or sell out due to the successive deterioration rate with a 
lower selling price. After a certain point, as the deterioration rate increases, the total 
profit per unit time TP(T ∗, p∗, u∗) will decrease; this means that if the deterioration rate 
is relatively large, the enterprise will invest more funds in preservation technology to 
reduce it. As shown in Figs. 2 and 3, to maintain profits due to increasing deterioration, 
we must increase the selling price p. 

Conclusion
The concept of item preservation technology is developed for price-sensitive demand. 
This paper concludes that there is a unique optimal selling price, optimal length of 
replenishment cycle and optimal item preservation technology investment for obtain-
ing optimal profit. Numerical examples are provided to illustrate the proposed model. 
Sensitivity analysis is provided with respect to some key parameters to manage the sys-
tem. Ordering of small lots is advised for retailers to reduce deterioration. The incorpo-
ration of preservation technology investment may significantly reduce the deterioration. 

Fig. 2  The effect of θ on the selling price (p)

Fig. 3  The effect of θ on total profit (TP)
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Sensitivity analysis reveals that if initial demand increases or decreases, then we must 
adapt by ordering either more quantities per cycle or by reducing orders accordingly. 
Higher market price affects the market demands. We need to keep market demand pro-
gressive by reducing the selling price accordingly. Moreover, to maximize the model out-
put, we need to keep the numerical value for parameter γ as low as possible. There is a 
need for balance between holding costs and preservation technology investment costs in 
order to obtain maximum profit.

One can extend this model for stochastic demand and variable holding costs. The 
proposed model can also be designed in a fuzzy environment. The theory can also be 
applied to growing and deckling markets separately with variable deterioration rates.
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