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Single-cell RNA sequencing
reveals the role of immune-
related autophagy in spinal
cord injury in rats
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Shuang Li1, Qiong Ma1* and Bo Liao1*

1Department of Orthopaedics, The Second Affiliated Hospital of Air Force Military Medical
University, Xi’an, China, 2Department of Orthopaedics, The First Affiliated Hospital of Harbin
Medical University, Harbin, China, 3Department of Pathology, Zhongshan Hospital, Fudan University,
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Spinal cord injury refers to damage to the spinal cord due to trauma, disease, or

degeneration; and the number of new cases is increasing yearly. Significant

cellular changes are known to occur in the area of spinal cord injury. However,

changes in cellular composition, trajectory of cell development, and

intercellular communication in the injured area remain unclear. Here, we

used single-cell RNA sequencing to evaluate almost all the cell types that

constitute the site of spinal cord injury in rats. In addition tomapping the cells of

the injured area, we screened the expression of immune autophagy-related

factors in cells and identified signaling pathways by the measuring the

expression of the receptor−ligand pairs to regulate specific cell interactions

during autophagy after spinal cord injury. Our data set is a valuable resource

that provides new insights into the pathobiology of spinal cord injury and other

traumatic diseases of the central nervous system.
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Introduction

Spinal cord injury (SCI) refers to damage to the spinal cord due to trauma, disease, or

degeneration with no cure at present (1). Based on data from the National Spinal Cord

Injury Statistical Center (NSCISC, USA), the number of new SCI cases increased from

12,000 in 2012 (2) to 17,810 in 2021 (3). However, available treatments for SCI remain

limited and unsatisfactory (4). The main reason for this lies in the unique

pathophysiological mechanism of SCI (5), and SCI activates multiple processes that
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occur in the manner in which the degree of injury is defined. A

previous study (6) indicated that a range of pathological

processes and destruction of the spinal cord structure, occur

after SCI, which can lead to edema, inflammation, cell death,

demyelination, and remyelination. The pathology of different

disease models for SCI is driven by different cell types

throughout the spinal cord (7), including microglia,

macrophages, and immune cells. Microglia help to maintain

local homeostasis (8), and are immediately activated together

with macrophages to generate innate immune responses (9). The

role and significance of many pathophysiological mechanisms

related to SCI have been widely studied from different studied,

including autophagy (10, 11), apoptosis (10, 12), pyroptosis (13)

and ferroptosis (14). However, the role played by changes in

local cellular composition, trajectory of cell development, and

intercellular communication at the single-cell level

remain unclear.

Emerging technologies have been used to carry out

comprehensive personalized analysis of samples with SCI at

the genome (15), immunome (16), proteome (17), metabolome

(18), and microbiome levels (19). However, differences between

single cells can also have profound functional effects. Single-cell

RNA sequencing (scRNA-seq) reveals further biological

functions by analyzing the transcriptome range of single-cells

(20, 21), and allows for unbiased analysis of cell population

profiles within injured tissues. Previous studies have analyzed

cell-level differences at different times after SCI occurrence in

mice (22), and the role of microglia in immune system processes

in (23). However, the mechanism underlying immune-

associated autophagy in SCI remains unclear. Rats are not

simply ‘big mice’; although they are similar in many ways,

there are fundamental differences, especially in neuroscience

and behavioral research (24). Similarly, rats are preferable to

mice for modeling human SCI (25). To our knowledge, this is the

first study to performed scRNA-seq analysis of SCI in rats.

The data set created in this study comprises scRNA-seq

analysis of all cell types involved in SCI. We constructed the cell

map and described the cell heterogeneity of different degrees of

SCI; identified the subsets of immune cells, macrophages/

microglia, and T cells in different SCI states; and explored the

possible relationship between different cells and the role of

autophagy in SCI. This high-throughput, multiangle study of

SCI could provide novel, comprehensive, and exciting insights

into SCI for the development of precise treatment.
Materials and methods

Animals

For sequencing and histological validation of tip cells, female

Wistar rats [SPF Biotechnology Co., Ltd., Beijing, China;
Frontiers in Immunology 02
certificate no. SCXK (Jing) 2019-0010] were reared in the

Orthopedic Laboratory of the Second Affiliated Hospital of Air

Force Military Medical University [certificate no. SCXK

(Shaanxi) 2020-007]. The feeding conditions were as

previously described (26). All experimental procedures were

approved by the Animal and Ethics Committee of the

Experimental Animal Center of Air Force Medical University

(No. IACUC-20201003).
SCI surgical procedures

All animals were randomly divided into the following

groups. The randomization method has been previously

described (26) and is detailed in the Supplementary Information.
ScRNA-seq combined with bulk RNA
sequencing

Spinal cord tissue was collected, and an RNA-seq data set

(GSE115067) (27) was obtained for quality control,

normalization and data integration, cell clustering, and cell

type identification. We performed the following analyses:

single-cell subgroup; quasi-sequential; enrichment; gene set

variation; intercellular communication; cell score and Regulon

regulation based on immune-related autophagy factors (IRAFs);

and estimation of the fraction of immune cell types. The

methods are detailed in the Supplementary Information.
Quantitative polymerase chain reaction

Total RNA from the spinal cord was extracted using the M5

HiPer Universal RNA Mini Kit (Mei5bio, Beijing, China)

following the manufacturer’s instructions, as detailed in the

Supplementary Information.
Transmission electron microscopy

Autophagy activation was determined by transmission

electron microscopy (TEM) analysis of autophagy-related

vesicles as detailed in the Supplementary Information.
Immunostaining

Immunofluorescence staining has been described in detailed

in previous studies (26). Details regarding the antibodies,

staining conditions and scoring methods are provided in the

Supplementary Information.
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Statistical analysis

Data are presented as mean ± standard error of the mean.

Student’s t-test was used to compare two groups. One-way

ANOVA was used to compare more than two groups.

Correlation analysis was used to determine the relationships

between independent variables. Statistical significance was set at

P < 0.05.
Results

ScRNA-seq revealed a high degree of
cellular heterogeneity in SCI cells

We sequenced eight spinal cord with different degrees of SCI

in rats were sequenced by single cell RNA. Approximately

56,287 cells were obtained after filtration according to the

quality control standards (Figure 1A) (Supplementary Figure

S1). After logarithmic standardization, the top 4,000

hypervariable genes were extracted for principle component

analysis (PCA) dimensionality reduction. After normalizing of

the data, we used the first 15 principal components to cluster the

cells with similar gene expression profiles. t-SNE dimensionality

reduction was used to visualize 22 independent clusters

(Figure 1B). Using rat and mouse homologous genes, we

identified the cell type of each cluster via the mouse

transcriptome sequencing data set in SingleR (Figure 1C), and

the bubble chart shows the expression of marker genes in each

cell cluster (Figure 1D). Finally, ten cell types were identified:

macrophages/microglia, neutrophils, oligodendrocytes,

monocytes, T cells/NK cells, fibroblasts, astrocytes,

erythrocytes, B cells, and endothelial cells (Figure 1E)

(Supplementary Table S1). A total of 29,197 cells in clusters 0,

1, 2, 6, 8, 9, and 21 were annotated as macrophages/microglia,

accounting for 51.872% of all cells analyzed. Additionally, we

annotated the clusters: 3, 4, and 20 are annotated as neutrophils

(10037, 17.832%); 5, 7, and 16 as oligodendrocytes (7636,

13.566%); 10 and 14 as monocytes (2731, 4.852%); 11 as T/NK

cells (1733, 3.079%); 12 as fibroblasts (1388, 2.466%); 13

astrocytes (1191, 2.116%). 18 and Cluster 19 as endothelial

cells (1010, 1.794%); 15 as red blood cells (809, 1.437%) and

17 as B cells (555, 0.986%). The most highly expressed

differential gene of each cell type was visualized using a violin

map (Figure 1F).
Characterization of IRAFs specificity

We conducted further cluster analyses of macrophages/

microglia, monocytes, neutrophils, T_NK cells and B cells to
Frontiers in Immunology 03
further understand the heterogeneity of immune cell

populations. A total of 22 independent clusters were obtained

using the same analysis method (Figure 2A), and the differences

between cell clusters were analyzed (Figure 2B). Next, we

evaluated autophagy in different groups of spinal cord tissues

using TEM and confirmed that autophagy was activated in the

spinal cord tissue (Figure 2C).

A total of 123 immune-related differential genes were

screened by differential analysis of immune cell subsets, and

the top16 were visualized using a violin graph (Supplementary

Figure S2). Eight IRAFs (Hdac1, Cxcr4, Ctsb, Birc5, Hspa5,

Hspa8, Vegfa and Eif2ak2) were obtained of autophagy-related

homologous genes (Figure 2D). The pseudo-sequence diagram is

colored based on two aspects: the pseudo-time process and the

stage of the cell population (Supplementary Figure S3).

To further clarify the expression of the eight IRAFs in

different tissues, we conducted qPCR analyses. We found that

different degrees of SCI differentially activated certain IRAFs

(P < 0.05). Notably, Hdac1 was significantly upregulated in the

moderate group compared to the uninjured group (P < 0.05),

and Vegfa was significantly upregulated in the severe group

compared to the uninjured group (P < 0.05). However, in both

the mild and moderate groups, the expression of Hspa8 was

lower than that in the uninjured group (P < 0.001) (Figure 2E).

We used SCENIC software to identify the co-expression module

(regulon) between the transcription factors and the potential

target gene (regulon) and the regulon activity score of each cell

(regulon activity score, RAS). Regulons related to Tfeb, Usf2 and

Spil had relatively high RAS activity in cluster 0, 1, 2, and 6,

which were recognized as macrophages/microg l ia

(Supplementary Figure S4). This result suggests that IRAFs are

involved in the pathophysiological responses induced by

different degrees of SCI.
Macrophage/microglia subsets show
tissue-specific patterns

Macrophages/microglia are particularly important in the

process of inflammation. Therefore, we carried out further

subgroup analysis of this cell group and obtained a total of 13

independent clusters using the same analysis method (Figure 3A).

Differences between cell clusters were then analyzed (Figure 3B). By

labeling microglia with Cd68, we found that the expression of Lc3b

in microglia increased with injury severity (P < 0.05)

(Supplementary Figure S5). To determine the expression of

IRAFs in microglial subsets, we also observed the expression of

IRAFs among subpopulations in spinal cord tissue subpopulations

with different degrees of SCI using violin map. We found that Ctsb,

Hspa5 and Hspa8 were expressed in almost all subgroups, while

Eif2ak2 was expressed the least (Figure 3C).
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T-cell subsets show tissue-specific
patterns

We analyzed T cell subsets and obtained six independent

clusters to better understand the heterogeneity of T cells

(Figure 4A). Among them, Among them, an expression gene
Frontiers in Immunology 04
was shared by clusters 0 and 2, and another by clusters 1 and 3,

indicating two independent subgroups (Figure 4B). We used

thermography to measure the expression of IRAFs in all T cells

of spinal cord tissue with different degrees of SCI. We found that

the expression of Hspa8 was the highest among the IRAFs and

was expressed in almost all subsets (Figure 4C).
A

B

D
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C

FIGURE 1

Single-cell data set with reduced dimension clustering and cell type identification. (A) Graphical representation of the experimental workflow.
(B) Cluster analysis of cell groups was carried out, and t-distributed stochastic neighbor embedding (t-SNE) distribution showing cluster analysis
groupings. (C) Heat map showing cell clusters annotated using SingleR. (D) Bubble chart shows the expression of marker genes in each cell
cluster. The circle size represents the proportion of gene expression in the cell cluster. Color intensity represents average gene expression. (E) t-
SNE distribution of different cell types. (F) Relative marker gene expression among different cell types. The most highly expressed genes in each
cell type is displayed. The abscissa represents the cell type, and the ordinate indicates the expression level.
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Intercellular communication in a single-
cell group

To further understand the communication relationship

between cells, we used CellChat to analyze the intercellular

receptor−ligand pairs and molecular interactions between the

two cell types. CellChat analysis of ten cell states showed that

macrophages/microglia were the dominant communication
Frontiers in Immunology 05
centers, and 58 pairs (ligand cells) and 96 pairs (receptor cells)

were involved in cell interactions. The most obvious interaction

with fibroblasts was 15 ligand−receptor pairs in ligand cells, and

the most obvious interaction with fibroblasts (19 pairs) and

endothelial cells (19 pairs) was observed in receptor cells

(Figure 5A). The strength of interaction signal strength is

shown by a heatmap (Figure 5B). We focused on the immune

cell group, so we used a dot diagram to show the ligand−receptor
A

B

D

E

C

FIGURE 2

Immunocyte subgroup analysis and pseudosequential analysis. (A) t-distributed stochastic neighbor embedding (t-SNE) distribution of different
cell clusters. (B) Bubble diagram showing the differentially expressed genes among different clusters and display the two most highly expressed
genes of each cluster by bubble diagram. (C) Electron transmission microscopy of spinal cord tissue. Magnification, 5000X. Scale bars, 1 mm.
White arrows indicate autophagosomes and black arrows indicate mitochondria. (D) Venn diagram of immune-related autophagic factors.
(E) Effect of changes in mRNA expression of IRAFs Hdac1, Cxcr4, Ctsb, Birc5, Hspa5, Hspa8, Vegfa, and Eif2ak2 (real-time qPCR) in the injured
rat spinal cords. The mRNA expression levels were calculated using the 2-DDCt analysis method. *P < 0.05, **P < 0.01, ***P < 0.001, vs. the
control group. Data are expressed as the mean ± SD (n = 3; one-way analysis of variance and Tukey’s post-hoc test). The experiment was
repeated in triplicate. ****P<0.0001.
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pairs of intercellular communication among immune cells.

Previous studies have shown that SCI leads to the

accumulation of inflammatory cytokines in the injured areas,

but in which cells it is not clear. The chemokine family can be

subdivided into CXC and CC chemokine ligands (CXCL, CCL)

(28). In the inflammatory response, the CCL family is mostly

involved in monocyte recruitment, while the CXC family is

mostly involved in neutrophil recruitment (29). Our results also

confirm this point of view. The bubble chart shows that Cxcl3-

Cxcr2 and Cxcl2-Cxcr2 may be autocrine from neutrophils, and

Ccl5-Ccr5, Ccl4-Ccr5 and Ccl3-Ccr5 may be paracrine from

macrophages/microglia (Figure 5C).
IRAFs activation network of SCI

To identify significant enrichment of biological processes, we

used clusterProfiler (30, 31) to conduct the GO/KEGG

enrichment analysis of the IRAFs to identify the significantly

enriched biological processes. The first ten terms of the three

major functional categories were selected for visualization with a

column chart. IRAFs were significantly enriched in cell response
Frontiers in Immunology 06
to drugs and positive regulation of cell migration and other

biological processes. The main cellular components involved are

the cell surface, lysosome and perinuclear region of the

cytoplasm. The main molecular function was enzyme binding

(Figure 6A). Similarly, the significance threshold of KEGG

enrichment analysis was set to p < 0.05. It was arranged in

ascending order according to the P value, and the first 30

pathways are shown in the bubble chart, which are enriched in

the pathways related to MAPK, Notching and apoptosis

(Figure 6B). Gene set variation analysis results also showed

that injury activated the MAPK and Notching signaling

pathway (Supplementary Figure S6).
Study of the IRAFs expression pattern
and immune cell distribution

To study the expression of IRAFs at the tissue level in SCI,

we analyzed the similarities and differences between samples and

groups using GSE115067 and PCA of transcriptome sequencing

data sets (Figure 7A). The differences between the two

comparison groups were analyzed by calling the DESeq2
A B

C

FIGURE 3

Macrophage/microglia subset analysis and pseudosequential analysis. (A) t-distributed stochastic neighbor embedding (t-SNE) distribution of
different cell clusters. (B) Heat map showing the differential genes among each cluster, displaying the two most highly expressed genes of each
cluster. (C) Violin map showing the expression pattern of IRAFs in macrophage/microglia subsets.
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package: 100 kdyn percussion SCI disease group and uninjured

group (SCI100-vs-Uninjured), 200 kdyn impact SCI disease

group and uninjured group (SCI200-vs-Uninjured). We set the

significant differential gene screening threshold FoldChange to

1with a P < 0.05 and found that 4350 and 6429 genes were

differentially expressed between the SCI100-vs-Uninjured and

SCI200-vs-Uninjured, respectively. Volcano plots were used to

display IRAFs (Figure 7B, C).

We first replaced the homologous genes of rats and mice,

used a mouse immune cell matrix, and calculated the type and

distribution of immune cells in RNA-seq data using the

CIBERSORT algorithm.

Immune cells types with zero abundance in more than half

of the samples were excluded, and Pearson correlation heatmaps

among 13 expressed immune cell types were constructed

(Figure 7E). We found a correlation between immune cells, a

positive correlation between neutrophil cells and NK cells (r =

0.86), and a negative correlation between M0 Macrophages and

M2 Macrophages (r = 0.73), M0 Macrophages and Monocytes

(r = 0.72). A column chart was used to show the predicted results

of the cell proportion (Figure 7D). For IRAFs, we also calculated

the Pearson correlation between the expression of each gene and
Frontiers in Immunology 07
the score of immune cells, and drew the correlation coefficient

lollipop map. Among them, M0 Macrophages were positively

correlated with Ctsb (R = 0.71, p = 0.0028), Hspa8 (R = 0.76, p =

0.0011), and Hspa5 (R = 0.71, p = 0.0028). M2 Macrophages

were positively correlated with Vegfa (R = 0.60, p = 0.019) and

negatively correlated with Hspa8 (R = -0.62, p =

0.014) (Figure 7F).
Discussion

SCI leads to the activation multiple biological processes that

vary based on the cause, location, and severity of injury. Chance

of survival and neural function, recovery, and motor ability vary

based on the nature of the SCI (32). Additionally, cell activity is

expected to change with stimulation (33). Based on the findings

of our previous studies (26), different degrees of SCI have a

different biological processes, and a significant positively and

linearly correlation with the percentage of histological damage

area and negatively significantly linearly correlation with the

behavioral score, NeuN cell count, and spinal motor and sensory

evoked potentials. Therefore, it is important to systematically
A B

C

FIGURE 4

T-cell subset analysis and pseudosequential analysis. (A) t-distributed stochastic neighbor embedding (t-SNE) distribution of different cell
clusters. (B) Heat map showing the differential genes among each cluster, displaying the two most highly expressed genes of each cluster.
(C) Feature plot showing the expression pattern of IRAFs in T cell subsets.
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characterize the cell lineage within each degree of SCI at the

single-cell level. Autophagy (“self-eating”) is a process by which

parts of the cell are transported to the lysosomal chamber for

degradation and recycling (34, 35). Autophagy participates in a

variety of biological activities, and functions in maintaining cell

homeostasis (36). Studies have shown that autophagy is essential

for the homeostasis of the central and peripheral nervous

systems (37, 38). However, the exact molecular mechanism of

autophagy in SCI at the single-cell level remains unclear. In this

study, we constructed a single-cell map for different degrees of

SCI for the first time in rats, screened eight related autophagy-

immune related molecules, described the complex changes of
Frontiers in Immunology 08
cellular components at the site of SCI and confirmed the nature

of cell−cell interactions.

SCI destroys the vascular system of the local spinal cord,

resulting in hematoma, vasoconstriction, hypoperfusion, and

ischemia (39). This can result in an imbalance in cell ion

homeostasis and lead to further cell injury. Subsequently, the

infiltration of peripheral inflammatory cells and the release of

reactive oxygen species further aggravates the damage (4, 40).

SCI activates reactive astrocyte proliferation (41), which gather

at the injured site to form a fibrotic scar boundary and prevents

axonal regeneration (42, 43). Macrophages can promote tissue

repair by regulating the transformation at different stages of
A

B

C

FIGURE 5

Intercellular communication analysis. (A) Quantitative network diagram in which the nodes represent different cell types, the arrows indicate the
interaction signals from the ligand cell to the recipient cell, and the thickness of the line thickness indicates the number of significant ligand
−receptor interaction pairs detected between different cell types. (B) Heatmap showing intercellular interaction intensity. The redder the color,
the higher the proportion of interaction between ligand−receptor pairs. (C) The ligand−receptor pairs involved in intercellular communication
between immune cells. The column represents the cell type of cellular communication (receptor cell ligand cell), the circle size indicates the
significance level, and intensity of red color is directly proportional to the probability of communication between the interacting cells.
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wound healing. Neonatal microglia and treated adult microglia

can significantly improve healing and axonal regeneration (44).

We captured a total of 56,287 cells, of which 1,191 (2.116%) were

annotated as astrocytes and 29,197 (51.872%) were annotated as

macrophages/microglia. This is basically consistent with the

proportion of microglia reported previous (22). Differences

between the groups of these cells may lead to different

pathophysiological states.

Axonal regeneration of the injured central nervous system

after injury is affected by immune cells (43). Cellular activity can

be characterized by molecular and their interactions within the

cells, so is similar to the process of signal transmission (45).

Autophagy participates in intercellular communication,

mediates the secretion of nonclassical proteins (46), and

regulates the function of immune cell function (47). Immune

response is a dynamic process involving active cells (48). We

focused on immune-related and autophagy-related genes, and
Frontiers in Immunology 09
finally obtained eight IRAFs: Hdac1, Cxcr4, Ctsb, Birc5, Hspa5,

Hspa8, Vegfa, and Eif2ak2. Cathepsin B (Ctsb) can be released

from damaged lysosomes (49) and directly participate in the

implementation of autophagy (50). Dysfunctional Ctsb genes

can induce cell death (51). Macrophages play an important role

in many inflammatory diseases. Ctsb expression in macrophages

is involved in joint destruction and bone injury (52). Ctsb

released by infiltrating macrophages promotes fibroblast

activation and subsequent collagen deposition (53). Similarly, a

link has been found between CTSB and the microglia of

Alzheimer’s disease and amyotrophic lateral sclerosis in mice

(54). However, until now the role of CTSB expression in SCI has

been unclear. Using single-cell sequencing, we observed a

significant increase in the expression of Ctsb in macrophage/

microglia induced by SCI, which may be related to the activation

of autophagy. Therefore, inhibition of Ctsb expression may be a

potential therapeutic strategy for the treatment of SCI.
A

B

FIGURE 6

Gene ontology/Kyoto Encyclopedia of Genes and Genomes (GO/KEGG) enrichment results. (A) Bar graphs showing GO on BP (Biological
Process), MF (Molecular Function) and CC (Cellular Component) levels. (B) Bubble diagram showing the enrichment results of KEGG analysis.
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Cell surface receptors activate the mitogen-activated protein

kinase (MAPK) cascade, which consists of a three-tiered module of

MAPKKK, MAPKK and MAPK (55). At present, the role of the

complex MAPK signaling pathway in the regulation of autophagy

after SCI has not been fully described, and describing the signal

cascade of autophagy and its mechanism will therefore be highly

beneficial to the treatment and prevention of SCI. In eukaryotic

signal transduction, many MAPK pathways are intertwined with

autophagy, including the MAPK/ERK, MAPK/JNK and MAPK/
Frontiers in Immunology 10
p38 pathways (56). MAPK/ERK activity plays an active role in

autophagy (57), which is stimulated by direct interaction with

autophagy-related proteins (58). Studies have shown that

autophagy and fibrosis induced by transforming growth factor b1
are reduced after inhibition of the ERK and JNK signaling pathways

(59). The p38MAPK pathway is the most important member of the

MAPK family in the regulation of inflammation. JNK and

p38MAPK are involved in mediating the responses of various

extracellular stress stimuli and proinflammatory cytokines (60),
A B

D E

F

C

FIGURE 7

Difference analysis and immune cell prediction of RNAseq data. (A) principle component analysis map of the GSE115067 dataset. (B) Volcanic
map of differences between groups, in which the differential expression of IRAFs is marked; SCI100-vs- Uninjured. (C) SCI200-vs-Uninjured. (D)
Accumulation map of immune cell type score. (E) Correlation heat map of immune cells, where red represents positive correlation, blue
represents negative correlation, and white represents no correlation. Darker red or blue color represents a stronger correlation. (F) Visualization
of the correlation between IRAF expression and immune cells.
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such as CCL3-CCR1 and 5, CCL4-CCR1 and 5 and CCL5-CCR1,3

and 5 in macrophages (61), and CXCL2-CXCR2 in neutrophil (62).

Interestingly, our results also show that he elevated expression of

CCL3,4-CCR5 in macrophages/microglia, CCL5-CCR5 in cells/NK

cells, and CXCL2-CXCR2 in neutrophils. In summary, our results

reveal the role of immune-related autophagy in SCI, and we

identified chemokines corresponding to different cells local to SCI.

In this study, we described the expression of autophagy-

related genes at the single-cell level at the site of SCI in rats and

discussed the potential mechanisms. However, owing to the

limitations of single-cell sequencing, such as the inability to

accurately describe low-expression genes, large sample sizes are

required for reliable analysis. Additionally, owing to the lack of

corresponding clinical specimen research, it cannot be analyzed

in combination with clinical information. We may conduct

future research in this direction using multigroup science and

space transcriptome technology.

In summary, our scRNA-seq dataset is the first full

transcriptional analysis of SCI in rats, and it encompasses

almost all the cells in the region of SCI. Through this dataset,

we not only evaluated the heterogeneity of the cells that make up

the injured site, but also screened the signal pathways in which

IRAFs interact with each other at the injured site. Our analysis

revealed new insights into the effect of immune cells on cellular

heterogeneity, and the role of specific signaling pathways in

autophagy in injured tissues. These results can help decipher the

pathophysiological basis of SCI, which is difficult to treat.
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