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Abstract: Artemisinin is a natural sesquiterpene lactone obtained from the Artemisia annua herb.
It is widely used for the treatment of malaria. In this article, we have reviewed the role of artemisinin
in controlling malaria, spread of resistance to artemisinin and the different methods used for its large
scale production. The highest amount of artemisinin gene expression in tobacco leaf chloroplast
leads to the production of 0.8 mg/g of the dry weight of the plant. This will revolutionize the
treatment and control of malaria in third world countries. Furthermore, the generations of novel
derivatives of artemisinin- and trioxane ring structure-inspired compounds are important for the
treatment of malaria caused by resistant plasmodial species. Synthetic endoperoxide-like artefenomel
and its derivatives are crucial for the control of malaria and such synthetic compounds should be
further explored.
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1. Introduction and Background

Malaria is one of the devastating diseases affecting millions of people across Asia and Africa each
year. It is caused by the protozoan Plasmodium and the vector is the Anopheles mosquito. The mortality
rate from malaria was reduced and a great success was achieved, however due to the lack of funds,
malaria is on the rise again as reported by the World Health Organization [1]. There were approximately
five million more cases of malaria in 2016 than the year before and the 40% reduction in malaria target
set for the year 2020 is difficult to be achieved [1]. If this lack of funding for malaria control continues
in the coming years then the sustainable development goals (SDGs) set for 2030 will be just a dream [2].
The world health organization reported that approximately 445,000 deaths occurred due to malaria
in 2016, like the previous year [1,3]. The main controlling agents for malaria are, sleeping inside
nets, spraying insecticides on the house walls and the use of artemisinin-based combination therapies
(ACTs) as antimalarial agents [1]. Furthermore, in Southeast Asia a new species of Plasmodium called
Plasmodium knowlesi has emerged that is mostly misdiagnosed and its malarial death toll is increasing
day by day [4]. The death toll is about one million every year from malaria in children under the age
of five in African countries [5]. On a global scale, it is a big challenge that malaria can be eliminated
completely and in a majority of countries implementation of strategies for elimination of malaria has
been started [6], while it is also a fact that the present available drugs are not sufficient to eliminate
malaria completely [7]. There is a need for safe single dose therapies that are also suitable for mass
drug administration to asymptomatic carriers and capable of blocking malaria transmission through
the Anopheles mosquito vector. In addition, chemoprophylaxis prevention requires drugs that are able
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to eliminate the liver stage forms of the parasite (especially for Plasmodium vivax). The emerging threat
of resistance to artemisinin drugs forced philanthropic organizations like Welcome Trust of England,
Bill and Melinda Gates foundation, as well as the establishment of public private partnerships to
take concrete steps for discovery and development of novel antimalarial drugs [8–11]. Biomedical
research work in different laboratories is underway to discover and develop such drugs which
are more efficacious against malaria. These drugs will target multiple stages of the life cycle of the
plasmodium, help in prevention, provide immediate cure and thus block its transmission [12]. The four
species of protozoan parasites of plasmodium mainly causing malaria include Plasmodium falciparum,
P. vivax, P. malariae, and P. ovale, while the transmission is carried out by over 70 species of Anopheles
mosquitoes [13,14]. The P. falciparum and P. vivax are the most prominent species among all that cause
malaria. About 90% of deaths due to malaria that are reported from Africa and Asia are due to P. vivax.
Similarly, P. vivax is also responsible for malaria in the Middle East, western Pacific and in central and
south America, however P. vivax is less lethal than the P. falciparum [15]. Majority of the malarial cases
and deaths are associated with the P. falciparum. The growing resistance to chloroquine and limited
use of artemisinin analogs are responsible for the dire need of discovery of novel antimalarial agents.
All the processes of malaria, including life cycle, immunological defense mechanisms, and the clinical
development of malaria are complex in nature. Periodic fever is related to clinical malaria and after the
breakage of the infected erythrocytes that occur due to the induction of the cytokines interleukin-1 and
tumor necrosis factor. Malaria caused by P. falciparum can have devastating effects, like anemia, cerebral
complications (from coma to convulsions), hypoglycemia and glomerulo-nephritis, and it is more
serious in non-immune people including children, tourists and pregnant women. For such a serious
disease, there are few remedies in the form of herbs that contain important chemical compounds and
since ancient times these medicinal plants like Cinchona succiruba and others are used for the treatment
of malaria [16–20]. The current available effective therapies for malaria include the combination of
artemisinin with other drugs. Artemisinin is the sesquiterpene alkaloid present in the aerial parts of
the Asian plant of Artemisia annua L [21]. Artemisia annua herb commonly called “sweet wormwood”
belongs to the Asteraceae family [22]. It was initially isolated by the Chinese scientist Tu Youyou in
1972 from Artemisia herb and used as an antimalarial drug against Plasmodium [22]. For this discovery,
Tu Youyou got the 2015 Nobel Prize in Physiology or Medicine [23,24]. Artemisinin can be used as an
antimalarial, anticancer and anti-inflammatory agent [25–28]. The artemisinin and its derivatives also
possesses anthelmintic, fungicidal and antiviral properties [29].

In the last ten years, the worldwide use of the Artemisinin-based combination therapies (ACTs)
resulted in the reduction of global malaria morbidity and mortality. The WHO recommended the ACTs
as a choice for the treatment of the severe and uncomplicated P. falciparum malaria in all areas where
malaria is endemic [3,30], and they have been adopted as first-line therapy in many countries. Around
409 million ACT treatments were done in 2016 [1]. The following drugs are included in the artemisinin
group: artesunate, artemether, and dihydroartemisinin are the most common, and these drugs have
significant antimalarial activity and have the least side effects in patients (Figure 1). One issue is
with the half-life of artemisinin; it has short half-life (<1 h) and about 7–10 days are required to
achieve the high rate cure when it is used in its own way and has impact on adherence. It is the
main reason to use the artemisinin in combination with long-acting partner drugs like lumefantrine,
amodiaquine and piperaquine. As result of this combination, a cure can be achieved within three days
of treatment, while the combination of artemisinin and lumefantrine is used throughout the world
and is very effective [31]. For the treatment of malaria, especially among children, it is used in the
combination form of Artesunate–amodiaquine (AS–AQ), but unfortunately, the early signs of resistance
were observed in South East Asia which is alarming for the achievements gained in the control of
malaria [32,33]. It has been observed that artemisinin resistance is mainly related with mutations in the
kelch13 gene [32,34,35], and the detection of this genetic marker will greatly enhance possible resistance
surveillance [36,37]. Emerging resistance was initially identified as delayed parasite clearance rates
following treatment with artemisinin-based therapies. Confirmed partial artemisinin resistance is
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now defined by the WHO as ≥5% of patients carrying K13 resistance-associated mutations, all of
whom have been found, after treatment with ACT or artesunate monotherapy, to have either persistent
parasitemia by microscopy on day three, or a parasite clearance half-life of ≥5 h [38,39]. Reflecting the
importance of this issue, the WHO launched its Global Plan on Artemisinin Resistance Containment in
2011 with a specific emergency response to artemisinin resistance in the Greater Mekong sub-region in
2013 [40–43]. In addition, there are reports of reduced clinical efficacy of ACT therapy after 28 days of
follow-up in some settings [38,39]. It is important to determine the extent to which this reduced efficacy
reflects true resistance versus sub-optimal dosing, or other factors. The development of widespread
resistance has limited the utility of numerous other antimalarials that were previously widely used,
such as chloroquine and sulfadoxine–pyrimethamine, providing a sobering reminder of the potential
impact of evolving resistance to drugs in current use [40]. With no new drugs immediately available
to replace artemisinins, it is essential to optimize and define dosing strategies to ensure maximum
therapeutic efficacy of ACTs, limit the spread of resistance and extend the clinical life of ACTs [44–47].
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2. Increased Production of Artemisinin and Its Analogues

Cost and poverty burden is a big hurdle in controlling malaria, as artemisinin-based combination
therapies (ACTs) are expensive. The content of artemisinin in its aerial parts is 0.01–1.2% while the
annual world demand is around 119 metric tons (MT) [48] and it is not sufficient to fulfill the demand
while total synthesis of artemisinin is too costly. Different approaches are used to get high content
of artemisinin. The content of artemisinin in the A. annua plant was increased through metabolic
engineering. In this regard, two different approaches are used; one is to overexpress the enzyme
genes involved in the biosynthetic pathway of artemisinin, and the second is to block enzyme genes
that are in competition with the artemisinin pathway from expression [49]. A number of studies
have been done to elaborate the biosynthetic pathway of artemisinin and its expression in different
laboratory subjects like E. coli and Baker’s yeast. In one strategy, yeast is exploited for the production
of artimisinic acid by expression of the biosynthetic pathway of artemisinin [50–52]. This semisynthetic
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method is also expensive because of the cost of growth media and maintenance of yeast culture in
bioreactors [52].

Paddon et al. developed a genetically modified strain of Saccharomyces cerevisiae by expressing the
artemisinin pathway genes in this yeast [51]. The artemisinin production rate achieved was around
25 g/L of the fermentation media. However, there are a number of disadvantages; these include the
costly media, isolation and purification of artemisinin from the fermenting media, etc. [51]. The efforts
for increasing either artemisinin or its precursor production in yeast is still ongoing using different
synthetic biological approaches [53]. In Brazil, where the production of sugar cane is high, it has
been used for the production of semisynthetic artemisinin through yeast fermentation [54]. Initially,
the fermentation of sugar cane juice is used for the production of β-farnesene, which is a sesquiterpene
alkene [54]. The β-farnesene can then be chemically converted into artemisinin [54]. Thus, through
this method of large scale production, the cost of artemisinin production can be lowered.

The use of transgenic tobacco plants for the production was initially tested by Zhang et al.
who showed that the plant produces artemisinic alcohol, dihydroartemisinic alcohol and
amorphadienes along with other related compounds. The transgenic tobacco plant produced the
reduced form of the final product instead of the oxidized form [55]. These initial results showed that
the tobacco plant can be modified to produce artemisinin. Farhi et al. took the same task and they
expressed all the genes of the artemisinin and mevlonate pathway in tobacco plants using a single
vector [56]. Although the production level of artemisinin was very low due to the production of side
products, this paved the way for the use of tobacco for the production of this essential antimalarial
drug [56].

A new synthetic biology approach was used by Bock and coworkers at the Max–Planck
Institute, Germany, who were successful in expressing the whole enzymes of the artemisinin
biosynthetic pathway inside the chloroplast of tobacco plants (Figure 2) [57]. They introduced the
artemisinin full biosynthesis pathway genes into the chloroplast at once through their combinatorial
supertransformation of transplastomic recipient lines (COSTREL) method [57]. The chloroplast is
suitable for expression of foreign genes because the expression of genes is easy, foreign genes are
easily accommodated due to the homologous recombination when foreign genes are transferred.
They also introduced some accessory genes into the nucleus of the tobacco plant, however, their exact
function is not known, but it is suggested that they are essential for the regulation of the artemisinin
biosynthesis pathway. After transplastomy, the plant species were grown on spectinomycin so that they
become homoplasmic (all plastid DNA copies contain the artemisinin biosynthesis genes). The plants
developed the Nt-AO3-1 phenotype in which the artemisinic acid accumulates throughout the life
span of the leaf. This phenotype was further improved to accumulate around 120.4 ± 42 mg per kg of
fresh weight (FW) and was named Nt-AO3-CS180. The correlation studies of various transplastomic
lines showed that the presence of the genes for the two enzymes, aldehyde dehydrogenase (ALDH1)
and 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) are responsible for the high artemisinin
content in phenotypes. The higher the expression of these two genes, the higher the content of
artimisinic acid. There is no toxic effect on the chloroplast of leaves and only a 13% decrease in biomass
was observed in the highest producing artemisinic acid phenotype plant lines as compared to wild type
plant. They chose chloroplast instead of cytosol for the expression of artemisinin genes. The reason
is that the chloroplast offers a better redox milieu for the quantitative conversion of artemisinic
alcohol to artemisinic acid. Tobacco plant has large green photosynthetic leaves and thus the level of
artemisinin produced will be in large amounts. The amount of artemisinin is high in photosynthetic
parts (chloroplasts) in the plant. Beside a number of advantages in expression of artemisinin synthesis
genes in tobacco, one disadvantage of tobacco is that of pest control and that it requires the use of costly
pesticides. Therefore, these tobacco lines should be crossed with those tobacco plants that are resistant
to pests, tall and produce many large leaves. The seeds of these tobacco plants should be shared
with countries like Pakistan, Australia, and Zimbabwe etc. where tobacco is grown in large amounts
and conditions are suitable for its growth. Pakistan’s north western regions like Swabi, Mardan and
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Charsada districts are particularly suitable for tobacco and their tobacco is exported to Europe and
America. For the last few years, the growth of tobacco was dwindling due to lower purchase prices
by multinational companies. Now, it is time again to expand the growth of tobacco. Thus, with low
cost treatment of artemisinin, the world will be able to control malaria. Now the artemisinin resistant
strains are also emerging rapidly [34,58] and therefore, a multidrug strategy should be used to control
malaria. For this purpose, novel analogues of artemisinin should be designed that should be given to
patients with other new drugs like ELQ-300 that can block the growth of the Plasmodium at different
stages of its lifecycle inside the human body [59–61]. This COSTREL method should be advanced
further in the future for development of other important medicinal alkaloids that are used for the
treatment of cancer and viral diseases, so that the plight of these diseases can be controlled through
the supply of cheap drugs for the poor population of the world.

Instead of just the chloroplast compartment of the transgenic tobacco plant, Malhotra et al.
targeted three compartments that include chloroplast, nucleus and mitochondria for the expression of
artemisinin pathway genes [62]. They developed a number of transgenic tobacco plants that produce
artemisinin [62]. The most highly artemisinin-producing plant has a capacity of approximately
0.8 mg/g of the dry weight of tobacco leaf [62]. This is the highest amount of artemisinin production
so far from transgenic plants. They also tested their tobacco plant leaves on mice infected with
plasmodium and the recovery from malaria was fast [62]. Thus, they concluded that utilizing
artemisinin in the encapsulated form inside the leaves will result in lowering the cost of its extraction
and purification [62]. It was also proposed that expressing the artemisinin in lettuce leaves and
its consumption in the raw form will further improve artemisinin production, its utilization and
controlling malaria [62].
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Figure 2. (A) Mature tobacco plants growing in the field of district Swabi, Pakistan; (B) The large size
leaves of tobacco are suitable for the mass scale production of artemisinin.

Another approach is to increase the artemisinin content by increasing the trichome density content
in the A. annua herb [63]. It has been observed that expressing the beta-glucosidase enzyme in A. annua
herb results in a five-fold increase in artemisinin production due to increase in the trichomes density
in leaves and flowers [63]. The metabolic pathway of artemisinin is quite interesting and it could
be diverted for the production of related secondary metabolites. For example, Czechowski et al.
found that introducing a mutation that inhibits the amorpha-4,11-diene C-12 oxidase (CYP71AV1)
enzyme, which is required in several oxidation steps of artemisinin [64] resulted in the production of a
sesquiterpene epoxide called arteannuin X and inhibition of artemisinin production (Figure 3) [64].
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The complex trichomes of Artemisia plant can be explored for more potential sesquiterpenes through
biochemical methods. It was also observed that when the A. annua is grown in vitro with beneficial
bacteria like Piriformospora indica (Pi) and Azotobacter chroococcum (Az), the growth of the plant
increases and the amount of artemisinin production doubles [65,66]. The boost in physiological
and biochemical processes of A. annua through symbiosis is also a useful method for increasing the
production of artemisinin.Molecules 2017, 22, 100 6 of 16 
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Singh et al. showed a novel method of artemisinin production from amorpha-4,11-diene
that can easily be commercialized due to its favorable route of synthesis [67]. In this method,
functionalization of the isopropenyl moiety of amorphadiene through endo-epoxyamorphadiene
produced dihydroartemisinic acid [67]. This pure dihydroartemisinic acid is esterified, oxidized
and its final cyclization resulted in artemisinin in high yields [67]. Some scientists have discovered
short routes for the biosynthesis of artemisinin. The amorphadiene synthase, which is an important
enzyme in the natural biosynthesis route of artemisinin [68], has the capability to transform oxygenated
farnesyl diphosphate moiety straight away into dihydroartemisinic aldehyde. This aldehyde form of
artemisinin can be converted into artemisinin in four simple steps into pure artemisinin, thus, making
artemisinin from simple, easily accessible natural compounds into pure artemisinin through few
simple steps is essential for the low-cost production of this important antimalarial drug. Gilmore and
co-workers have presented a scheme where artemisinic acid from A. annua and genetically modified
yeast can be converted into β-artemether, β-artemotil and artesunate (Figure 4) [69]. This whole
process is comprised of different modules or reaction steps including photooxidation/cyclization,
reduction, and derivatization and continuous purification [69]. The side products formed during
the production of artemisinin should also be converted into useful derivatives that have antimalarial
properties. Through such methods, the production of active ingredients from the Artemisia annua can
be increased.

Beside the tobacco plant, mosses could also be used for the production of artemisinin. In case of
mosses, Physcomitrella patens are used as hosts for the production of artemisinin and other valuable
natural products [70,71]. The advantages of P. patens are that, the rate of homologous recombination
is high; its genome is fully sequences and several in vivo studies for DNA fragments assembly have
already been performed [70,71]. It has been reported that P. patens produces three commercially
important sesquiterpenoids that include patchoulol, β-santalene, and sclareol in milligrams per gram
of their dry weight [72,73]. Recently, Ikram et al. introduced all the five important artemisinin pathway
genes into P. patens through multiple DNA fragment-based methodology [70,71]. This new transgenic
P. patens make approximately 0.21 mg/g of it dry weight of artemisinin [70,71]. The authors reported
that the intermediate competing pathways of other natural products are also absent in P. patens [70,71].
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The genetically engineered cyanobacteria and algae are also green factories for the production
of different biofuels, antibodies, nutraceuticals and other beneficial products [74–79]. The advantage
of growing cyanobacteria and algae is that it can be harvested in five to six days, they grow
phototrophically in water [74–76]. The cyanobacteria and algae cells also contain a large chloroplast
like a cell from the leaf of tobacco plant. Thus, growing them in large ponds for the production
of artemisinin is a better choice. Recently, Synechococcus elongatus PCC 7942 was bioengineered
for the production amorpha-4,11-diene by modulating the metabolic pathway of amorphadiene
synthase and methylerythritol phosphate pathway enzymes [80]. This bioengineered cyanobacteria
produced 23-times higher (19.8 mg/L) content of amorpha-4,11-diene as compared to the wild type [80].
The amorpha-4,11-diene is a precursor of artemisinin. Thus, through bioengineering, we can modify
cyanobacteria for the production of low-cost and high-content artemisinin. The use of cyanobacteria
and algae farms for the production of artemisinin will definitely lower the cost of the drug and the rate
of production will also be high. However, the problem is that of contamination by wild cyanobacteria
and algae. The risks of failure are always there, but with the increase in algae farming and its growth
on commercial basis by companies like algenol, Sapphire Energy and dozens of others, it is important
that they should also try the generation of artemisinin from algae, in the same way they are producing
nutraceuticals like astaxanthin, etc.

3. Advancements in Understanding the Mode of Action of Artemisinin and Related Drugs

The mode of action of artemisinin and its derivatives is debatable and a number of studies
have been performed to elucidate the actual mechanism of action [81,82]. Both oxidative stress
and alkylation of heme along with plasmodial proteins are considered in the mode of action of
artemisinin and its related compounds [83]. One study suggested that the heme from the parasite
heme synthesis pathway is alkylated along with other important parasite proteins and is hence an
inhibitor of plasmodium growth [84]. A proteomic technique has provided first-hand information
about the targeted proteins of asexual erythrocyte stage of plasmodium that are alkylated by the
1,2,4-trixolane group of antimalarial compounds [85]. These alkylated proteins are part of glycolysis,
host hemoglobin splitting, antioxidant defense, protein synthesis and stress pathways that are
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extremely important for the parasite persistence [85]. The same approach is used for the action
of artemisinin on various target proteins [86]. The in situ analyses showed that the alkylated proteins
are involved in parasite glycolysis, catabolism of hemoglobin, redox function and biosynthesis of
other proteins [86]. These biochemical approaches are helpful in determining the different modes of
action of antimalarial drugs. Furthermore, these results provided clues about the fate of the alkylated
proteins of the protozoan. In another experimental setup, the free radicals generated due to the
reaction of artemisinin and its derivatives were monitored through electron spin resonance (ESR),
a combination of high performance liquid chromatography–electron spin resonance (HPLC-ESR) and a
combination of high performance liquid chromatography–electron spin resonance-mass spectrometry
(HPLC-ESR-MS) [87]. The free radicals were monitored chemically with the help of Fe2+ while
α-(4-Pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN) was used as a spin trap during the reactions [87].
During the measurements, a number of radicals were detected; thus, these radicals exert their action on
the parasite and destroy it [87]. Artmisinin also acts as an allelochemical that inhibit the growth
of different plants seedling [88]. When the plants seeds are treated with artemisinin they died
due to oxidative stress through the generation of reactive oxygen species (ROS) [88]. These ROS
performed lipid peroxidation, inhibition of mitosis and ultimately caused cell death [88]. It has also
been suggested that the ROS damage the parasite Ca2+-ATPase enzyme that is responsible for calcium
ion transport [89]. In the artemisinin-resistant plasmodium species, a PfATP6 L263 mutation is also
normally observed [89].

4. Marine Sponges as a Source of Endoperoxides

Marine sponges, especially Plakortis, are a rich sources of natural secondary metabolites and
several effective antiplasmodial agents have been isolated from them in the past few years [90,91].
For example, a thiazine-containing alkaloid known as thiaplakortone A is present in Plakortis lita,
a native of Australia [90,91]. The thiaplakortone A is equally efficacious against chloroquine-resistant
and chloroquine-sensitive P. falciparum [91,92]. The search of antimalarial compounds in the marine
world led to the identification of endoperoxides (1,2-dioxanes)-based polyketides in a Caribbean
sponge named Plakortis simplex [93]. These 1,2-dioxane-containing polyketides are plakortin and
dihydroplakortin (Figure 5) and are potent antimalarial agents in nanomolar concentrations in vitro
against chloroquine-resistant P. falciparum, and in vivo against P. berghei in murine models without
any observed toxicity [93]. Inspired by the plakortin, a synthetic compound has also been prepared
and it works in a similar fashion like the natural metabolites [93]. These 1,2-dioxanes-based natural
and synthetic polyketides produce carbon-based free radicals when they interact with the heme
Fe(II) [93]. Like in the case of artemisinin, the ferrous catalyzed reductive cleavage of the endoperoxide
of plakortin and its derivatives produce radicals that are toxic to the parasite [93,94]. In a number of
other studies, it was observed that different species of plaktoris sponge are a rich source of cyclic and
linear peroxides that have antimalarial, antifungal and anticancer properties [95–103].
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5. Artemisinin Inspired Novel Antimalarial Compounds

The K13 gene mutations which confer resistance against artemisinin to P. falciparum are the main
threat to artemisinin-based therapy for malaria treatment [104]. Thus, most of the antimalarial drug
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efforts are to design vaccines and compounds which can target such resistant plasmodium species [104].
Furthermore, isolation from A. annua is the only practical source of artemisinin, whose annual growth
affects the drug supply and cost [105]. Another shortcoming of artemisinin and its derivatives is their
short in vivo half-lives, therefore, there is a need of novel synthetic antimalarial drugs [105]. Recently,
due to the efforts of a multinational antimalarial efforts, a tetraoxane-based molecule named E209
has been synthesized (Figure 6) [104]. The E209 has a potency in nanomolar concentrations against
different strains of P. falciparum and P. vivax both in vitro and in vivo [104]. E209 is equally efficient as
dihydroartemisinin against malarial parasites, has similar pharmaceutical properties and is capable of
a single-dose cure [104]. Thus, in the future, endoperoxide-based compounds like E209 will be used
for artemisinin resistance Plasmodium. Similarly, other natural product compounds are also being
investigated by different authors for their antimalarial properties [106].

Artefenomel (OZ439) (Figure 7a) is a synthetic trioxolane that possesses the artemisinin
pharmacophore and has enhanced pharmacokinetic properties [107,108]. Artefenomel is quite
efficacious and has prolonged blood concentrations due to its stabilizing power to protect the unstable
peroxide bond, thus, it has proper retention time in plasma and also produces the required ferrous
reactivity to terminate the plasmodium [109]. Currently, it is synthesized on industrial scales in
india and it is also an approved antimalarial drug in seven malaria endemic African countries [108].
Its level of tolerance is around 1600 mg in different volunteers [107]. Clinical trials in volunteers from
Thailand showed that it has the capacity to control uncomplicated malaria caused by P. falciparum
and P. vivax [107]. Furthermore, there were no sides effects observed during these clinical trials [107].
The authors suggested its use in combination with other drugs like ferroquine, piperaquine and
DSM265 [107]. The arterolane and artefenomel are more effective against K13 mutant of P. falciparum
as compared to dihydroartemisinin [110]. However in another observation it was noted that the
dihydroartemisinin is more potent than the ozonides like OZ439 and OZ277 when they are used for the
treatment of K13 mutants in asexual erytrocytic stage protozoans [111]. These results showed that the
K13 mutant strains may be a graveyard for antimalarial drugs in the future, if they are not used with
caution. In recent times, the industrial scale production of artefenomel is an alternative to artemisinin
in ACTs. Thus, in the future, the demand for these synthetic endoperoxide drugs will increase due to
the spread of K13 resistant strains of plasmodium in different Asian countries.
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The structure–activity relationship studies of ozonide artefenomel show that the primary and
secondary amino ozonides have increased metabolic stability due to their high pKa and lower
Log D7.4 values [112]. Attaching a polar group to the primary and tertiary amino ozonides resulted
into a decrease in in vivo antimalarial activity [112]. On the other hand, adding a cycloalkyl and
heterocyclic groups to the primary and tertiary amino ozonides resulted in higher antimalarial potency
than adding an acyclic group to them [112]. This increase in potency is due to an increase in plasma
retention time [112]. Thus, antimalarial drugs with longer plasma retention times are suitable for the
control of erytrocytic stage plasmodium.

It has been proposed that, like artemisinin, the antimalarial synthetic peroxides also undergo
reductive cleavage by the ferrous heme of the catabolized hemoglobin [113]. This peroxide reduction
resulted in active carbon-centered radicals that alkylate heme and the parasite proteins [113]. In order to
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understand the proposed mechanism of action of famous Ozonides OZ277 (arterolane) (Figure 7b) and
OZ439 (artefenomel), monoclonal antibodies are used to probe the alkylation of heme and plasmodial
proteins [113]. From the Immunofluorescence analysis of ozonide-treated parasitic proteins and heme,
it was observed that only P. falciparum proteins are alkylated while there is no action on the host heme
proteins [113]. These experiments proved that there is no cross reactivity between the endoperoxide
antimalarial drugs and host proteins. Thus, the endoperoxides drugs have lower toxicity and have
high selectivity and specificity.

In a related SAR investigation, it was observed that tertiary amine-containing ozonides are
less toxic as compared to the primary and secondary amine-containing ozonides (Figure 7a) [105].
They have suitable pharmacological profiles and are potent against P. berghei in murine models [105].
They can be easily prepared through the Griesbaum co-ozonolysis scheme with low cost [105]. It has
been observed that making modifications in bond rigidity, adding different groups like amines, etc.,
can increase the potency against the resistant species [114]. It was also noted that changing the
stereochemistry and position of different groups attached to the nucleus of drugs can enhance the
antiplasmodial efficacy [115]. For example a stereoisomeric analogue (Figure 7c) of arterolane is more
potent than the arterolane itself [115].Molecules 2017, 22, 100 10 of 16 
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6. Conclusions and Future Perspectives

The eradication of malaria will eventually need an integrated strategy that includes the
combination of new and old drugs, vector control, and use of vaccines and to take steps in public
health. Until now the elimination task of the malaria seems discouraging because the old strategies
like spraying indoor and use of nets are not sufficient, especially in the endemic regions, therefore,
only innovative scientific discoveries can change the situation. Expression of the whole biosynthetic
pathway of artemisinin enzymes in tobacco plants will lead to a high production of artemisinin at low
cost. This is an exemplary work which will control malaria in third world countries as now patients
will be able to afford the drug, but for such a dream to come true, it is the responsibility of government
agencies, farmers and pharama companies to collaborate with one another and make this goal of
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a malaria-free world achievable. This method of expression of the whole biosynthetic pathway of
foreign enzymes in tobacco can be exploited to express other medicinally important alkaloids, and
thus, the cost of various drugs can be lower down. Similarly work on synthetic endoperoxides should
also be expedited, as they provide an alternative way to lower the cost of the antimalarial drugs and
for the control of artemisinin resistant plasmodium species.
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