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Primary Sjogren’s syndrome (pSS) is a chronic progressive autoimmune disease with
clinical phenotypic “Sicca symptoms”. In some cases, the diagnosis of pSS is delayed by
6–7 years due to the inefficient differential diagnosis of pSS and non-SS “Sicca”. This
study aimed to investigate the difference between these two diseases, and in particular,
their immunopathogenesis. Based on their gene expression profiles, we systematically
defined for the first time the predicted disease-specific immune infiltration pattern of
patients with pSS differentiated from normal donors and patients with non-SS “Sicca”. We
found that it was characterized by the aberrant abundance and interaction of tissue-
infiltrated immune cells, such as a notable shift in the subpopulation of six immune cells
and the perturbed abundance of nine subpopulations, such as CD4+ memory, CD8+ T-
cells and gamma delta T-cells. In addition, we identified essential genes, particularly long
non-coding RNAs (lncRNAs), as the potential mechanisms linked to this predicted pattern
reprogramming. Fourteen lncRNAs were identified as the potential regulators associated
with the pSS-specific immune infiltration pattern in a synergistic manner, among which the
CTA-250D10.23 lncRNA was highly relevant to chemokine signaling pathways. In
conclusion, aberrant predicted disease-specific immune infiltration patterns and relevant
genes revealed the immunopathogenesis of pSS and provided some clues for the
immunotherapy by targeting specific immune cells and genes.
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HIGHLIGHTS

(1) This study systematically and for the first time defined the
predicted disease-specific immune infiltration patterns in
primary Sjogren's syndrome, characterized by the altered
abundance and interaction of tissue-infiltrating immune cells.
(2) Essential genes, particularly long non-coding RNAs, are
associated with this aberrant reprogramming of predicted
immune infiltration patterns.
(3) The lncRNA CTA-250D10.23 is a potential regulator
associated with the chemokine signaling pathway and
immune infiltration.
INTRODUCTION

Sjogren’s syndrome (SS) is a chronic progressive autoimmune
disease presented with clinical phenotypic “Sicca symptoms” on
mucosa surfaces (mouth and eyes dryness) and characterized by
damage and dysfunction of exocrine glands and principally reduced
secretory functions of the salivary and lacrimal glands (1, 2). In
particular, SS has been reported to occur in isolation or in
combination with another systemic autoimmune rheumatic
disorder and, thus is subdivided into primary SS (pSS) and
secondary SS (sSS). The latter is known to be accompanied by
lesions due to immunologic abnormalities or vasculitic
involvement, such as systemic lupus erythematosus (SLE),
rheumatoid arthritis, systemic sclerosis, and dermatomyositis (2–4).

The term “Sicca syndrome” has been used as a synonym for SS
(5). However, “Sicca syndrome” and SS are not equivalent, neither
clinically nor pathologically. Patients complaining of oral and
ocular dryness, typically termed as “Sicca syndrome”, but not
fulfilling the criteria of pSS, are referred to as non-Sjögren’s
syndrome sicca (non-SS) patients (6, 7). It has been reported
that up to 30% of people older than 65 y of age might exhibit
dryness of both eyes and mouth (8), whereas the prevalence of pSS
is known to be 0.03 to 2.7% depending on the applied diagnostic
criteria (9). In some cases, the diagnosis of patients with pSS is
delayed by 6–7 years after the onset of the disease due to the
inefficient differential diagnosis of pSS and non-SS. Therefore, it is
worthwhile to investigate the difference between these two groups
of patients, which would be beneficial to the early diagnosis of pSS.

The development of pSS has been reported to be influenced
by the interaction between multiple environmental factors and
individual genetic susceptibility. From the immunopathological
perspective, autoimmune epithelitis in pSS patients is a widely
supported mechanism suggesting the involvement of
inflammatory lesions of the epithelium with immune responses
to the autoantigens Ro/SSA and La/SSB (10, 11). The
consequence of abnormal interaction cycle between the
epithelial cells of the salivary gland (SGECs) and immune cells
results into the establishment of long-term autoimmune
responses (10–12). Despite the accumulated knowledge on the
epithelial–immune interaction cycle revealing the roles of
immune cells in pSS, the systematic pattern of immune
infiltration and cell interaction, which might provide a global
Frontiers in Immunology | www.frontiersin.org 2
perspective and a comprehensive image of the epithelial–
immune interaction cycle, has not been defined yet.

To date, topically and systemically administered symptomatic
treatments are considered as the primary therapies for the
management of both diseases (8). Due to lack of understanding of
the mechanisms of pSS, effective immunotherapy is still missing.
Therefore, identification and comparison of the molecular
mechanisms of these two diseases could identify disease-specific
targets and facilitate the development of novel immunotherapy
approaches for the treatment of pSS. In this context, we employed
an integrated bioinformatics method to define the patterns of
predicted immune cell infiltration in pSS and “Sicca” and then
identified the disease-specific features of pSS by comparing these
two diseases. Based on these defined features, we built the links
between the common or disease-specific immune features and
transcriptomes in each case, serving as a reference to advance the
early diagnosis and treatment of pSS.
MATERIALS AND METHODS

Data Preprocessing and Differential
Expression Analysis
The GEO dataset: GSE40611 was obtained from the National
Center For Biotechnology Information (NCBI) Gene Expression
Omnibus (GEO) (7) using the “Sjogren’s Syndrome” and
“parotid” criteria. This microarray dataset has been based on
the platform of Affymetrix Human Genome U133 Plus 2.0 Array
(HG-U133_Plus_2) and contains parotid tissue samples from 20
healthy donors, 19 patients with Sjogren syndrome, and 20
patients with “Sicca syndrome”. Before differential expression
analysis, background correction and quantile normalization were
performed using the robust multi-array analysis (RMA) method
with the limma R package (v3.11) (13), thus generating the
normalized gene expression matrix. In addition, differentially
expressed genes (DEGs) were identified using the criteria of false
discovery rate (FDR) <0.05 or <0.1, depending on the proportion
of DEGs among the total.

Definition of Predicted Immune
Infiltration Patterns
The relative abundance of 22 types of tissue infiltrating immune
cells, including CD8+ T-cells, naïve CD4+ T-cells, resting
memory CD4+ T-cells, activated memory CD4+ T-cells,
follicular helper T-cells, regulatory T-cells (Tregs), gamma
delta T-cells, three types of macrophages (M0, M1, and M2),
naïve B-cells, memory B-cells, plasma cells, resting natural killer
(NK) cells, activated NK cells, monocytes, resting dendritic cells,
activated dendritic cells, resting mast cells, activated mast cells,
eosinophils, and neutrophils were estimated using the
CIBERSORT deconvolution algorithm (CIBERSORT R script
v1.03) (14) based on the LM22 Signature (https://cibersort.
stanford.edu/, Supplemental Table 1). Then, the normalized
gene expression matrix was converted to the immune cell matrix,
which was further filtered according to the criteria of P <0.05.
Comparisons of the relative abundance in pSS or “Sicca” with
April 2021 | Volume 12 | Article 624614
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those in control (healthy donors) were performed using the
Wilcoxon signed-rank test. Principal component analysis (PCA)
was also performed to determine the overall difference between
the three groups. The associated networks of predicted 22 types
of tissue infiltrating immune cells were constructed using
Pearson correlation analysis. The immune states were defined
by three indexes, including the overall immune score,
immunostimulator score, and immunoinhibitor score, which
were estimated using the ESTIMATE and ssGSEA algorithms
(Supplemental Table 2) (15, 16).

Identification of Gene Modules Associated
With The Predicted Disease-Specific
Immune Infiltration Patterns
Considering the variance of gene expression, the top 25% including
5,836 genes were inputted in weighted correlation network analysis
(WGCNA) to build the gene network using theWGCNA R package
(v1.69) (17). Briefly, the soft-thresholding power was determined
using the softConnectivity and pickSoftThreshold functions. When
the scale-free topology fit index reached 0.9 at powers <30 and the
network harbored an appropriate network connectivity, the soft-
thresholding power was considered suitable for constructing a
scale-free network. Then, the adjacency matrix was calculated
under this power and converted into the topological overlap
matrix (TOM), based on which gene modules were identified
using the minModuleSize = 30 and deepsplit = 2 parameters in
theDynamic Tree Cut algorithm function and further merged using
the hierarchical clustering and merged dynamic algorithm
(cutheight = 0.25). Finally, the eigengenes representing the
corresponding modules were employed to calculate the
correlation between the modules and features, and quantified
using the Pearson correlation. Modules with a Pearson correlation
coefficient r >0.4 and P <0.05 were considered as
significant modules.

Functional Annotations of Immune
Infiltration-Relevant Gene Modules
The ClusterProfiler R package (v3.14.3) was employed to analyze
the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) to annotate immune infiltration-relevant
genes (18). Based on hypergeometric distribution, the
enrichGO and enrichKEGG functions were utilized to perform
enrichment analysis for GO terms and KEGG pathways, the
results of which were visualized with bubble plots. Gene Set
Enrichment Analysis (GSEA) and single-sample GSEA (ssGSEA)
were employed to determine whether an a priori defined set of
genes showed statistically significant differences between the
groups or samples using the GSEA software v4.1.0 (19) and
GSVA R package (v3.11) (16).

Identification of Essential Genes
Associated With the Predicted Common
or Disease-Specific Immune Infiltration
Patterns
The critical genes contributing to the common features of the
immune infiltration patterns of pSS and “Sicca” were defined as
Frontiers in Immunology | www.frontiersin.org 3
the common DEGs correlating with the abundance of the
commonly infiltrated immune cells. The correlations between
the common DEGs and immune cell abundance were estimated
using the Pearson correlation coefficient. The genes associated
with predicted disease-specific immune infiltration patterns were
defined as the gene modules that were specifically and
statistically significant for pSS or “Sicca” in WGCNA. In
addition, essential lncRNAs contributing to immune
infiltration patterns were identified using the annotations of
the Ensembl database (Release 98).

Independent Dataset Validation
Independent GEO dataset: GSE23117 was employed to validate
the expression of lncRNAs in pSS patients. With the same
platform with GSE40611, GSE23117 contains 15 gene
expression profiles of minor salivary gland of pSS patients and
control (20). Data process and method of dataset validation were
the same with GSE40611.

Statistical Analysis
Comparisons between the two groups were performed using the
unpaired two-tailed Student’s t-test, whereas the one-way
ANOVA statistics method was employed for comparison
among multiple groups. All data were displayed as means ± SD
and analyzed using the GraphPad Prism software version 7.0.
P < 0.05 was considered statistically significant.
RESULTS

Disease-Specific Predicted Immune
Infiltration Pattern and Enhanced
Immune Response in pSS
To investigate the functions and mechanisms of immune
infiltration in pSS, we first investigated the predicted immune
infiltration pattern using an estimation based on the microarray
data. Given that the main common manifestations of pSS and
“Sicca” are similar, we speculated that the comparison of the
immune infiltration pattern of pSS with that of “Sicca” would be
disease-specific, thus revealing the mechanisms underlying the
development of pSS.

As shown in Figure 1A and Supplemental Table 3, we
estimated the relative proportion of the 22 subpopulations of
immune cells, defined as the “immune infiltration pattern”, using
the CIBORSORT algorithm. We observed that the structure of
predicted immune infiltration in pSS differed significantly from
that in normal or “Sicca” and was characterized by a notable shift
in the numbers of six subpopulations, including M0
macrophages, M1 macrophages, naïve B-cells, naïve CD4 T-
cells, memory activated CD4 T-cells, and gamma delta T-cells,
whereas the remaining subpopulations were decreased or did not
differ in pSS compared with control or “Sicca”. Indeed, we found
that the abundance of four subpopulations of cells was
significantly increased (P < 0.05, Wilcoxon signed-rank test) in
pSS versus normal samples, whereas it was decreased in six
subpopulations. In contrast, only three subpopulations were
April 2021 | Volume 12 | Article 624614
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shown to be increased, whereas one was decreased in “Sicca”
compared with normal samples (Figures 1B, C, Supplemental
Table 4). We identified that the increased number of M1
macrophages was the common feature in pSS and “Sicca”,
suggesting that this feature might contribute to the common
manifestations of these two diseases.
Frontiers in Immunology | www.frontiersin.org 4
In the context of these differences in immune infiltration
patterns, we aimed to explore whether these features were
disease-specific, thus contributing to the distinguishment
between these two diseases. As shown in Figure 1D, principle
component analysis (PCA) revealed that four subpopulations,
including memory activated CD4 T-cells, CD8 T-cells, gamma
A D

B

F

C E

FIGURE 1 | Predicted disease-specific immune infiltration patterns of pSS and “Sicca”. (A) The heatmap of the relative number of 22 types of immune cells
estimated using the CIBERSORT algorithm and hierarchical clustering shows the landscape of the infiltration characteristics of pSS, “Sicca”, and control. RMSE, root
mean squared error; correlation, Pearson correlation coefficient; P value; pSS, primary Sjögren syndrome. (B) Comparisons of infiltrating immune cell subpopulations
of pSS versus control. Eleven subpopulations were identified as disease-relevant features of pSS. Blue, decreased subpopulation; red, increased subpopulation.
(C) Comparisons of infiltrating immune cell subpopulations of “Sicca” versus control. Four subpopulations were identified as disease-relevant features of “Sicca”.
(D) Principal component analysis (PCA) of 22 types of infiltrating immune cells. Four types of immune cells, including resting memory CD4 T-cells, CD8 T-cells,
gamma delta T-cells, and plasma cells, were the principal elements contributing to the differences between the control, “Sicca”, and pSS. (E) Association network of
infiltrating subpopulations estimated with the Pearson coefficient. Red, positive correlation; green, negative correlation. (F) Immune states of control, “Sicca”, and
pSS estimated by ImmuneScore, Immunostimulator, and Immunoinhibitor using the ssGSEA algorithm. ##P < 0.01, pSS versus control; **P < 0.01, pSS versus
“Sicca”; ns, not significant.
April 2021 | Volume 12 | Article 624614
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delta T-cells, and plasma cells, were identified as the main
contributors; however, the boundary between pSS and “Sicca”
was not distinct. Moreover, we noted that the obtained immune
infiltration pattern failed to distinguish between the samples of
“Sicca” and normal. We also investigated the association of
subpopulations to explore disease-specific regulation patterns
(Figure 1E). Accordingly we found that the diversity of
association network was lower in pSS compared with “Sicca”
and was characterized by a reduced connectivity of memory B-
cells and a shift in the “leading subpopulation” defined as the cell
type harboring the largest connectivity number in the association
network. (pSS: activated dendritic cells, 4°; “Sicca”: memory B-
cells, 6°)

As we identified differences in immune infiltration, we also
investigated whether the overall status of the immune system
differs among the three groups. Indeed, the immune scores
of pSS estimated using ssGSEA, and in particular, the
immune-stimulator score, were found to be significantly
elevated, whereas no difference was observed between the
“Sicca” and the normal groups (Figure 1F), suggesting a
stronger immune response in pSS compared with Sicca
and normal. Taken together, we demonstrated that the
predicted disease-specific immune infiltration pattern of pSS
was characterized by the sharped structure of infiltrated
subpopulations and a reprogrammed regulation pattern,
resulting in an elevated overall immune response compared
with that in “Sicca” and normal.

Common Genes and Long Non-Coding
RNAs Associated With The Consistent
Predicted Immune Infiltration Features
of pSS and “Sicca”
Given that we found a common feature of immune infiltration in
pSS and “Sicca”, namely the increased abundance of M1
macrophages, we explored the common mechanisms
underlying these two diseases before investigating the disease-
specific mechanisms of pSS.

As shown in Figures 2A, B, Supplemental Figure 1,
Supplemental Table 5, and Supplemental Table 6, we identified
a total of 57 commonly up-regulated or downregulated genes in pSS
or “Sicca” versus normal, among which five long non-coding RNAs
(lncRNAs), LINC00478, LOC101929072, LOC101929709,
MIR205HG, and RAD51-AS1 were shown to account for ~8% of
the overlapped differentially expressed genes (DEGs). Due to the
notable roles of lncRNAs elucidated in recent years, we speculated
that these five lncRNAs might be relevant to the common features
of pSS and “Sicca” and aimed to investigate their functions if shown
to be significantly relevant.

To address this question, we calculated the Pearson
correlation coefficient of genes and identified the coexpressed
genes of lncRNAs (r >0.4 or <−0.4 and P < 0.05), including
144, 184, 245, 759, and 766 genes for RAD51-AS1, LINC00478,
LOC101929709, LOC101929072, and MIR205HG lncRNA,
respectively. The functional annotations of these relevant
g ene s r e v e a l ed tha t L INC00478 , LOC101929709 ,
LOC101929072, and MIR205HG were highly functionally
Frontiers in Immunology | www.frontiersin.org 5
relevant, sharing 39 common genes, six items of GO
biological processes, and 17 KEGG pathways, whereas
RAD51-AS1 failed to be functionally annotated because of
the biological irrelevance of its coexpressed genes (Figure 2C).
Interestingly, we observed that these four lncRNAs were
involved in multiple immune-related biological processes
and signaling pathways, such as lymphocyte function, type I
interferon signaling pathway and chemokine signaling
pathway (Figure 2D), suggesting the potential synergistic
effects of lncRNAs on immune regulation.

In the context of the high relevance of these lncRNAs, we
aimed to explore whether they were associated with the predicted
increased abundance of M1 macrophages in pSS and “Sicca” and
the mechanisms underlying their connection to the other
common genes. We calculated the Pearson correlation
coefficient of the abundance of M1 macrophages and common
genes. As shown in Figure 2E, we identified a total of 32 genes,
accounting for ~56% of the total common genes, with high
relevance to M1 infiltration. To investigate if these 32 genes were
included in the M1 gene signature of LM22 prediction reference,
we took their intersection with M1 gene signature to avoid the
potential circular analysis. As shown in Supplemental Figure 2,
only six out of 32 were included in the M1 gene signature.
Moreover, we considered the top 10 genes ranked by the Pearson
correlation coefficient as the key relevant genes in M1 infiltration,
with only one lncRNA, LOC101929709, reaching statistical
significance (r = −0.49, P < 0.001). To elucidate the
mechanism by which LOC101929709 might be involved in M1
infiltration, we identified the M1 infiltration-related genes that
were also relevant to LOC101929709, including PSMB8, PSMB9,
FOSB, IFI27, and ISG15 using a cutoff of r >0.4 or <−0.4 and P
<0.05 (Figure 2F). Based on the strong correlation of these genes,
we considered that the commonly regulated genes, including
lncRNAs, could be responsible for M1 infiltration in a synergistic
manner, thus revealing the potential mechanisms of M1
infiltration (Figure 2G).
Gene Modules Associated With Predicted
pSS-Specific Immune Infiltration Patterns
Following the identification of common genes potentially linked
to M1 infiltration, we further investigated the mechanisms of
pSS-specific immune infiltration patterns. We employed the
WGCNA method, where we assigned coexpressed genes into
modules and calculated the relationship of modules and
phenotypes, including disease type and infi l tration
subpopulation, to identify disease- or subpopulation-relevant
modules (Figure 3A and Supplemental Table 7). As shown in
Figure 3B, we identified three significant modules, Blue,
Darkgreen, and Darkorange, as pSS-relevant modules.
Interestingly, the Blue module was shown to be not significant
for “Sicca” but was highly relevant to multiple infiltrated
subpopulations except for neutrophils, suggesting that this
module might be linked to the pSS-specific immune infiltration
patterns. Moreover, we applied the ssGSEA method to calculate
the estimated score of these three modules in normal, “Sicca”,
and pSS. We accordingly observed that the estimated score of the
April 2021 | Volume 12 | Article 624614
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Blue module was consistently higher in pSS compared with that
in “Sicca” and normal, whereas the estimated score of the
Darkgreen module was not significant in either pSS or “Sicca”
in comparison with that in normal (Figure 3C). The Darkorange
module was demonstrated to be significant in the comparison
between pSS and normal, but not significant for pSS versus
“Sicca” (Figure 3C). Similarly, the results of ssGSEA suggested
that the disease-specific difference of pSS should be attributed to
the Blue and not to the other two modules. Taken together, the
Frontiers in Immunology | www.frontiersin.org 6
Blue module was the module selected to be subjected to
further analysis.

We performed functional annotations of the Bluemodule that
revealed the potential mechanisms of immune infiltration
(Figure 3D). KEGG analysis suggested that the Blue module
was relevant to multiple autoimmune diseases, such as
rheumatoid arthritis, inflammatory bowel disease (IBD), and
autoimmune thyroid disease. This module was also found to be
involved in multiple immune-relevant signaling pathways,
A C D

B

E F G

FIGURE 2 | Common genes and lncRNAs associated with the consistent immune-infiltration features of “Sicca” and pSS. (A) Overlap of up-regulated or
downregulated genes in “Sicca” and pSS compared to control. A total of 57 genes were identified as the common genes of the two diseases. (B) Heatmap of 57
common genes shows five lncRNAs, including LINC00478, LOC101929072, LOC101929709, MIR205HG, and RAD51-AS1. (C) Coexpressed genes and common
GO/Kegg items relevant to LINC00478, LOC101929072, LOC101929709, and MIR205HG. (D) Top-five significant GO and Kegg items of LINC00478,
LOC101929072, LOC101929709, and MIR205HG. (E) Correlation of M1 macrophage infiltration with common genes and lncRNAs. Heatmap shows the 32
common genes and 1 lncRNA, LOC101929709 (blue) harboring a Pearson correlation coefficient larger than 0.4, among which the top-10 significant genes are
labeled in purple color. (F) The M1 macrophage-relevant genes coexpressed with LOC101929709 lncRNA. (G) A model of potential mechanisms of common genes
and lncRNAs linked to M1 macrophage infiltration in “Sicca” and pSS. *P<0.05, **P<0.01, ***P<0.001.
April 2021 | Volume 12 | Article 624614
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A

B

D

F G H I

E

C

FIGURE 3 | Gene modules associated with pSS-specific immune infiltration patterns. (A) Gene dendrogram calculated by average linkage hierarchical clustering.
The color row underneath the dendrogram shows the assigned original module and the merged module. (B) Heatmap of the correlation between module eigengenes
and disease or immune-infiltration features. The value in each square reflects the Pearson correlation coefficient, with the P value in parentheses. pSS vs ctl,
comparison of pSS versus control; “Sicca” vs ctl, comparison of “Sicca” versus control; pSS vs “Sicca”, comparison of pSS versus “Sicca”. P, plasma cells; T1, CD8
T-cells; T2, memory activated CD4 T-cells; T3, gamma delta T-cells; NK, resting NK cells; M0, M0 macrophages; M, activated mast cells; D, resting dendritic cells;
N, neutrophils. (C) Enriched score of the Blue, Darkgreen, and Darkorange immune-relevant modules in control, “Sicca”, and pSS samples estimated using the
ssGSEA method. *P < 0.05, **P < 0.01, “Sicca” or pSS versus control; ##P < 0.01, pSS versus “Sicca”; all P values were estimated using one-way ANOVA.
(D) Functional annotation of the Blue module using GO and KEGG. (E) Heatmap of gene expression of the Blue module in the control, “Sicca”, and pSS samples.
Three subgroups were identified (color blue, purple, and red). (F) Enriched score of the Blue modules of the three subgroups in pSS. **P < 0.01, “Sicca” or pSS
versus control; ##P < 0.01, pSS versus “Sicca”; P values were estimated using one-way ANOVA. (G) Principle component analysis (PCA) of the three subgroups of
pSS samples based on the Blue module. (H) PCA of the three subgroups of pSS samples based on the disease-specific infiltrated immune cells. Plasma cells and
gamma T-cells were the robustly-contributing elements in PCA. (I) Gene Set Enrichment Analysis (GSEA) of the subgroups of pSS. NES, normalized enrichment
score; FDR, false discovery rate, P values were estimated using one-way ANOVA and adjusted with the Benjamini–Hochberg method. ns, not significant.
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including the NF-kappa B signaling pathway, B-cell receptor
signaling pathway, chemokine signaling pathway, and NOD-like
receptor signaling pathway. GO analysis revealed that the genes
of the Blue module were involved in the functions of
lymphocytes and leukocytes, as well as in the production and
secretion of cytokines through the regulation of the function of
CCR receptors, MHC protein complexes, cysteine-type
endopeptidases, and tyrosine kinases. These result suggested
the functional relevance of the Blue module in predicted pSS-
specific immune infiltration patterns.

Based on the Blue module, we identified three subgroups in
the pSS samples, the high-, medium-, and low-scoring groups
(Figure 3C).Consecutively, we plotted the gene expression
pattern and calculated the estimated score of the subgroups
(Figures 3E, F). We accordingly found that the three
subgroups exhibited a correlation to this module. PCA results
showed that the Blue module could serve as the parameter
separating these three subgroups, whereas the immune-
infiltration patterns of subgroups 1 and 2 showed no
significant difference (Figures 3G, H), suggesting that the
changes in the level of gene expression of the Blue module
might occur before the remodeling of the infiltration pattern,
hence driving the onset of this remodeling. However, subgroup 3
was shown to be significantly different from the other two in
terms of both gene expression and infiltration pattern. To this
end, we merged subgroups 1 and 2 into a single subgroup,
namely subgroup A, with subgroup 3 being renamed as
subgroup B. Further pathway analysis showed that the
difference between subgroups A and B was the T- and B-cell
receptor signaling pathways (Figure 3I).

CTA-250D10.23 Associated With Predicted
pSS-Specific Immune Infiltration Patterns
by Chemokine Pathways
Based on our finding that lncRNAs associated with the common
phenotype of “Sicca” and pSS, we also investigated whether
lncRNAs were involved in the differences in immune
infiltration patterns. We identified 14 lncRNAs in the Blue
module, including CTA-250D10.23, RP11-389C8.2, KIAA0125,
HCP5, LOC100505812, BZRAP1-AS1, LINC01215, PSMB8-AS1,
ITGB2-AS1 , AC079767.4 , LINC00926 , LOC100505549 ,
LOC101928152, and LOC101929272. According to gene
significance (Figure 4A), CTA-250D10.23 lncRNA was
identified as the most significant gene contributing to this
module among these 14 lncRNAs. Our PCA and heatmap plot
results showed that the 14-lncRNA signature was able to separate
the pSS samples from the normal and “Sicca” samples and
further distinguish between the two subgroups of pSS (Figures
4B, C). Again, CTA-250D10.23 was the most significant
contributor in PCA, suggesting the critical connection between
CTA-250D10.23 and the predicted disease-specific immune
infiltration pattern.

To better understand the potential mechanisms, we compared
the differences observed in the pathways between the high- and
low-expressing CTA-250D10.23 groups. GSEA results showed
that the genes involved in the chemokine signaling pathway were
Frontiers in Immunology | www.frontiersin.org 8
more potently up-regulated in the high- than in the low-
expressing group (Figure 4D). ssGSEA results also showed the
relevance of CTA-250D10.23 lncRNA in multiple chemokine-
relevant signaling pathways, including chemokine biosynthesis
and activity, except for chemokine secretion (Figure 4E).
Moreover, we identified the genes relevant to chemokine
signaling pathways that were also coexpressed with CTA-
250D10.23 lncRNA. As shown in Figure 4F, these genes, such
as CXCLs and CCRs, were up-regulated in subgroup B compared
with those in subgroup A, suggesting the relevance of CTA-
250D10.23 lncRNA, chemokine, and immune infiltration.
Finally, we employed an independent dataset to validate the
expression of these 14 lncRNAs in pSS patients and correlations
of CTA-250D10.23 and the genes involved in chemokine
pathway (Figures 4G, H). Strikingly, 10 out of 14 lncRNAs
were up-regulated in early or moderate/severe pSS or both,
including CTA-250D10.23. Besides, CTA-250D10.23 showed
strong correlation with CXCL13 and CCL5 in validation.
DISCUSSION

The pivotal point in distinguishing between pSS and “Sicca” is
the definition of disease-specific features of immunopathological
mechanisms. In the present study, we initially investigated the
structural mode of disease-specific immune infiltration patterns
among groups of normal donors, patients with pSS, and patients
with non-pSS “Sicca” and found the specific structural changes of
this pattern characterized by an sharply elevated immune
proportion in pSS compared with that of the others. In
addition, we identified the common genes, including lncRNAs,
linked to these consistent immune-infiltration features, which
might contribute to the mechanism of mucous membrane
dryness. The most important finding was the identification of
immune infiltration-relevant targets and the underlying
mechanisms that might linked to pSS-specific immune
infiltration patterns, in particular, the links between chemokine
genes associated with predicted immune features and
certain lncRNAs.

pSS is an autoimmune condition characterized by systemic B-
cell activation and product of autoantibody within the salivary
gland. Based on previous research associated with pSS, the
immune-mediated inflammatory cellular infiltration has been
associated with ectopic production of lymphoid chemokines, T/B
cell segregation, and ectopic germinal center formation (21–23)
as well as lymphocytic infiltration with a high degree of
correlation between both morphological changes and
immunological patterns and SS pathogenesis (24). Exocrine
gland lymphocytic infiltration and B-cell hyperactivation have
been recognized as the most relevant characteristics of the pSS
disease model (25), resulting in abnormal and dysregulated
responses from the activation of B-cells, such as the systemic
elevation in immunoglobulins and autoantibodies (24, 26, 27).

Regarding the analysis of the 22 types of immune cell
infiltration in this study, the pSS group demonstrated a more
active ratio of immune response in six subpopulations, such as
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FIGURE 4 | CTA-250D10.23 lncRNA associated with the predicted pSS-specific immune infiltration patterns and chemokine pathways. (A) Scatter plot of the gene
significance (GS) for weight vs the module membership (MM) in the Blue module, estimated by WGNCA. Fourteen lncRNAs were identified in the Blue module,
among which CTA-250D10.23 was the most significant one based GS and MM. (B) PCA of control, “Sicca”, pSS subgroup A and pSS subgroup B based on the
14-lncRNA signature in the Blue module. The CTA-250D10.23 lncRNA was the main contributor in the PCA plot in distinguishing between the pSS and non-pSS,
and the subgroup A and subgroup B (C) Heatmap of the expression of 14 lncRNAs in the pSS subgroup A and B (D) GSEA of high- and low-expressing CTA-
250D10.23 pSS samples shows the relevance to chemokine pathways. (E) ssGSEA estimated scores of chemokine pathways in high- and low-expressing CTA-
250D10.23 pSS samples. The estimated scores of high-expressing group were higher than the low-expressing group. (F) Heatmap of the expression of chemokine-
relevant genes coexpressed with CTA-250D10.23 lncRNA. (G) The expression of 14 lncRNAs in pSS patients in independent validation dataset GSE23117. 10 out
of 14 lncRNAs were up-regulated in early or moderate/severe pSS or both. #P < 0.05, early pSS versus control; *P < 0.05, moderate/severe pSS versus control.
(H) The correlation of the expression of CTA-250D10.23 lncRNA and the genes involved in chemokine pathways in the pSS patients (n = 11) of the independent
validation dataset GSE23117. CTA-250D10.23 shows strong correlation with CXCL13 and CCL5. (I) A model of potential mechanisms of the immune infiltration-
relevant CTA-250D10.23 lncRNA and chemokine pathways linked to predicted pSS-specific immune infiltration patterns.
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that of naïve B-cells. Glauzy et al. (28) also illustrated that the
frequencies of mature naive B-cells expressing increased
autoreactive antibodies in patients with pSS and the
impairment of peripheral B-cell tolerance might be potentially
correlated with pSS pathogenesis. Although we noted that a total
of 10 subpopulations exhibited disease correlation with pSS, only
four types of immune cells, including memory activated CD4 T-
cells, CD8 T-cells, gamma delta T-cells, and plasma cells, were
demonstrated to be involved in the distinction between the
control, “Sicca”, and pSS. The progressive enlargement of pSS
inflammatory foci with B-cell hyperactivity was shown to be a
key factor related to the pathogenesis and progression of pSS,
whereas T-cells and plasma cells were only found to contribute to
the disease-specific immune infiltration of pSS, which differed
from that of the control and “Sicca”.

Memory CD4+ T-cells are highly relevant to autoimmune
diseases because of their long-lived nature, efficient responses to
antigens, and specific potential to mediate recurring
autoimmune responses (29). However, many critical questions
about the potential contribution of memory CD4+ T-cells to
autoimmune diseases remain unanswered. Joachims et al. (30)
reported the crucial study that focused on the difference between
pSS and non-SS “Sicca” in terms of memory CD4+ T-cells and
revealed that the proportions and numbers of memory CD4+ T-
cells in the salivary gland were related to key SS features;
however, the interrelationship between memory T-cells and the
specificity of pSS is still not fully understood. Determining the
immunobiological contributions of CD4+ memory and CD8+ T-
cells in chronic autoimmune diseases is pivotal toward
developing improved targeted therapies for CD4+ or CD8+ T-
cell-driven autoimmune diseases. In addition, the increased
gamma delta T-cell population potentially contributes to
distinguish pSS from “Sicca”. Ichikawa et al. reported that the
proportion of activated cells in the gamma/delta + T-cell subset
was significantly higher in the peripheral blood of the pSS
patients than in the control and the frequency of activated cells
was correlated with the duration of disease in pSS patients (31).
Following their study, Gerli et al. reported that the relative
elevated proportion of gamma/delta+ T-cell subset proposed
that this T-cell subpopulation may be functional in the
pathological immune response encountered in pSS (32).
However, the solid evidence of the involvement of this T-cell
subset is scarce so far. Recently some notable studies driven by
the great interests of this subset have added a novel layer of
understanding of its functions in multiple fields, including but
not limited to tumor microenvironment and lung immune
response. Generally, this T-cell subset has a role in tissue
homeostasis and in surveillance of infection (33). In future
study, the experimental validation and the demonstration of
gamma delta T-cells in pSS would be of great interest because our
understanding of its role in pSS pathogenesis is still rare.

When investigating the underlying mechanisms of the
immune infiltration pattern, we found a notable involvement
of lncRNAs. A pilot study by Dolcino et al. (34) identified 199
differentially expressed lnRNAs, such as LINC00657 and
LINC00511, in peripheral blood mononuclear cells (PBMCs),
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suggesting that lncRNAs might be involved in the pathogenesis
of pSS. Inamo et al. (35) demonstrated that the LINC00487
lncRNA was significantly up-regulated in B-cells and associated
with the dysregulation of B-cells in pSS. In addition, the PVT1
lncRNA was found to be involved in glycolytic metabolism
reprogramming and proliferation upon activation of CD4+ T-
cells (36). However, the function of lncRNAs remains elusive. In
this study, we identified 14 lncRNAs associated with immune
infiltration events, the functional annotation of which also
highlighted their roles in immune-relevant signaling pathways,
including the NF-kappa B signaling pathway, B-cell receptor
signaling pathway, chemokine signaling pathway, and NOD-like
receptor signaling pathway (Figure 4I). Given that these
pathways are highly relevant to pSS pathogenesis, it would
suggest a strong connection between these lncRNAs and
disease. In particular, the CTA-250D10.23 lncRNA, which was
identified as the most significant gene associated with infiltration
events, is located close to TNFRSF13C and annotated as lnc-
TNFRSF13C-1 in the LNCipedia database (version 5.2), which
might suggest the link between CTA-250D10.23 and TNFRSF13C
and the potential role of CTA-250D10.23 in B-cell survival.
Interestingly, our study found a strong correlation between
CTA-250D10.23 and CXCL13. Serum CXCL13 is a biomarker
of salivary gland local pathology (37) and local increased of
CXCL13 also serves as one of features of the pSS patient subset
(38). As an echo to these lines of evidence, CXCL13 was
identified as the most robustly up-regulated gene in pSS
(Supplemental Figure 1). With a strong connection to this
chemokine, it would not be surprising that, even if it is a
speculation yet, CTA-250D10.23 also has an incredible role in
pSS by the involvement of CXCL13.

The previous study performed by Woon et al. found seven
pSS-relevant co-expressed gene modules by WGCNA, of which
four were up-regulated and three were downregulated in pSS
patients compared with the non-pSS sicca and controls. In their
study, they mainly distinguished pSS patients from the non-pSS
sicca and controls, while they did not make the comparison of
pSS and non-pSS sicca. The main goal of this study is to compare
the pSS patients with the non-pSS sicca patients to explore the
pSS-specific mechanisms, in particular, the immunopathogenesis
and disease-specific immune infiltration pattern. As shown in
Supplemental Figure 3 and Supplemental Table 8, the immune
infiltration-relevant Blue module identified in our study has a big
overlap with the Magenta and the Brown module out of the seven
pSS-relevant modules identified by Wong et al. (7), suggesting
the consistency between the two studies. Beyond these consistent
findings, we also identified 27 genes that were not mentioned in
Wong’s results, which include 12 lncRNAs that we identified as
the pSS immune infiltration-relevant lncRNAs in our study.

Several limitations in the present study should be
acknowledged. First, although the 14 lncRNAs were validated
by another independent dataset, all data analyses were based on a
single dataset, which might downgrade the universality of the
conclusion. Secondly, limitations of data analysis study should be
taken into consideration and the interpretations and conclusions
should be addressed carefully. It is no doubt that the evidence
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from clinical human samples would be the most expected way to
validate the predicted immune infiltration and add another layer
of significance to this study. Moreover, further studies of pSS-
specific animal models may also help to confirm our results.
Except for the limitations of in-silico study, the adjustment for
potential confounding clinical features would be helpful to get
more reliable results and conclusions. However, from the
database we did not find the cl inical information
corresponding to each gene profile, which means it would be
hard to eliminate the bias induced by the potential confounding
clinical features.
CONCLUSION

Aberrant predicted disease-specific immune infiltration patterns
and relevant genes revealed the potential immunopathogenesis
in pSS and provided some clues for the improved
immunotherapy of the disease by targeting specific immune
cells and genes.
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