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Strong dependence between functional domains in
a dual-function snoRNA infers coupling of rRNA
processing and modification events
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ABSTRACT

Most small nucleolar RNAs (snoRNAs) guide rRNA
nucleotide modifications, some participate in
pre-rRNA cleavages, and a few have both functions.
These activities involve direct base-pairing of the
snoRNA with pre-rBRNA using different domains.
It is not known if the modification and processing
functions occur independently or in a coordinated
manner. We address this question by mutational
analysis of a yeast box H/ACA snoRNA that
mediates both processing and modification. This
snoRNA (snR10) contains canonical 5- and
3’-hairpin structures with a guide domain for pseudo-
uridylation in the 3’ hairpin. Our functional mapping
results show that: (i) processing requires the 5
hairpin exclusively, in particular a 7-nt element;
(i) loss of the 3’ hairpin or pseudouridine does not
affect rRNA processing; (iii) a single nucleotide
insertion in the guide domain shifts modification to
an adjacent uridine in rRNA, and severely impairs
both processing and cell growth; and (iv) the delete-
rious effects of the insertion mutation depend on the
presence of the processing element in the 5’ hairpin,
but not modification of the novel site. Together, the
results suggest that the snoRNA hairpins function
in a coordinated manner and that their interactions
with pre-rRNA could be coupled.

INTRODUCTION

In eukaryotes, three of the four cytoplasmic rRNAs are
transcribed from polycistronic coding units. The nascent

transcripts contain 18S, 5.8S and 25S/28S rRNAs flanked
by 5 and 3’ external transcribed spacers (ETS) and two
internal transcribed spacers (ITS1 and ITS2). This precur-
sor undergoes nucleotide modification at scores of sites
and cleavage and trimming reactions (processing) to
form the mature rRNAs (Figure 1) (1-4). Both modifica-
tion and processing of rRNA require small nucleolar
RNAs (snoRNAs) that act through base-pairing with
pre-TRNA  (5-9). Most snoRNAs, functioning as
snoRNPs, guide pseudouridine (V) or 2’-O-methylation
(Nm) modifications; only a few are required for the
cleavage reactions (9). For the 76 known yeast
snoRNAs, 45 have one modification guide domain, 25
have two different guide domains and two mediate both
processing and modification reactions (10). These func-
tions are targeted by complementarities to the various,
specific rRNA regions.

While it is generally accepted that the snoRNA modifi-
cation and processing reactions do not occur randomly,
the basis and extent of coordination of these functions
remain unknown. Binding of snoRNPs in a coordinated
manner has implications for possible chaperone-like
functions for snoRNAs in ribosome assembly, and for cou-
pling modification and cleavage events. To gain insight
into these important questions, we have carried out func-
tional interference mapping of a yeast snoRNA (snR10)
that is known to be required for both rRNA modification
and normal processing. Our aim was to determine if the
different interactions with pre-rRNA occur independently
or are coordinated. Loss of this snoRNA causes slow
growth and processing defects and the W modification
has been shown to affect ribosome translation activity in
vivo (11,12). This knowledge facilitated our functional
analysis of the snoRNA by mutagenesis. The results
reveal a cooperative interference effect between the two

*To whom correspondence should be addressed. Tel: +1 413 545 2732, -0566; Fax: +1 413 545 3291; Email: 4nier(@biochem.umass.edu

Present addresses:

Xue-hai Liang and Qing Liu, Core Antisense Research, ISIS Pharmaceuticals, 1896 Rutherford Road, Carlsbad, CA 92008, USA.
Quansheng Liu, Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA.
Thomas H. King, Globelmmune, Inc. 1450 Infinite Drive, Louisville, CO 80027, USA.

© The Author(s) 2010. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



Ay A D A A,

358 —f=——rd] 11— 1y

18S 5.8S 258

‘Ao A
s L

i

208 1+ 27S
Nucleus |
Cytoplasm  J

208 o — OO0

5.8S 258
‘n
188 ]

Figure 1. Yeast pre-rRNA processing pathway. The major rRNA pre-
cursors and final products are shown. Cleavage sites relevant to the
present study are indicated, as well as the approximate location of
the ¥ guided by snR10 in 25S rRNA.

functional domains that is consistent with coordinated
binding to pre-rRNA.

Most nucleotide modifications in rRNA appear to
occur before processing is completed; among these
alterations the ¥ and Nm modifications are dominant.
In eukaryotes, box H/ACA snoRNPs carry out
pseudouridylation and box C/D snoRNPs mediate Nm
modification (6,9,13-17). Each snoRNP contains a single
snoRNA that selects the rRNA site to be modified, and a
set of four family-specific core proteins, one of which
catalyzes the modification reaction (5,18). The consensus
structure of the H/ACA snoRNAs, the type featured here,
contains two hairpin regions, linked by an H box (hinge
region) and an ACA box at the 3’-end (19,20) (Figure 2A).
In Saccharomyces cerevisiae, 29 H/ACA snoRNAs have
been identified and all but one have been assigned to
specific Ws in TRNA. For 14 of these snoRNAs both
hairpin structures target W, to sites in the same or different
rRNA species (10). The dual-function snoRNA featured
in the present study has both ¥ guide and processing func-
tions, with ¥ formation targeted to a single site.

More than 70% of the 45 W and 54 Nm modifications in
yeast TRNA are conserved in humans, and the function-
ally important regions of the ribosome are especially rich
in these modifications, arguing that they have important
roles in ribosome production or function. Structural
studies with small model RNAs containing ¥ and Nm
nucleotides have shown that these modifications stabilize
RNA structure in different ways (21-23). Considerable
genetic and biochemical evidence is now available
showing that these modifications are indeed important,
based on examining effects of blocking modification for-
mation by deleting specific guide snoRNAs or mutating
guide sequences. These results, many from our laboratory,
have revealed that depleting small subsets of modifica-
tions from different rRNA regions can significantly
impair ribosome biogenesis and activity (12,24-26).
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Figure 2. A 7-nt sequence element in snR10 is required for normal cell
growth and pre-rRNA processing. (A) Schematic structure of the snR10
snoRNA. Key features are identified, including the H and ACA boxes,
the W guide region and five segments complementary to pre-rRNA. The
complementary segments are numbered and highlighted with lines
outside the snoRNA structure. Segment 2, which is complementary
to the S’ETS (thick line), is revealed in the present study to be essential
for the processing function of snR10. Sites within and neighboring this
segment were subjected to mutational analysis; the flanking sites are
identified with dashed lines (Supplementary Table S1). A lower panel
shows complementarity between segment 2 and the 5ETS of
pre-tfRNA. The 7-nt element required for processing is boxed.
(B) Mutation of segment 2 impairs cell growth. Test cells expressing
snR10 with mutations were serially diluted (1:5), dotted on solid
medium lacking Trp, and incubated at 30°C for 30h. Control cells
include: a wild-type strain (YS602) with an empty vector (Con.), and
a parental test strain depleted of endogenous snR10 that contains either
an empty vector (—snR10) or a plasmid that expresses wild-type snR10
(+WT). Growth properties of cells expressing snR10 variants with
mutations in segment 2 or 4, (M2 or M4), are shown. The arrow
above the colony patterns indicates decreasing numbers of cells.
(C) Mutation of segment 2 causes accumulation of a 23S precursor
to 18S rRNA: this product is defined by the 5-end of the transcript
and the Aj cleavage. Total RNA was analyzed by northern hybridiza-
tion. U2 snRNA is shown as a loading control. (D) Polysome patterns
are altered by mutation of segment 2. Whole-cell extracts containing
similar amounts of RNA were separated by sucrose gradient
fractionation and ribosomal complexes detected by UV absorbance.
The identities of ribosomal complexes are indicated for control cells
(Con.). Reductions in the level of free 40S subunits are marked by
open arrowheads and increases in the level of free 60S subunits by
asterisks.

Modification is accepted to be the major function of the
snoRNPs, however, since all snoRNPs appear to act
through base-pairing with pre-rRNA, it is also possible
that some modifying snoRNPs could affect pre-rRNA
folding, distinct from the effect of modification itself
(27). In the case of the processing snoRNPs, remodeling
pre-rRNA seems highly likely (see below) (28-34).
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In the yeast rRNA processing pathway, the longest
detectable pre-rRNA—a 35S species, 1is cleaved
sequentially to generate the immediate precursor of 18S
rRNA (20S) and a 27S precursor that contains the 5.8S
and 25S rRNAs (Figure 1). The 20S pre-rRNA, which is
pertinent to the current study, is exported to the cyto-
plasm where it is further cleaved (at site D) to create
18S rRNA (35). A few snoRNPs are also required for
specific early cleavages. In yeast, the processing
snoRNPs, i.e. U3, Ul4, Ul7/snR30 and snR10, are
required for 18S rRNA maturation. The first three are
thought to be common to all eukaryotes, whereas snR10
is thus far yeast-specific. U3 and Ul14 are C/D snoRNAs
and snR30 and snR10 are H/ACA species. The universal
processing snoRNAs contain sequence elements that
base-pair with pre-rRNA without guiding modification,
however, the roles of these elements and, indeed, the
snoRNPs themselves remain to be defined. Speculation
includes remodeling of pre-rRNA for cleavage by cis- or
trans-acting components (28,31,34,36,37).

The U3 C/D snoRNP is the first to associate with
full-length 35S pre-rRNA (38). In mediating the cleavages
at sites Ag, A; and A,, a 10-nt element of U3 base-pairs
with a 5 ETS segment (39-44). In addition, a 7-nt segment
in U3 base-pairs with the 5’ region of 18S rRNA, which
otherwise forms a pseudo-knot structure (31), inferring the
U3 snoRNP has a role in pre-rRNA folding. The Ul4
C/D snoRNA contains two sequence elements (13 and
14 nucleotides) complementary to pre-rRNA. One
base-pairs with the 5-end of 18S rRNA and is essential
for pre-rRNA cleavages (28,45). The other is a guide
sequence for a methylation site in 18S rRNA (Cm414),
and is dispensable for processing (28,46). Finally, produc-
tion of 18S rRNA has been shown to also depend on two
short complementary elements in the H/ACA snoRNA
snR30/U17, which base-pair with 18S rRNA (34,47).
Determining how these processing snoRNAs affect
pre-rRNA cleavages remains an important challenge.

The yeast U3, Ul4 and snR30 snoRNAs are all essen-
tial for cell growth, whereas deletion of snR10, the
snoRNA examined here, has a less severe effect, resulting
in a moderately reduced growth rate and a cold-sensitive
phenotype (11). Although not severe, this phenotype can
be used to screen for functional requirements of the
snoRNA sequence elements. In the absence of snR10, pro-
cessing of 18S rRINA is moderately impaired as evidenced
by accumulation of full-length pre-rRNA (35S) and an
intermediate that is normally of very low-abundance
(23S); the latter species is generated by cleavage at site
Aj prior to removal of the 5 ETS segment (Figure 1)
(48,49). The snR10 snoRNA also directs ¥ modification
at site U2923 in the A-loop of the peptidyl transferase
center (PTC) region in 25S rRNA (Fig 1, ¥) (14,15).
This ¥ is not required for pre-rRNA processing, as
revealed by a point deletion in the guide domain of
snR10 that disrupts W formation, yet has no effect on
cell growth or pre-rRNA cleavages (12). This observation
suggests that the processing function depends on struc-
tural elements outside the guide domain. Thus far, no
processing elements have been identified in snR10, and it
is not known if the modification guide domain

communicates with its processing determinant(s). In this
study, we identify a sequence element that is necessary for
normal pre-rRNA processing. Functional mapping also
revealed that the processing and modification domains
are interconnected functionally.

MATERIALS AND METHODS
Plasmids

Mutations in snoRNA coding units were created using a
PCR approach (24,50). All constructs are listed in
Supplementary Table S1.

Strains and cell growth

A yeast strain (YS602) with an empty vector was used as a
positive control throughout the study. The parental test
strain lacks the snR10 snoRNA gene, which was replaced
with a marker gene using targeted gene disruption. The
strain was transformed with plasmids that encode
wild-type or mutant snR10 snoRNAs. All experimental
strains are listed in Supplementary Table S2. For growth
comparisons, yeast cultures prepared in synthetic medium
lacking Trp were adjusted to 2 ODggo/ml, diluted 1:5
serially, dotted on plates with synthetic medium lacking
Trp, and incubated at 30°C for 2-3 days (24).

RNA preparation and analysis

Total RNA was isolated from cells using the Tri-reagent
procedure (Sigma) following the manufacturer’s instruc-
tions. The presence and abundance of snoRNAs and
rRNA species were determined by northern blotting
(51). To examine the rRNA components in an abnormal
50S pre-rRNP complex detected in a C-insertion mutant
of snR10 (M + C), RNA was prepared from sucrose
gradient fractions containing this complex and subjected
to northern analysis (52). The ¥ and Nm modifications
were detected by primer extension analysis (53,54).

Analysis of polysome patterns

Whole-cell extract was fractionated by sucrose gradient
(7-47%) centrifugation and examined as described
previously (24).

In vivo pulse-chase labeling of rRNA

Test cells were grown in synthetic medium lacking
methionine to an ODggyy of 0.8-1.0, and ~3 ODgq units
of cells were diluted to 3ml with the same, prewarmed
medium. Next, 0.ImCi of [methyl->H]methionine
(I1mCi/ml, PerkinElmer) was added and the cells
pulse-labeled at room temperature for 3min. Labeling
was terminated by addition of 200 ul of 60 mM unlabeled
(D, L)-methionine. Subsequently, 800ul samples were
taken at time points 0, 2, 5 and 15min after the chase
was initiated, and immediately frozen in liquid nitrogen.
Total RNA was prepared and dissolved in 10 pul water.
Three microliters of RNA was fractionated on 1.2%
agarose gels, transferred to a membrane and visualized
with a Fuji Phosphorlmager (24).



In vivo chemical probing of RNA structure

Chemical modification with dimethyl sulfate (DMS) and
primer extension probing of snoRNA and rRNA structure
were carried out as described earlier (24).

RESULTS

A 7-nt sequence element in the 5 hairpin of snR10 is
required for pre-rRNA processing

Our functional study of snR10 proceeded in three stages:
(1) identifying and testing the importance of elements com-
plementary to pre-rRNA for rRNA processing activity;
(i1) examining effects of guide domain mutations on ¥
formation and rRINA processing; and (iii) evaluating the
relationship between the processing and modification
domains.

Because other processing snoRNAs act through
base-pairing with pre-rRNA, we reasoned this is likely
the case for snR10. Screening of the snR10 sequence
with bioinformatics tools LALIGN Server (http://www
.ch.embnet.org/software/LALIGN_form.html) identified
five segments of at least 8 nt that are complementary to
different regions of pre-rRNA (Figure 2A). The impor-
tance of these sequences was tested by replacement with
complementary nucleotides and screening for effects on
growth and pre-rRNA processing. We anticipated that
functional defects in processing should impair growth
rate, as seen earlier for deletion of snR10 (11). The
mutant snoRNAs were characterized in a test strain
depleted of wild-type snR10, and determined to be
produced at levels comparable to wild-type snR10
expressed in the same way (data not shown). As
expected, mutating the W guide domain disrupted modifi-
cation at U2923 in 25S rRNA (segment 5), as shown by
primer extension analysis (data not shown).

The growth data revealed that only one substitution
mutation caused slower growth—in particular, mutation
of segment 2 in the 5 half of snR10 (U;3GAAGAAUgs).
Based on growth on solid medium, the mutant strain has a
growth rate that is ~20% of normal, essentially the same
as the effect of snR10 depletion (M2, Figure 2B, and data
not shown). This observation suggests that segment 2,
which is complementary to the 5 ETS of pre-rRNA
(=327 to —320), is involved in processing. Indeed, the
mutation caused significant accumulation of the
normally low-abundance 23S pre-rRNA (Figure 2C).
Subunit levels were also affected, with strong accumula-
tion of free 60S subunit (~5-fold) and dramatic reduction
in the level of free 40S subunit (~4-fold), as determined by
analysis of polysome profiles by density gradient
fractionation (Figure 2D). These defects mimic exactly
those that accompany loss of wild-type snR10, indicating
that the complementary segment is required for its pro-
cessing activity.

To better define the sequence and folding requirement
of this particular snoRNA region, we analyzed 10 addi-
tional substitution mutations of 1-8nt (Supplementary
Table S1). These included changes in the flanking
sequences and sequences predicted to be single and
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double stranded (Figure 2A, indicated as dashed lines).
Together, the new data defined a 7-nt sequence required
for normal processing function (C7sCAUGAAg;). Two
mutants, C75CAU78—>GGUA and U78GAA81—>ACUU,
exhibited growth defects similar to that caused by loss of
snR10 itself (Figure 2A, lower panel, and data not shown).
The important 7-nt sequence partially overlaps the com-
plementary sequence examined initially, with the 3" 4nt
located in the complementary region (Figure 2A, lower
panel). In addition, mutations designed to disrupt the pre-
dicted secondary structure of the upper stem had no effect
on cell growth (data not shown). These results show the
7-nt element required for processing likely functions in a
sequence-dependent manner.

Next, we carried out an in vivo chemical probing
analysis to determine if the 7-nt processing element is
single-stranded and available for base-pairing. The struc-
ture probe was DMS, which methylates accessible A and
C nucleotides. Following DMS treatment, total cell RNA
was prepared and the relevant snoRNA region was
examined by primer extension analysis. The results show
that the 7-nt region is clearly modified by DMS (Cy4 to
Agy), indicating that this segment is single-stranded as pre-
dicted in the folding model (Figure 3A and B). The results
also suggest that the novel processing element is not
covered by protein.

The snoRNA information required for processing is
located exclusively in the 5 hairpin

The mutational results available for the processing and
modification functions of snR10 suggest that the informa-
tion for processing of 18S rRNA is located in the
5" hairpin of the snoRNA (Figure 2), and that for modi-
fication of W2923 in 25S rRNA occurs solely in the
3’ hairpin (12). To test this model directly, we attempted
without success to separate these functions by expressing
the individual hairpins alone. While single hairpin
snoRNAs occur in trypanosomes and euglena (55,56), to
our knowledge, none have yet been stably expressed in
S. cerevisiae. Thus, we turned to the reliable strategy of
expressing hybrid snoRNAs created by combining the
5" or 3’ hairpin of snR10 with the appropriate hairpin
from another yeast H/ACA snoRNA. In these experi-
ments, the second snoRNA was snR36, which guides ¥
modification in 18S rRNA. Depletion or over-expression
of snR36 does not affect cell growth or pre-rRNA process-
ing (our unpublished data). The origins of the hairpins are
indicated in the hybrid names, for example, a hybrid (H)
containing the 5 hairpin of snR10 and 3’ hairpin of snR36
is designated H10/36, and the alternate combination is
H36/10 (Figure 4A).

The hybrid snoRNAs were expressed at normal levels in
the test strain lacking snR10, and as anticipated, the
hybrid containing the 5 hairpin of snR10, but not the
3’ hairpin, restored normal growth for cells depleted of
snR10 (Figure 4B and C). The inference that the
5" hairpin of snR10 is sufficient for its processing
function was borne out by the finding that this hybrid
also restored a normal polysome profile (Figure 4D).
Also, as expected, the hybrid containing the 3’ hairpin
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Figure 3. The 7-nt processing element in snR10 is single-stranded.
(A) Secondary structure of the 5'-hairpin region in snRI10 that
contains the 7-nt processing element. The structure was predicted
with the folding program Mfold, confirmed and refined using the
in vivo chemical probing data in (B) below. The relative extent of
DMS modification is indicated by the number of asterisks. The seven
nucleotides required for pre-rRNA processing are circled. The potential
H box is indicated. (B) The 7-nt element is present in an internal loop
of the 5 hairpin. Following DMS modification in vivo, the structure of
snR10 was probed by primer extension analysis with extension products
separated on an 8% sequencing gel, next to sequencing products
created with the same primer. Nucleotides accessible to DMS are
identified.

from snR10 restored the W2923 modification (Figure 4E).
Together, these data demonstrate that the information
required for normal rRNA processing is exclusively
located in the 5" hairpin of snR 10, and that the processing
and modification functions are mediated by the 5" and 3’
hairpins, respectively.

Earlier, we showed that the rate of rRNA processing
is normal for a snR10 mutant with only a point dele-
tion in the guide domain that disrupts its modification
function (M—C) (Figure 5A) (12). The same cells
also accumulate half-mer polysomes, whereas cells
expressing the present hybrid with the 5 hairpin of
snR10 do not (Figure 4D); W2923 formation was
blocked in both strains. The new data argue that loss of
the ¥ modification is not the basis of the half-mer
polysome effect. A noteworthy difference between the
two mutant snoRNAs is that the snoRNA with the
point deletion has the potential to base pair with its
normal target sequence in pre-rRNA, whereas the
hybrid snoRNA with the 3’ hairpin of snR36 (H10/36)
does not. These observations infer that altering the
base-pairing pattern between the guide domain of snR10
and pre-rRNA may affect pre-rRNA folding or pre-rRNP
assembly (see below).
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Figure 4. The processing function of snR10 is mediated by its 5
hairpin. (A) The roles of the 5 and 3’ hairpins in snR10 function
were examined with hybrid snoRNAs containing hairpins from snR10
and snR36 in test cells lacking snR10. The structures of the hybrid
snoRNAs are depicted schematically, with the snR10 portion shown
with thick lines and the snR36 portion with thin lines. (B) The
hybrid snoRNAs are expressed at normal levels as evident in
northern hybridization results. (C) Normal growth occurred with the
hybrid containing the 5" hairpin of snR10 (H10/36), but not the hybrid
containing the 3’ hairpin of snR10 (H36/10). The snoRNA snR38 was
used as a control for loading. (D) A normal ribosome—polysome
pattern was restored by the hybrid snoRNA with the 5 hairpin
from snR10 (H10/36). Half-mer polysomes are evident in test cells
that express a snR10 mutant lacking a C nucleotide (M-C) in the
guide domain; this deletion blocks W2923 formation (12).
Accumulation of half-mer polysomes is indicated by an arrow.
(E) The 2923 modification is formed with a hybrid snoRNA contain-
ing the 3’ hairpin of snR10 (H36/10). Total RNA was treated with
CMC and ¥ detected by primer extension analysis. The extension
stops representing W2923 and W2880 (guided by snR10 and snR34,
respectively) are identified.

A mutation in the guide domain that shifts ¥ modification
to an adjacent site severely impairs growth

Our functional mapping included mutating the guide
domain of snR10 to identify potential effects on rRNA
modification and processing. We were especially interested
in the possibility of shifting ¥ formation to an adjacent
uridine and determining if this shift influences ribosome
biogenesis or function. With the knowledge that
the distance between the ACA box and the target
uridine is an important determinant in pseudouridylation
(14,15), we created two small insertion mutations pre-
dicted to alter modification specificity. The mutations
include C and CA insertions in the 3’ element of
the guide motif (M + C and M + CA) (Figure 5A).



Both mutant snoRNAs were expressed at nearly nor-
mal levels in the test strain, and each caused ¥ modifi-
cation to be shifted from U2923 to U2924 (Figure 5B, C).
No modification appears to occur at the natural site.
The modification level with the C-insertion mutation
is similar to that observed with wild-type snRI10,
whereas that with the CA-insertion is somewhat weaker
than normal (Figure 5C). These results confirm the impor-
tance and relationships of the snoRNA-substrate
base-pairing interactions in modification specificity and
efficiency.

Surprisingly, the C-insertion mutation causes a
near-lethal phenotype in the snR10 depleted cells. Only
moderate effects on growth rate occur with deletion of
snR10 or with expression of snR10 bearing the
C-insertion mutation in control cells (data not shown).
However, expression of the C-insertion variant of snR10
in cells depleted of wild-type snR10 impairs cell growth
severely, to a much greater extent than simple loss of the
snR10 snoRNA (Figure 5D). The CA-insertion also
causes slower growth; however, the effect is similar to
that caused by snR10 depletion. These results suggest
that the deleterious effects of the insertion mutations on
cell growth are caused by either the shift in modification
location, or the altered base-pairing between the mutant
snoRNAs and pre-rRNA, or a combination of these
effects.
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Figure 5. A 1-nt insertion mutation in the ¥ guide domain severely
impairs cell growth. (A) Sequences of three mutant variants of snR10
snoRNA. The uridine normally targeted in 25S rRNA (U2923) is
circled and an adjacent uridine that is modified with the two insertion
variants of snR10 is marked with an arrow (U2924). In one mutant, a
single C (italicized) has been deleted (M—C). Two other mutants
contain C and CA insertions at the same position, as indicated by an
arrow (M + C, M + CA). (B) Northern hybridization results show that
the two insertion mutant snoRNAs are expressed at comparable levels.
(C) The shift in ¥ modification site for the insertion mutations is
shown by primer extension data, as in Figure 4, and the positions of
the natural and novel Ws are indicated. (D) The C-insertion mutation
severely impairs cell growth (M + C). Growth was examined in a serial
dilution assay as in Figure 2B.
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The steady-state levels of rRNA are dramatically reduced
by the C-insertion mutation

With a view to determining the basis of the severe growth
defect caused by the C-insertion, we examined the rRNA
levels in the mutant cells, which reflect the level of mature
ribosomes. In cells expressing the C-insertion variant of
snR 10, the levels of mature 18S, 5.8S and 25S rRNAs were
reduced by ~60-80%, whereas the levels of the 35S
full-length precursor and pre-18S rRNA (20S) were
increased by ~2-fold, as compared with control cells
(Figure 6A). No significant difference was found for the
278 pre-rRINA, a precursor of the large subunit rRNAs, or
for 5S rRNA, which is transcribed by RNA pol III. The
levels of two control RNAs, tRNAM™Y and U2 snRNA,
remained unchanged in the C-insertion mutant cells (not
shown). Notably, for the CA-insertion mutation, no sig-
nificant reduction in the levels of 18S and 25S rRNA was
observed (data not shown). These results indicate that the
C-insertion mutation causes a strong reduction in the level
of RNAs generated by RNA pol I, presumably due to
impaired processing since 35S and 20S pre-rRNAs accu-
mulate in the mutant cells.

In yeast, the 20S precursor to 18S rRNA is formed in
the nucleolus and is then exported to the cytoplasm where
it is cleaved to form mature 18S rRNA (4). To determine if
the C-insertion mutation affects export of 20S pre-rRNA,
we examined its cellular distribution. This was done by
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Figure 6. The single nucleotide insertion in the guide domain causes
a strong decrease in rRNA levels. (A) Northern hybridization
probing of rRNA species reveals sharp reductions of ~60-80% in
the level of mature rRNAs, and significant accumulation of 35S and
20S pre-rRNAs. (B) The steady-state levels of 18S, 5.8S and 25S
rRNAs are dramatically reduced as indicated by measuring the hybrid-
ization signals in (A), and normalizing to the amount of 5S rRNA.
(C) The 20S pre-rRNA with W at the novel site accumulates normally
in the cytoplasm, as indicated by the presence of dimethylation
modifications, which are formed only in cytoplasmic 20S pre-rRNA.
The methylation modifications were detected by primer extension
analysis.
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assaying the presence of a unique pair of dimethylation
modifications (m®,A1781m®A1782) that are catalyzed by
the enzyme Dim1p after 20S pre-rRNA has been exported
to the cytoplasm (57,58). The presence of the dimethyl
modifications was probed by primer extension analysis
and is reflected by strong extension stops (Figure 6C).
Dimethylations were detected in both mutant and
control cells showing that 20S pre-rRNA containing the
mis-targeted W is exported to the cytoplasm.

The C-insertion mutation severely impairs rRNA
processing and causes accumulation of an
abnormal rRNP complex

We determined that pre-rRNA processing is strongly
impaired by the C-insertion mutation in the guide
domain, as examined by in vivo pulse-chase labeling with
[*H]-methionine and gel electrophoresis (Figure 7A; strain
M + C). Production of 18S rRNA was severely inhibited,
as reflected by accumulation of 20S precursor at a high
level after 15min into the chase and a strong delay in the
appearance of mature 18S rRNA. In addition, two low

abundance species often undetected, 23S and 21S
pre-rRNAs, also accumulated. The 35S and 32S
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Figure 7. rfRNA processing is severely impaired by the single
nucleotide insertion in the ¥ guide domain. (A) rRNA processing
was examined by in vivo pulse-chase labeling. Test cells were labeled
with [methyl->’H]methionine, and total RNA was prepared during a
chase with unlabeled methionine. RNA was separated in a 1.2%
agarose gel, transferred to a membrane, and the radioactive bands
visualized with a phosphorimager. Normal rRNA species are identified
by arrows and unusual pre-rRNAs are marked with arrowheads.
(B) The C-insertion mutation causes an abnormal polysome pattern
(M + C). Polysome profiles were analyzed as in Figure 2. The
abnormal 50S complex in the mutant cells is indicated by an
arrowhead.

-snR10

pre-TRNAs accumulated and persisted at least Smin into
the chase, whereas in control cells, these species were
quickly processed and disappeared by 2min after the
chase was initiated. Thus, as a consequence of the
C-insertion mutation, cleavage is delayed at the site that
separates precursors for the small and large subunit
rRNAs (site A,). Cleavages at sites that generate the 32S
pre-rRNA (A and A;) and conversion of 27S precursor to
25S rRNA were also moderately delayed. Interestingly,
the CA insertion mutation causes only minor processing
defects, as evidenced by slightly slower maturation rates.
Taken together, the results indicate that although the
guide domain of snR10 and the W that it normally
targets are not required for pre-rRNA processing, a
point mutation in the guide sequence can lead to severe
impairment of rRNA processing, especially for production
of 18S rRNA.

To determine if the C-insertion mutation affects produc-
tion of ribosome particles, the patterns of these complexes
were analyzed for equivalent amounts of rRNA
(Figure 7B). Interestingly, in the mutant cells, the level
of free 40S complexes was 2- to 3-fold higher than for
cells depleted of snR10, although the C-insertion
mutation causes much stronger processing defects in 18S
rRNA production than simple loss of snR10. The
C-insertion mutant also exhibits an increase in the level
of free 60S subunits (1.5-fold higher), but to a lower extent
than the snR10 depletion condition, where an increase of
>3-fold was seen (Figure 7B). In the C-insertion mutant,
the levels of 80S ribosomes and polysomes are reduced by
~50%, compared with control cells expressing wild type
snR10. An abnormal complex of ~50S was observed in
the C-insertion mutant cells. This complex is most likely
an intermediate of the small subunit, since northern
probing of gradient fractions containing the complex
revealed increased accumulation of 20S pre-rRNA, but
not 27S pre-rRNA (data not shown). In the CA insertion
mutant (M + CA), the polysome pattern is also altered,
but to a much smaller extent. Here, the level of free 40S
complex was reduced by ~50% with a concomitant
increase of ~80% in free 60S complexes; levels of 80S
ribosomes and polysomes were nearly normal. Thus, the
data for this mutant suggest that subunit association and
ribosome function are impaired moderately. Together, the
results show that the C-insertion mutation has a severe
negative impact on pre-rRNA processing and ribosome
formation.

The snoRNA insertion mutations cause changes in
ribosome structure

Both the C and CA insertion mutations shift the targeted
Y to an adjacent site. The patterns of complementarity
between the two mutant snoRNAs and pre-rRNA are dif-
ferent from each other, and also different from that of
wild-type snR10 (Figure 5A). Because altered base-pairing
of snoRNA with pre-rRNA could, in principle, influence
pre-rRNA folding, and because ¥ modifications are
already known to stabilize RNA duplexes, we next
asked if the two mutant snoRNAs cause detectible
changes in ribosome structure. Screening was by



chemical probing of rRNA in vivo with DMS, followed by
primer extension analysis of the PTC region in 25S rRNA
that includes the W sites of interest. One nucleotide in this
region showed a qualitative change in DMS reactivity
(C2889): it is strongly modified by DMS in control cells,
but not in cells expressing either mutant snoRNA
(Figure 8A and B). This result indicates that ribosome
structure is indeed changed by the mutant snoRNAs,
due either to the altered interaction between the mutant
snoRNAs and pre-rRNA or the altered ¥ modification
pattern.

The deleterious effect of the C-insertion mutation in the
guide region depends on the presence of the processing
element in the 5 hairpin

While both insertion mutations cause the same shift in ¥
targeting, the C-insertion mutation results in a substan-
tially higher modification yield (full versus ~60%) and
much stronger defects in growth and processing. These
observations suggest that the much stronger detrimental
effects of the C-insertion mutation are due to the different
base-pairing patterns between the two insertion mutant
snoRNAs with pre-rRNA, or seemingly less likely, the
different levels of ¥ modification at the same novel site.
Since the 3’ hairpin of snR10 can be deleted without
affecting processing, an additional interesting possibility
is suggested as the basis of the strong processing defects
caused by the C-insertion mutation. In particular, the
defects could result from a cooperative negative interfer-
ence effect between the processing and modification
domains of snR10. Such an effect could occur directly or
indirectly. For example, an altered sequence in the guide
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Figure 8. A change in rRNA structure accompanies the shift in W
modification. (A) Secondary structure of the A-loop region of the
PTC region in 25S rRNA. The arrow identifies a nucleotide (C2889)
with reduced DMS reactivity, as shown in (B). The normally modified
¥2923 site and new site of modification (U2294) are circled. (B) Primer
extension probing of rRNA structure in the A-loop region. Total RNA
was prepared from cells treated with DMS and subjected to primer
extension mapping. A nucleotide (C2889) showing altered DMS acces-
sibility in test cells is marked with an arrow. A control nucleotide
(A2847) sensitive to DMS treatment in all test strains is marked with
an arrowhead.
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domain could cause a change in the structure of the
snoRNP that affects its interactions with pre-rRNA.

We reasoned that the importance of the modification
level at the novel sites could be evaluated using new
hybrid guide snoRNAs that guide modification at the
novel site with the same level as the C-insertion
mutation, but should not cause the detrimental effects
seen for the C-insertion mutation. In this context, we
examined the effects of expressing a hybrid snoRNA
that contains the 3’ hairpin of snR10 with the
C-insertion mutation joined with the 5 half of snR36
(H36/10 + C) (Figure 9A). This hybrid snoRNA was
expected to give the same modification specificity and
yield as the C-insertion mutation. If this is indeed the
case, and growth and processing are not affected or only
moderately affected, those results would be strong
evidence that the severe interference effects are not due
to the change in modification specificity or yield.

The new hybrid snoRNA accumulated at a level com-
parable to the original C-insertion mutant snoRNA (data
not shown), and as expected, ¥ modification was also
shifted to U2924 and at a similar level (Figure 9B). Cell
growth rate with this hybrid was moderately impaired
(20% of the normal), but to a very much lower extent
than the snR10 mutant with same 3’ domain (20%
versus 1% of normal growth rate) (Figure 9C). Notably,
the effect of the hybrid snoRNA on growth was compa-
rable to loss of snR10 itself. In cells containing this hybrid
snoRNA, pre-rRNA  processing and  ribosome
fractionation patterns were also similar to those seen for
snR10 depletion (Figure 9D and data not shown). The
moderate defect in processing is most likely due to loss
of the 5" hairpin from snR10, which is required for normal
processing. Thus, the defects on cell growth and
pre-rRNA processing observed for the new hybrid
snoRNA mimic those of snR10 depletion. Importantly,
the defects are much less severe than those seen for the
C-insertion mutation, which reduced the growth rate by
~99% and strongly impaired processing (Figure 7).
Together, these results show that the strong deleterious
effects of the C-insertion mutation are not due to the
change in W location or level of modification. Rather
these severe effects require the presence of the 5" hairpin
of snR10.

Our prediction that the deleterious effects of the
C-insertion mutation require the presence of the 7-nt pro-
cessing element in the 5 half was tested by creating
another snR10 double mutant. This variant contains
both the C-insertion in the 3’ domain and the four
nucleotide substitution mutation in the 7-nt element
described above (U;3GAAg;) (Figure 9E). This mutant
snoRNA (M2 + C) accumulated normally (data not
shown), and caused a decrease in growth rate similar to
that seen for snR10 depletion (20% of normal), but not
the very severe growth defect seen for the C-insertion
mutation alone (Figure 9F). Thus, the strong detrimental
effects of the C-insertion mutation in the 3’ hairpin of
snR10 is suppressed by introducing a mutation into the
7-nt processing element in the 5 hairpin that blocks the
normal processing function of snR10. These results
indicate that the strong deleterious effects on growth and
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Figure 9. The severe growth defect caused by the C-insertion mutation
is not due to mis-targeting of the ¥ modification. (A) Construction of a
hybrid snoRNA with the mis-targeting guide domain from snR10
(H36/10 + C). The mutant snoRNA includes the 5 hairpin of snR36
(thin line) and 3’ hairpin of snR10 (thick line) with the C-insertion
mutation. (B) The levels of ¥ modification at the novel site are
similar for both the novel hybrid and the initial snR10 variant with
the C-insertion mutation (H36/10 + C and M + C), as shown by
primer extension data. (C) The hybrid snoRNA with the C-insertion
in the guide domain causes moderate growth defects similar to those
seen for snR10 depletion. (D) Similar moderate defects in processing
are also apparent for the hybrid snoRNA with the C-insertion
mutation and for the snR10-depletion condition. (E) Structure of a
double mutant of snR10 that includes changes in both the processing
and modification hairpin domains (M2 + C). The changes are: substi-
tution mutations in segment 2 of the 5’ hairpin, and the C-insertion in
the guide region in the 3’ hairpin. (F) A 4-nt substitution in the 7-nt
processing element suppresses the growth defect caused by the 3’
C-insertion mutation. (G) Co-expression of hybrid snoRNAs H10/36
and H36/10 + C in snR10-depleted cells. Total RNA was analyzed by
northern hybridization using probes specific to the 5 half (upper
panel), or the 3’ half (middle panel). 5S rRNA was used as a control
for loading. (H) No growth defect resulted from co-expression of the
H10/36 and H36/10 + C snoRNAs.

processing caused by the C-insertion mutation depend on
the presence of the wild type processing element in the 5’
hairpin. The conclusion that the processing element and
modification guide motif act in cis is further supported by
the finding that co-expression of H10/36 and H36/10 + C
mutants in snR10 depleted cells did not cause growth
defects (Figure 9G and H). The nature of the interference

effects indicates cooperative interactions between the pro-
cessing and modification domains of this snoRNA.

DISCUSSION
The novel processing element

The 7-nt element in the 5’ hairpin required for normal
rRNA processing is present in a single-stranded region
and processing depends on the sequence of the element,
but not the nearby secondary structure features. This
element partially overlaps (4 nt) an 8-nt sequence comple-
mentary to pre-rRNA, suggesting that this portion and
the adjoining non-essential complementary nucleotides
interact with pre-rRNA. Although not all 7 nt are comple-
mentary to pre-rRNA, the element could mediate process-
ing through partial binding to rRNA or other means, such
as interacting with a protein or another RNA sequence
required for activity. The DMS chemical probing data
seem to argue against stable binding of the 7-nt element
with a partner molecule(s), since it is accessible to DMS
modification. A transient interaction for this region of the
snoRNP is also possible.

Presently, we favor the possibility that the 7-nt element
mediates processing by direct contact with pre-rRNA, like
other processing snoRNAs. Among the snoRNAs with
this function, three others bind to rRNA through
sequence elements required for processing activity. These
include: (i) the H/ACA processing snoRNA snR30/U17
with two essential conserved motifs of 9 and 7nt (34,47),
(ii) the C/D snoRNA U3 with two essential sequences
(10 and (iii) 7nt) (3,31,40) the C/D snoRNA Ul4 with
an essential 13-nt element (59). Mutational results for
Ul4 strongly infer that this element and a 14nt
methylation guide element function together in rRNA
folding (see below) (28). Any one of these snoRNAs,
including snR10, could mediate processing through
base-pairing with pre-rRNA, for example, by assisting in
an autocatalytic cleavage reaction, or recruiting a trans-
acting nuclease.

The present mutational analysis also shows that loss of
the 3’ hairpin or the ¥ modification it guides does not
affect rRNA processing. However, a C-insertion
mutation in the guide domain that causes ¥ formation
to be targeted to an adjacent rRINA site strongly impairs
processing, especially for 18S rRNA. This same mutation
also causes accumulation of an abnormal, 50S pre-rRNP
complex that is likely a precursor of the 40S subunit.
These findings suggest the structure of the snoRNP-
pre-rRNP complex is altered by the C-insertion
mutation and that these changes are the likely basis of
the interference in processing (see below).

The processing defect caused by the C-insertion mutation
does not result from the modification shift

The results argue that the shift in W position caused by the
C-insertion is not the basis of the strong processing
defects. In particular, two hybrid snoRNAs that cause
the same shift do not have strong processing and growth
defects (M36/10 + C and M2 + C). Notably, the levels of
modification at the novel site are comparable for the three



mutant snoRNAs with the same C-insertion. This situa-
tion argues that the processing defect stems from altered
interaction of the dual-function snR10 snoRNP with
pre-TRNA, rather than the change in modification site
or yield. For example, altering the sequence in the guide
domain could alter (or create) binding of a protein or
interacting RNA (rRNA or other). Such an effect could
influence the processing activity of the snoRNP, perhaps
by interfering with the function of the 5 processing
domain. It seems unlikely, however, that the interference
in processing is due solely to altered binding properties of
the snoRNA guide region. Arguing against that possibility
is the finding that two mutant snoRNAs with the
C-insertion and a second mutation do not exhibit the
strong processing defects seen for the C-insertion
mutation alone. More likely, we propose, is that the
severe defect is caused by a strong, negative cooperative
effect involving interactions of the mutated modification
region and the 5 processing region with pre-rRNA,
directly or indirectly.

Functional links between the processing and
modification domains

Our functional mapping shows that the processing and
modification functions of snR10 reside in distinct struc-
tural domains that can be separated genetically. However,
we also show that a point insertion mutation in the
3’ hairpin severely impairs processing and that this effect
depends on the presence of the 7-nt processing element
in the 5 hairpin. Mutating the processing element
suppresses the severe growth defects caused by the
C-insertion mutation in the guide domain, revealing that
the modification and processing domains have a coopera-
tive relationship. In addition, co-expression of hybrids
H10/36 and H36/10 + C did not cause growth defects,
suggesting that the two domains act in cis. An especially
interesting possibility is that the two domains contact
pre-rRNA simultaneously or in a tightly coupled
fashion. In this context, snR10 could serve as a bridging
factor to bring together or stabilize precursor forms of the
small and large ribosomal subunits in a common complex.
Also attractive is the possibility that such interactions
could coordinate the modification and processing reac-
tions to some benefit.

A cooperative relationship between snoRNA processing
and modification elements has been observed for the uni-
versal Ul4 snoRNA. This snoRNA (a C/D species)
contains two long sequences (13 and 14 nt) complemen-
tary to 18S rRNA; one required for rRNA processing and
the other for 2’-O-methylation (46,59). Our laboratory has
shown that a point mutation either in the processing
element or in the modification guide domain has no
effect on cell growth, but when combined cell growth is
severely impaired (28). This situation suggests that the
functions of the two snoRNA domains are coupled.
That interpretation is supported by the fact that the com-
plementary sequences in rRNA are in close proximity in
an internal loop in the folded secondary structure, but well
separated in the linear sequence. Simultaneous or tightly
coupled binding to these sites was suggested as a possible
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basis for the cooperativity between these binding sites,
although other interpretations are also possible.

Coordination of snoRNA functions at different rRNA
sites also seems to be formally possible for snoRNAs
with two modification guide domains and no known
involvement in processing. In S. cerevisiae, 76 snoRNAs
that act on rRNA have been identified and this is thought
to be the full complement of such snoRNAs. About 30%
of these snoRNAs contain two guide domains that target
modifications at more than one site, in the same or differ-
ent rRNAs (10). While the guide regions in these
snoRNAs may act independently, it is also possible that
the modification events are linked in some fashion and
that such coordination could be an important feature in
ribosome synthesis. The strong interference effects
described here for the snR10 snoRNA suggest that this
species may have special promise in dissecting the mecha-
nism of action for a snoRNA that mediates both process-
ing and modification.
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