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Endocrine-disrupting chemicals (EDCs) are widespread environmental chemicals that are often considered as risk factors with
weak activity on the hormone-dependent process of pregnancy. However, the adverse effects of EDCs in the body of pregnant
women were underestimated. The interaction between dynamic concentration of EDCs and endogenous hormones (EHs) on
gestational age and delivery time remains unclear. To define a temporal interaction between the EDCs and EHs during
pregnancy, comprehensive, unbiased, and quantitative analyses of 33 EDCs and 14 EHs were performed for a longitudinal
cohort with 2317 pregnant women. We developed a machine learning model with the dynamic concentration information of
EDCs and EHs to predict gestational age with high accuracy in the longitudinal cohort of pregnant women. The optimal
combination of EHs and EDCs can identify when labor occurs (time to delivery within two and four weeks, AUROC of 0.82).
Our results revealed that the bisphenols and phthalates are more potent than partial EHs for gestational age or delivery time.
This study represents the use of machine learning methods for quantitative analysis of pregnancy-related EDCs and EHs for
understanding the EDCs’ mixture effect on pregnancy with potential clinical utilities.

1. Introduction

Pregnancy is one of the most important periods for the
mother and child. It involves a dynamic process associated
with significant physiological changes and nutrient demands
[1]. Small deviations from the norm during pregnancy result
in complications in pregnancy including miscarriage and
preterm birth [2, 3]. About 10-15% of pregnancy end in a
miscarriage and around 10% end in preterm birth [4, 5].
Risk factors for miscarriage and preterm birth include
advanced maternal age, immunological interactions, uterine

anatomic abnormalities, hormonal imbalances, and environ-
mental pollutions [5–7]. Exposure to environmental chemi-
cals such as endocrine-disrupting chemicals (EDCs) has
been implicated in pregnancy complications [8].

EDCs are commonly found in things you interact with
every day such as food, waters, and plastic bottles. Exposure
to EDCs such as bisphenol A, phthalates, has been suggested
as a possible cause of pregnancy complications because of
the harmful impact on reproductive and endocrine systems
[8, 9]. Bisphenol A has been shown to affect endocrine func-
tions by downregulating the expression of estrogen receptor,
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with the potential downstream effects of miscarriage and
premature birth [10, 11]. Phthalates can also bind to the
estrogen receptors and disturb sex steroid hormones, result-
ing in adverse pregnancy outcomes such as decreased length
of gestation [12]. Besides the high concentration of bisphe-
nol A and phthalates, exposures to the low concentration
of parabens, benzotriazoles, and benzothiazoles were con-
cerned. Recently published research found that the
extremely low concentrations of parabens, benzotriazoles,
and benzothiazoles in early pregnancy were also associated
with the development of pregnancy complications such as
gestational diabetes mellitus [13, 14]. While this is an impor-
tant finding that low concentration of EDCs species may
have a wide effect on pregnancy regulation through the
endocrine systems, previous research did not focus on
applying such quantitative knowledge in a machine learning
fashion to reveal the interaction between EDCs and endoge-
nous hormones (EHs) and identify the molecular underpin-
nings of pregnancy complications.

In the present study, we use liquid chromatography-
mass spectrometry (LC-MS) to quantitate the concentration
of 33 EDCs and 14 EHs with sampling of maternal urine at
1st, 2nd, and 3rd trimesters from 2317 participants, investigat-
ing the interplay between EDCs and EHs throughout the
pregnancy. We use a machine learning approach to integrate
the EDCs and EHs to predict gestational age and find the
potential candidate that affects the delivery time.

2. Results

2.1. Participant Characteristics. To capture the interaction
between environmental pollutants and endogenous hor-
mones during pregnancy that affects the gestational age, we
established a large-scale pregnancy cohort and a design of
urine sampling throughout different trimesters. A total of
2317 women with urine samples were assigned to discovery
(N = 1986) and validation (test set, N = 331) cohorts. The
demographic characteristics of the participants are shown
in Table 1. The mean age of the pregnant women was 28
years at enrollment, ranging from 25 to 32 years. Among
all newborns, 52.9% (n = 1051) were male and 47.1%
(n = 935) were female in the discovery set; 53.2% (n = 176)
were male and 46.8% (n = 155) were female in the test set.

2.2. Pregnancy Progression Associated with Environmental
Pollutants. We processed the 3402 samples from the 2317
subjects for the cohort (discovery and test set) and analyzed
them according to our previous methods [15–18]. The
concentrations of 47 compounds including 33 EDCs and
14 EHs were quantified by using a triple quadrupole mass
spectrometer (Figure 1(a)). As shown in Figure 1(b), the
average cortisone level was 1493 ng/mL, which has the
highest concentration among the EDCs and EHs. The
following EHs in order of decreasing concentration were
estriol, cortisol, estrone, dehydroepiandrosterone, cortico-
sterone, estradiol, pregnenolone, aldosterone, progesterone,
deoxycorticosterone, 17-OH progesterone, and testoster-
one. Notably, the phthalate concentrations were ranged
from 10.2 ng/mL to 119.8 ng/mL, which have the highest

mean concentration among the EDCs. The average
mono-n-butyl phthalate levels were 119.8 ng/mL, which
was higher than many EHs, such as corticosterone, estra-
diol, pregnenolone, aldosterone, progesterone, deoxycorti-
costerone, 17-OH progesterone, and testosterone. Details
of the concentration of 33 EDCs and 14 EHs are showed in
Figure 1(b). Next, we analyzed the data globally with the
PCA approach, in which all samples were distributed based
on the first two principal components according to the gesta-
tional age (Figure 1(c) and Figure S1). The cumulative
proportion values show that the first component explains
15.1% of the variability and the second explains an
additional 10% for a cumulative total of 25.1%. These results
suggest EDCs with extremely wide concentration ranges
from 0.03 to 1493ng/mL, worked together with EHs being
associated with pregnancy progression or gestational age.

2.3. Gestational Age Linked to EDCs and EHs by Machine
Learning. We determined whether we can build a quantita-
tive model based on the concentration of EDCs and EHs
to predict gestational age for individual urine samples. We
applied RFE-based feature selection with all 47 compounds
to build the random forest model that shows optimal
cross-validation performance for predicting gestational age
in the discovery cohort (N = 3052 samples). We then ran
the validation cohort data (test set, N = 350 samples)
through the model established in the discovery cohort to
measure the independent performance of the cross-
validated model. In the cross-validation test of 3052 samples
in the discovery cohort, the correlation between the pre-
dicted gestational age (predicted GA) in weeks and gesta-
tional age was calculated with a Pearson correlation
coefficient (R) of 0.99 (p < 2:2e − 16) (Figure 2(a)). In the
independent validation cohort, the model yielded a similar
R of 0.91 (p < 2:2e − 16, test set) (Figure 2(b)). Twenty-
seven of 47 compounds were selected by using RFE algo-
rithm and combined to build the above predictive model,

Table 1: Demographics and birth characteristics of the discovery
and validation cohorts.

Discovery
(N = 1986)

Test set
(N = 331)

Demographics

Maternal age at birth (years) 28:6 ± 3:3 28:8 ± 3:3
Weight (kilograms) 54:0 ± 7:7 55:0 ± 8:5
Height (centimeters) 161:0 ± 4:4 161:29 ± 4:4
BMI 20:8 ± 2:6 21:1 ± 3:1
Birth characteristics

Gestational age (weeks) 39:3 ± 1:2 39:3 ± 1:4
Birth weight (grams) 3306 ± 406 3327 ± 453
Birth length (centimeters) 50:2 ± 1:5 50:2 ± 1:6
Gender of child, no. (%)

Male 1051 (52.9) 176 (53.2)

Female 935 (47.1) 155 (46.8)

Values are presented as the means (SDs) or numbers (percentages).
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including 14 EDCs and 13 EHs. The percentage of increase
in mean square error (%IncMSE) was used to rank the
importance of 27 compounds influencing the prediction of
gestational age (Figure 2(c)). Higher %IncMSE values indi-
cate a more important predictor. As expected, estriol pro-
duced naturally by the placenta and fetus was the most
important compound that influences the prediction of gesta-
tional age. Notably, bisphenol F, a popular substitute for
bisphenol A in consumer products, is only less important
than estriol that influences the prediction of gestational age
(Figure 2(c)) but more important than bisphenol A. Bisphe-
nol F has similar estrogenic and antiandrogenic effects on
the mammalian endocrine system to those of bisphenol A.
Furtherly, the least absolute shrinkage and selection operator
(LASSO) was employed for feature selection for the 27 com-
pounds in three trimesters (Table S3). Our findings highlight
that there is no dose-dependent relationship between EDC
levels and the compound importance (%IncMSE) in our
predictive model. For example, the high concentration of
phthalates with low %IncMSE values indicated a weak
effect on the prediction of gestational age. Together, these
results suggest EDCs and EHs can accurately predict the
gestational age on the basis of urine samples from
pregnant women.

2.4. EDCs and EHs Altered throughout Pregnancy. We per-
formed a way of visualizing the hierarchical structure named

“treeMap” to display the portion of EDCs and EHs for 27
compounds describe above across three trimesters during
pregnancy. Each rectangle’s size is directly proportional to
the concentration of compounds. As shown in Figure 3(a),
the highest total amount of those compounds was found in
the second trimesters. The proportion of each EH was dra-
matically changed, while the proportion of each EDC was
stable. For example, the proportion of cortisone (58.2%)
has accounted for more than half of the total concentration
at the first trimester and being deceased at the second tri-
mester (46.9%) and the third trimester (32.9%). Reversely,
the proportion of estriol (10.5%) was dramatically increased
at the second trimester (25.4%) and the third trimester
(46.8%) (Figure 3(a); Table S2). The proportion of each
compound is shown in Table S2. Furtherly, we examined
the changes of EHs throughout three trimesters. We
observed an increase in total concentration of EHs. The
concentration of each EH was significantly increased
except that of testosterone throughout pregnancy
(Figure 3(b)). We also examined the changes of EDCs
throughout the three trimesters (Figure 3(b)). We found
there were no changes in the total concentration of EDCs
among three trimesters. Interestingly, the concentration of
4-hydroxybenzophenone was significantly increased in the
second trimester when compared with the concentration of
4-hydroxybenzophenone at the first trimester, indicating
the 4-hydroxybenzophenone may be regulated during the
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Figure 1: Study overview and EDC and EH characterization. (a) Overview of the study populations (cohorts) and schematic workflow. (b)
The concentration distribution of 33 EDCs and 14 EHs in urine of pregnancy women. (c) Principal component analysis distributed
individual samples according to pregnancy age. The two PCs explaining the largest part of the variation are shown.
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early pregnancy. During the later pregnancy, the
concentrations of six EDCs including mono-n-butyl
phthalate, 2-hydroxy-benzothiazole, bisphenol F, bisphenol
S, 4-hydroxybenzophenone, and 1-hydroxy-benzotriazole
were significantly increased at the third trimester compared
to that of six EDCs in the second trimester. Notably, the
concentration of mono(2-ethylhexyl) phthalate continued to
decline throughout pregnancy and showed a significant fall
in the third trimester (Figure 3(b)). Overall, among the 27
RFE-selected compounds in pregnancy, both EDCs and EHs
were consistently altered throughout pregnancy, suggesting
the intercorrelation to each other.

2.5. Association between EDCs and EHs during Pregnancy.
To detect the association between EDCs and EHs that
change during pregnancy, we performed correlation analysis
on the 27 compounds mentioned above. Thirteen EHs of 27
compounds were divided into three functional groups
according to their physiological function, e.g., sex hormones,
glucocorticoids, and mineralocorticoids [19]. Fourteen
EDCs of 27 compounds were divided into five groups
according to their chemical structures, e.g., phthalates,
bisphenols, benzotriazoles, benzothiazoles, and benzophe-

nones. The association data between structure-based EDC
groups and function-based EH groups were depicted in the
form of a circular heat map (Figure 4(a)). Our results
highlighted that the structure-based EDC groups were
widely associated with function-based EHs, suggesting
that each structure-based EDC group can affect the EH-
related physiological functions. Six EDCs were signifi-
cantly correlated with the function-based EH groups
(adjusted p value < 0.001, R > 0:1). For example, 4-hydro-
xybenzophenone, mono-n-butyl phthalate, and mono-i-
butyl phthalate were widely associated with sex hormone,
mineralocorticoids, and glucocorticoids. Bisphenol F and
2-hydroxy-benzothiazole were associated with mineralo-
corticoids and glucocorticoids. Interestingly, 1-hydroxy-
benzotriazole was specifically associated with sex hormones
(Figure 4(b)).

2.6. Prediction for the Timing of Delivery with EDCs and
EHs.We then examined whether the EDCs and EHs can also
predict the timing of a delivery event within a defined period
(2 and 4 weeks from delivery) approaching the labor events
(Figure 5(a)). The urine samples at the third trimester
(N = 652 samples) were randomly divided into two
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independent cohorts. We applied RFE-based feature selec-
tion with the 27 compounds to build the random forest
model that shows optimal cross-validation performance for
predicting a delivery event in the discovery cohort. We then
ran the validation cohort data through the model established
in the discovery cohort to measure the independent perfor-
mance of the built model. Firstly, we examined whether
the EDCs and EHs can predict a delivery within 2 weeks
(weeks to delivery ½WD� < 2w). The RFE-selected 23 com-
pounds predicted an upcoming delivery event within 2
weeks in the discovery cohort with AUROC of 1.00 and
validation cohorts with an AUROC of 0.82 (Figure 5(b)
and Figure 5(c)). Similarly, the selected compounds can
also be used to predict the timing of a delivery event
within 4 weeks with AUROC of 0.86 (Figure 5(b)). The
mean decrease accuracy was used to rank the importance
of RFE-selected 23 compounds influencing the prediction
of a delivery event (Figure 5(c)). We found that 8 EHs
and 5 EDCs showed significantly increased concentration
within 2 weeks approaching the delivery (Figure 4(d)).
These results demonstrated that we can precisely catego-
rize critical pregnancy stages in normal subjects by using
the EDCs and EHs, and the EDCs play a key role in a
delivery event during the pregnancy.

3. Discussion

In this study, we performed the LC-MS to accurately quan-
titate the concentration of 33 EDCs and 14 EHs with
samplings of maternal urine from 2317 participants, investi-
gating the interplay between EDCs and EHs throughout the
pregnancy. We were able to quantify many of the EDCs

revealed in previous studies (such as bisphenol A, bisphenol
S, and phthalates) [17, 20], validating our approach. Those
33 quantified EDCs belong to emerging contaminants that
began to be widely found in the aquatic environment and
draw attention during vulnerable periods of pregnancy,
while those 14 EHs are responsible for human reproduction
and development. To our knowledge, comprehensive, unbi-
ased, and quantitative analyses of 33 EDCs and 14 EHs asso-
ciated with the timing of pregnancy in our study have not
been reported. Also, we identified a wide variety of EDCs
and EHs whose concentrations altered during pregnancy
progression [13, 14, 17].

The alteration of EHs in an orchestrated manner during
pregnancy maintains the maternal biological physiology
during pregnancy and fetal growth. The estrogen hormones
including estriol, estradiol, and estrone in pregnancy cause
dramatic changes in the mother’s vagina, cervix, uterus,
and breast and significantly altered the nutrient metabolism
[21], which was consisted with the constantly accumulated
concentration of estrogen throughout the pregnancy
(Figure 3(b)). Abnormal changes of estriol during the preg-
nancy were associated with an increased risk of preterm
birth [22, 23]. Here, we revealed that the concentration of
4-hydroxybenzophenone was increased continuously and
correlated with that of estriol. Also, we found estriol was
the most important variable in our machine learning-based
model for predicting gestational age (Figure 2(c)). Our
results suggested the 4-hydroxybenzophenone may interfere
with the physical process of estriol during pregnancy. Also,
we detected a significantly increased concentration of pro-
gesterone and 17-hydroxyprogesterone in the third trimes-
ter. These two compounds can maintain the endometrium
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throughout pregnancy and are popularly employed to
reduce the risk of miscarriage in pregnant women [24, 25].
Both progesterone and 17-hydroxyprogesterone were
ranked as the top important variables in our machine
learning-based model for predicting a delivery event
(Figure 4(c)), validating our model. Interestingly, we
observed the specific correlation between progesterone
and phthalates. For example, progesterone was signifi-

cantly correlated to mono-n-butyl phthalate, and 17-
hydroxyprogesterone was significantly correlated to both
mono-n-butyl phthalate and mono-i-butyl phthalate
(Figure 4(b)), consistent with previous findings that phtha-
lates have the potential to compete with the normal substrate
binding of progesterone receptor [26] and interference proges-
terone secretion [27]. In addition, 5 phthalates out of 10 EDCs
were ranked as the key variables in our machine learning-
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based model for predicting a delivery event, indicating the
exposures of phthalates may be one of the high-risk factors
for unexpected delivery [28, 29]. Our results highlighted that
the role of specific bisphenols and phthalates is even more
important than EHs for gestational age or delivery time. Com-
prehensive, unbiased, and quantitative analyses of EDCs and
EHs, combining with the machine learning, enabled us to
quantitatively examine the interplay between EDCs and EHs
and understand the EDCs’ effect on times of the progression
of pregnancy. We found that using the EHs and EDCs, with-
out any other inputs from clinical features, we can precisely
determine the gestational age [30]. In addition, there was
decreased accuracy of the predictive model when the EDCs
were absent (AUROC = 0:81, Figures S2A–S2C). We also
concerned that the triclosan and 4 parabens were excluded
from our predictive model due to the relatively low
importance scores for gestational age prediction, although
the triclosan and parabens were suspected to potentially
contribute to pregnancy complications [13, 31, 32].

To our knowledge, this is the first study to use machine
learning methods for quantitative analysis of EDCs with
delivery time. We found the EDCs and EHs can also be used
to predict the timing of a delivery event within a defined
period approaching the labor events, and the accuracy of this
prediction method was similar to the previous reported liter-
ature (AUROC of 0.7-0.9) [30, 33]. In addition, our results
can reflect the effect of environmental chemical exposure
on human pregnancy. Emerging evidence indicates that the
gestational age is associated with the EDCs (e.g., bisphenol
A [34], phthalates [35], and parabens [36]), although the
gestational age may be affected by many factors such as
nutritional, medical, obstetric, and environmental factors
[37]. EDCs are known to alter the EH concentration by
interfering with the synthesis and distribution of EHs. For
example, bisphenol A causes a decrease in the level of circu-
lating testosterone in the human and rat [38]. EDCs have
been shown to affect signal transduction in EH-responsive
and EH receptor expression [10, 26]. Evidence also shows
the ability of EDCs to cause increased inflammation and oxi-
dative stress that affect gestational age [37]. However, our
study has its limitations. The concentration of compounds
in the urine may be affected by urine volume; the specific
gravity (SG) of urine samples has been employed to reduce
the urinary dilution effect [39]. Meanwhile, some individual
EDCs interacting with the endocrine system were not
included in this study, such as polybrominated diphenyl
ethers (PBDE) [40], polychlorinated biphenyls [41], and per-
fluorooctane sulfonate (PFOS) [42]. In the future, we need to
build models with more EDCs in our large-scale cohorts.

In summary, combining machine learning and the quan-
titative data of EDCs and EHs revealed the interaction of
EDCs and EHs during pregnancy. We also demonstrated
that the dynamic concentration information of EDCs and
EHs can be used to predict gestational age with high accu-
racy in a cohort of pregnant women. There is a great need
for quantitative evaluation of the EDCs’ effect on EHs, as
well as the timing of pregnancy: the vast majority of adults
have evidence of exposure to EDCs that being the particu-
larly significant risk of pregnancy complications to pregnant

women. Our study demonstrated that the development of
clinical methods with EDCs to time pregnancy is promising,
which have the potential to benefit pregnant women and
fetus developments.

4. Materials and Methods

4.1. Study Population. The study was approved by the Ethics
Committee of the Tongji Medical College, Huazhong Uni-
versity of Science and Technology, and Wuhan Women
and Children Medical Care Center with written information
and informed consent obtained from all subjects. The partic-
ipants were selected from a birth cohort and conducted
between 2014 and 2015 at Wuhan Women and Children
Medical Care Center in Wuhan, China. The recruitment cri-
teria were described in our previous work [20]. In brief,
pregnant women were invited to participate in the project
at less than 16 weeks of gestation. Each pregnant woman
was scheduled for three visits at different trimesters. Accord-
ing to the written consent, participants were free to drop out
at any time. Finally, 2317 pregnant women were included in
this study. Gestational weeks were estimated based on the
last menstrual period and further confirmed by their first-
trimester ultrasound examination. From each woman,
overnight fasting urine was collected in a polypropylene
container and then aliquoted and stored at −80°C. Charac-
teristics of the subjects are shown in Table 1.

4.2. Sample Preparation and EDC and EH Measurements.
Within discovery and test set cohorts, 3402 pregnancy urine
samples from 2317 women were completely randomized and
analyzed. The sample preparation methods and instrument
used have already been reported in our previous reports
[15–18]. Briefly, one milliliter of urine sample spiked with
the isotope-labeled internal standard solution was treated
with β-glucuronidase/sulfatase. After the incubation at
37°C overnight and hydrolysis, liquid-liquid extraction was
employed for the extraction of compounds, and then, the
supernatants were dried for storage and/or dissolved with
acetonitrile/water for the instrumental analysis. The chro-
matographic separation of EDCs and EHs was achieved with
C18 column, and elution system is listed in Table S4.
Tandem mass spectrometry (MS/MS) data of EDCs and
EHs were acquired using a Thermo Scientific™ TSQ
Quantiva™ Triple Quadrupole mass spectrometer (Thermo
Scientific, San Jose, CA). The multiple reaction monitoring
(MRM) parameters were optimized and employed to
quantify 33 EDCs and 14 EHs in samples (Table S1). The
linearity of calibrations was obtained by plotting the peak
area ratio (analyte/internal standard area responses) versus
concentration.

4.3. Urinary Specific Gravity Measurements. A handheld dig-
ital refractometer (Atago Co. Ltd., Tokyo, Japan) at room
temperature was employed to measure the specific gravity
(SG) of urine samples for correcting the urinary dilution
effect. The SG-adjusted concentrations were calculated
using the following formula: Csg = C × ðSGm − 1/SG − 1Þ,
where Csg denotes the SG-adjusted concentration (ng/mL),
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C denotes the measured concentration, SGm denotes the
median SG in the population, and SG denotes the specific
gravity values.

4.4. Computational Analyses. Software tools used for this
study are available as open-source R packages (https://www
.r-project.org, v4.0.2). For key analyses, these include “ropls”
and “statTarget” for multivariate statistical analysis [43],
“circlize” and “ggalluvial” for EDC and EH correlations
[44], “randomForest” and “caret” for training and plotting
classification and regression models, and “treemap” and
“ggplot2” for data visualization.

We applied principal component analysis (PCA) to
examine the overall distribution of the sample data (with
all 47 compounds in 3402 samples) according to the gesta-
tional age (by the ropls package). The Pareto scaling was
used for data pretreatment before PCA. The correlations
were examined between 33 EDCs and 14 EHs. We per-
formed the “corr.test” function in the “psych” R package
to calculate spearman correlation coefficients. All p values
were adjusted for multiple testing using the false discovery
rate (FDR).

Random forest is a supervised machine learning algo-
rithm for both classification and regression. The use of this
method minimizes the risk of overfitting, and the method
is relatively robust against noise and outliers. The recursive
feature elimination (RFE) function in the caret R package
for feature selection was furtherly employed to determine
the minimal number of top compounds with the lowest root
mean square error (RMSE) for regression or highest accu-
racy for classification. We applied RFE with 10-fold cross-
validation in the discovery dataset to select compounds to
build the random forest model to predict gestational age.
The building model was applied to the validation cohort
for prediction and verification. A linear fitting from the
above evaluations was performed between the predicted
value and the actual values to assess the performance of
the predictive model.

For samples collected at third trimester (>28 weeks), a
similar discovery and validation workflow were employed
to build a random forest model with an RFE algorithm for
predicting the categorical labels of delivery within 2 or 4
weeks. To estimate the confidence interval for the area under
receiver operating characteristic curve (AUROC), we used
the “pROC” package to perform bootstrapping 10000 times
and calculate the 95% confidence interval for AUROC. The
mean decrease accuracy was used to evaluate the importance
of compounds in the built random forest classifier.
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