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Abstract
Growth rates are central to understanding microbial interactions and community dynamics. Metagenomic growth estimators
have been developed, specifically codon usage bias (CUB) for maximum growth rates and “peak-to-trough ratio” (PTR) for
in situ rates. Both were originally tested with pure cultures, but natural populations are more heterogeneous, especially in
individual cell histories pertinent to PTR. To test these methods, we compared predictors with observed growth rates of
freshly collected marine prokaryotes in unamended seawater. We prefiltered and diluted samples to remove grazers and
greatly reduce virus infection, so net growth approximated gross growth. We sampled over 44 h for abundances and
metagenomes, generating 101 metagenome-assembled genomes (MAGs), including Actinobacteria, Verrucomicrobia,
SAR406, MGII archaea, etc. We tracked each MAG population by cell-abundance-normalized read recruitment, finding
growth rates of 0 to 5.99 per day, the first reported rates for several groups, and used these rates as benchmarks. PTR,
calculated by three methods, rarely correlated to growth (r ~−0.26–0.08), except for rapidly growing γ-Proteobacteria
(r ~0.63–0.92), while CUB correlated moderately well to observed maximum growth rates (r= 0.57). This suggests that
current PTR approaches poorly predict actual growth of most marine bacterial populations, but maximum growth rates can
be approximated from genomic characteristics.

Introduction

An organism’s growth rate is fundamental to its ecology
and necessary to conceptually or mathematically model
microbial community composition and dynamics. There-
fore, many efforts have been made to estimate the growth
rates of microbes from diverse ecosystems. Historically,
these growth rate estimates have used time-course incuba-
tions of mixed communities, usually involving isotopic
tracers of DNA or protein synthesis (reviewed in [1]). These

approaches provide valuable information on the bulk
growth of mixed communities. However, because they do
not distinguish the contribution of individual phylogenetic
groups from community-wide rates, they cannot be readily
applied to native uncultivated microbes in a taxon by taxon
manner in their natural habitats, which is often more ger-
mane to understanding ecological processes. Other growth
rate estimations, such as 18O-labeled H2O stable isotope
probing (e.g., [2]), do address the growth of individual taxa
and require incubation experiments that may favor the
growth of certain taxa over others due to bottle effects. To
address individual, in situ growth rates, several culture-
independent growth rate estimation methods have recently
been developed that use intrinsic characteristics of microbial
genomes and discrete metagenomic samples to estimate
either a taxon’s maximum growth rate or take a snapshot of
its growth rate, without incubation.

These recently developed genome-based growth esti-
mates, codon usage bias (CUB) and peak-to-trough ratio
(PTR), take two fundamentally different approaches that
generate fundamentally different answers. CUB meth-
ods aim to predict maximum growth rates, while PTR
approaches seek to approximate growth at the time of cell
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collection before DNA extraction via estimating DNA
replication rates. CUB is based on the physiological strategy
of cells, in which there is a tendency of highly expressed
genes to prefer one set of codons corresponding to the most
abundant tRNAs in the cell, while other genes are more
likely to use alternative sets of codons (from the less
abundant tRNAs) for the same amino acids. The degree of
difference between the usage of abundant codons for highly
expressed genes and alternative synonymous codons for the
other genes is the amount of bias present in any genome.
This CUB is more evident for cells that can grow faster and
have a particularly high priority to make ribosomes to
facilitate their fast growth. Viera-Silva and Rocha calcu-
lated the CUB of a wide range of prokaryotic taxa and
found a strong correlation between observed maximum
growth rates and CUB, which they leveraged to predict
maximum growth rates by a multivariate approach [3].
Further, Kirchman found a strong correlation between
observed and predicted maximum growth rates when
applying this methodology to cultured marine taxa
(including Prochlorococcus, SAR11, and others) in a recent
review [1]. While CUB maximum growth rate estimators
have been validated with pure cultures of organisms whose
genomes are fully sequenced, there has been no validation
on partial genomes from mixed natural communities. Fur-
ther, maximum growth rates are often used in population
modeling as a starting point, with growth reduced by lim-
iting factors, which makes this validation all the more
pertinent.

In contrast to CUB, PTR is an approach that is designed
to work as an in situ measure of the actual growth rate of
any prokaryote in any sample where genomic or metage-
nomic data are available. Thus, it can be remarkably pow-
erful to interpret the growth status of microbes, and its
attraction obvious due to the availability of ever increasing
metagenomic and genomic datasets. This method is based
on the observation that prokaryotes generally have circular
genomes that are replicated bidirectionally from a fixed
origin to a fixed terminus (opposite the origin). When the
microbial genomes are fragmented and sequenced, as is
done in metagenomics, the PTR of the population repre-
sented by a genome could be calculated from recruiting
metagenomic reads across that genome. Populations more
rapidly growing and replicating their DNA will be expected
to have more reads recruited to and near the origin of
replication (“peak”) compared to the terminus (“trough”).
Following a simple conceptual model, the slope of the
resulting read recruitment sine curve should be reflective of
the growth of the population, with steeper slopes indicating
faster growth rates; current PTR implementation methods
aim at relative rather than absolute rates. The PTR method
was first developed in practice by Korem et al. [4] for use
with complete genomes and validated with E. coli growing

in a chemostat. However, we do not have complete gen-
omes for the large majority of prokaryotes in nature, and at
best we often have partial genomes that are metagenomi-
cally assembled (MAGs) or single-cell amplified genomes.
Such genomes are usually in many fragments and not only
is the genomic order of those fragments unknown, but there
is uncertainty about the locations of the origin and terminus.
To address this problem, multiple methods modified the
original PTR approach for use with incomplete genomes
and MAGs. The first (iRep) was by Brown et al. [5], fol-
lowed with a version for MAGs with low coverage (GRiD)
by Emoila and Oh [6], and for MAGs with low coverage,
low genomic completion, and high genomic redundancy
(DEMIC) by Gao and Li [7]. While all three calculate PTR,
one of their key differences is how they estimate the origin
of replication and the terminus of an MAG. iRep uses
coverage across overlapping genome fragments (windows)
and then sorts the fragments from highest to lowest cover-
age to estimate the origin of replication and the terminus.
Similarly, GRiD sorts genome fragments from highest to
lowest but places fragments containing the dnaA gene at the
origin and fragments with the dif gene near the terminus.
Lastly, DEMIC infers the genome fragment placement
using relative distances with a principal component analysis
of fragment coverage in multiple samples.

All of the PTR approaches have shown strong relation-
ships to growth rates when applied to pure cultures of
various bacteria, using the data from either the Korem et al.
study or from other bacterial growth studies [5–7]. How-
ever, these approaches have not been validated in complex
microbial communities such as those found in marine sur-
face waters. Such communities potentially include highly
non-uniform populations of individuals with different recent
histories and with many co-occurring close relatives. Fur-
thermore, many such organisms have slow growth rates,
with division times much longer than the minimum time it
takes to replicate a genome, and with individuals probably
growing at a variable rate over time (as unpredictable
resources and/or inhibitors change). The strategies by which
such cells manage DNA synthesis and other cell compo-
nents in preparation for cell division under natural dynamic
conditions are not known and could make applying PTR to
such cells challenging.

Because a number of laboratories have been applying the
PTR methods to field samples without these methods hav-
ing been tested or validated in such conditions, we feel it is
critical to attempt an evaluation of the approaches with
natural mixed and non-clonal populations when growing in
conditions that simulate important aspects of natural con-
ditions, in our case, growth on the dissolved organic matter
present in seawater. We also feel it is critical to evaluate
CUB methods under these same conditions and with
incomplete genomes, which would allow growth
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information from uncultivated microbes to be readily
obtained in addition to their metabolic potential. Further,
tests on pure cultures individually or in mixed mock com-
munities, no matter how extensive or rigorous, would not
fully address issues about applicability to mixed natural
populations, especially when some of the problems in
interpretation may be because of the heterogeneous nature
of communities and natural microdiversity. Hence, we have
manipulated natural mixed microbial communities in order
to observe their growth while applying these metagenomic
growth estimators.

The purpose of this study is twofold: (1) to test and
potentially validate the CUB and PTR approaches using
MAGs recovered from marine microbes growing in a
complex community, and (2) to estimate potential growth
rates of a broad variety of native planktonic marine
microbes in natural dissolved organic matter. In these
experiments, we grew bacteria in conditions meant to
remove grazing and to eliminate as much viral infection as
possible, so that the observed growth would reflect the
actual growth rates in the bottles (not necessarily the ocean
in situ rates, as conditions were manipulated). From these
seawater dilutions, we used metagenomics to generate
MAGs and assessed each MAG’s growth rate using the
number of recruited reads normalized to direct cell counts,
MAG completeness and cumulative contig length (equiva-
lent to draft genome size), over the course of roughly 44 h.
The estimated growth rates within these incubation
experiments were then compared to CUB maximum growth
rate predictions and “instantaneous” PTR-derived growth
rate indices. Our analyses showed that CUB provided rea-
sonable estimates of maximum growth rates, but PTR
methods poorly predict actual growth rates of most taxa.

Materials and methods

Sampling and experimental design

Growth rate experiments were conducted in May and Sep-
tember of 2017. For each experiment, surface water was
collected at 33°33′ N, 118°24′ W during the monthly
sample collection of the San Pedro Ocean Time-ser-
ies (SPOT). Bulk samples (>40 l) were collected on site and
placed into coolers for transportation to USC. Upon arrival,
bulk samples were first filtered through 80 μm nylon mesh
(Sefar, Buffalo, NY, USA) and then sub-sampled into two
pools. The first pool was pumped through Whatman® 47
mm 0.6 μm track-etch PC filters (GE Life Sciences, Marl-
borough, MA, USA) twice, retaining the filtrate, with a goal
of a grazer-free sample (grazers are >0.6 μm and prokar-
yotes are mostly <0.6 μm). The second pool was pumped
through a Prep/Scale-TFF Cartridge 30 kD 2.5 ft2

(Millipore, Billerica, MA, USA) and the virus-free filtrate/
permeate was retained. These two pools were combined to
dilute the 0.6 μm-filtered microbial communities to 9.8% in
May and 9.5% in September. Duplicate 10 l samples were
incubated in the dark (to minimize light-synchronized
growth that can complicate PTR interpretation) in PC bot-
tles at 17 °C in May (in situ 17.2 °C) and triplicate 10 l
samples were incubated under the same conditions in Sep-
tember (in situ 20.4 °C). Total time from sampling until
collection of the initial time point was ~6–8 h for both
experiments. Samples were taken at 0, 12, 24, and 42 h in
May and 0, 11, 20, 37, and 44 h in September for DNA
extraction and cell counts. Cells were counted with the
SYBR green method described by Noble and Fuhrman [8]
in May and a modified Acridine Orange Hobbie et al. [9]
method in September, also described by Noble and Fuhr-
man [8].

DNA extraction, sequencing, assembly, and
metagenome-assembled genome generation

In order to obtain enough DNA for sequencing, DNA was
extracted from ~4 l for time 1, ~3 l for time 2, ~2 l for time
3, and ~1 l for time 4. A bulk sample (~1 l) was taken for
DNA extraction from time 0 before dilution with virus-free
seawater. Two (May incubation) and three (September
incubation) biological replicates were extracted for each
time point and sequenced separately. Water was pumped
through 0.2 μm Durapore Sterivex™ filter units immediately
after taken from the experimental vessels. DNA was
extracted from Sterivex™ filter units using an All-prep®
DNA/RNA minikit (Qiagen, Hilden, GR) with a modified
protocol. Briefly, ~100 μl of combusted 0.1 mm glass beads
(BioSpec Products, Bartlesville, OK, USA) were added
directly to the Sterivex™ filter unit with lysis buffer from the
All-prep® kit and mixed on a vortex mixer (VWR model
VM-3000) for 20 min at the maximum setting, the liquid
was retrieved from the filters and the manufacturer’s pro-
tocol was followed thereafter. The resulting DNA was
processed for sequencing using Ovation® Ultra-low V2
DNA-Seq Library Preparation kits (NuGen, Tecan Geno-
mics, Redwood City, CA, USA) with the manufacturer’s
protocol using 100 ng of starting DNA and nine PCR
cycles. DNA was sequenced on an Illumina HiSeq platform
at the USC UPC Core Sequencing Facility (Los Angeles,
CA, USA) using 2 × 250 bp chemistries.

The computer programs atropos v1.1.18 [10] and sickle
v1.33 [11] were used to remove adapter sequences and
bases with quality scores below 25, which was then verified
with fastqc v0.11.5 [12]. All samples were assembled
individually with metaSPAdes v3.12.0 [13] with a custom
kmer set (-k 21,33,55,77,99,127) under the following sub-
sampling regime: first, 1, 1.5, 2, 5, 10, and 20% of the reads
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were assembled separately, and then 5% of the remaining
reads were assembled without replacement, followed by 10,
20, 33, and 50% of the reads, also without replacement (i.e.,
5% of the unassembled reads were assembled and then 10%
of the remaining reads were assembled without including
reads that were assembled from the 5% step and so forth).
These subassemblies were sorted into two sets based on
contig length cutoff (2 kb) using seqkit v0.3.4.1 [14]. Those
contigs shorter than 2 kb were assembled using Newbler
v2.9 [15] with a minimum identity cutoff 0.98 (-mi 98) and
a minimum overlap 80 nt (-ml 80), the resulting assembled
contigs (≥2 kb) were then combined with the longer contig
set. All these contigs longer than 2 kb were further co-
assembled using minimus2 from the AMOS v3.1.0 toolkit
[16] with a minimum identity 0.98 (-D MINID= 98) and a
minimum length cutoff 200 nt (-D OVERLAP= 200). The
co-assembled contigs were de-replicated using cd-hit v4.6.8
[17] with a 0.98 identity cutoff (-c 0.98), the de-replicated
contigs were renamed and were used as references for read
recruitment with bwa v0.7.15 [18] and the following
metagenomic binning. MetaWRAP v1.1 [19] was used to
bin contigs via MetaBAT v2.12.1 [20], CONCOCT v1.0.0
[21], and MaxBin2 [22] with a minimum length cutoff of 2
kb. The resulting bins were further refined within Meta-
WRAP without filtering for completion (-c 0) and allowing
high contamination (-x 10,000). Anvi’o v5.1.0 [23] was
also applied to bin contigs >5 kb using CONCOCT v1.0.0
proceeded by manual refinement with redundancy cut-offs
of 2.5% for MAGs with 50–75% completeness, 5% for
MAGs with 75–90 % completeness, and 10% for MAGs
with >90 % completeness. In addition, Vamb v1.0.1 [24]
and BinSanity v0.2.8 [25] were used to bin contigs with a
minimum length cutoff of 4 kb. All bins generated by the
six binners and the MetaWRAP refined bins were further
refined using DAS_Tool v1.1.1 [26] with custom penalty
parameters (--duplicate_penalty 0.4, --megabin_penalty 0.4)
and a score threshold of 0.3. All the DAS_Tool refined bins
were further refined manually using anvi’o v5.1.0 [23].
MAGs with at least 50% completion and fewer than 5%
redundancy or at least 90% complete and fewer than 8%
redundancy according to anvi’o were retained for further
analysis. The GTDB taxonomic information of manually
refined bins were predicted using GTDBTk v0.1.3 [27] and
compared to NCBI taxonomy commonly used to provide
more context to the previous literature where appropriate.

Phylogenomic analysis

The bacterial and archaeal phylogenomic trees were con-
structed using GToTree v1.1.3 [28] and RAxML-NG v0.8.1
[29]. Briefly, GToTree uses Prodigal v2.6.3 [30] to predict
the coding regions of the MAGs and uses HMMER v3.2.1
[31] to search for 74 bacterial and 76 archaeal universal

single-copy marker genes. Then, these marker genes are
concatenated and aligned using MUSCLE v3.8 [32]. Next,
the alignments were trimmed using Trimal v1.4 [33] with
the heuristic “-automated1” method. Both the bacterial and
archaeal phylogenomic trees were constructed using
RAxML-NG based on the GToTree produced trimmed
alignments. RAxML-NG was run with ten randomized
parsimony starting trees (--tree pars{10}), a fixed empirical
substitution matrix, a discrete Gamma model with eight
categories of rate heterogeneity, empirical amino acid state
frequencies estimated from the sequence alignment
(--model LG+G8+F), and was performed for 200 non-
parametric bootstrap replicates (--bs-trees 200).

Growth rate estimations

First, the relative abundance for each MAG was calculated
from the number of reads that mapped to that specific MAG
using bwa v0.7.15 [18] under the default parameters, which
was then corrected with the completeness information from
anvi’o v5.1.0 [23] and the length (in bp) of the MAG. This
theoretical number of reads that map to each MAG was then
divided by the total number of reads in each sample to
calculate the relative abundance of that MAG. The com-
pleteness and genome length adjusted relative abundance of
each MAG was multiplied by the cell count at each time
point to estimate the absolute cell abundance for each
MAG. This is essentially the same approach used by Brown
et al. [4] to estimate the absolute abundance of individual
species in infant fecal microbiomes from metagenomically
derived relative abundances and cell counts.

Growth rates were calculated by both two-point and
three-point (regression) calculations, as the slopes of ln-
transformed MAG cell abundances over time. For most
calculations, two-point rates were used in order to be con-
sistent with the method of growth rate estimations used by
Korem et al. [3], but we also did separate comparisons
limited to when three-point regressions were significant.
Observed maximum growth rates were taken from the
highest estimates between the following time scales: 0–36 h
and 18–42 h for May; 0–20 h, 11–37 h, and 20–44 h for
September.

Growth rate indices: codon usage bias and
peak-to-trough ratio

The maximum growth rate of each MAG was predicted
using a customized growthpred v1.0.8 (available at https://
hub.docker.com/r/shengwei/growthpred) in metagenome
mode (-m) and with universal codons (-c 0). Blast-retrieved
ribosomal protein sequences were used as the highly
expressed genes (-b) and compared to all the coding
sequences of each MAG (-g).
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PTR indices were calculated using iRep v1.10 [5], GRiD
v1.3 [6], and DEMIC v1.0.2 [7]. iRep and GRiD were
calculated for all MAGs >75% complete and DEMIC was
calculated for every MAG. Briefly, the mapping informa-
tion for each MAG was extracted from the previously
generated bam files, then the iRep and GRiD indices were
calculated based on the aligned paired reads, determined
for: (1) the entire metagenomic dataset for that sample, and
(2) reads from metagenomic fragments with specific ranges
of insert sizes (100–350, 200–450, 300–550, and 400–650)
to evaluate the effect of different insert sizes on the per-
formance of PTR indices. In addition, GRiD was also run
under the default parameters using each individual MAG as
input. DEMIC was run under the default parameters using
sam files generated with bowtie2 v2.3.0 [34].

Statistical comparisons

To compare observed growth rates with CUB-predicted
maximum growth rates, we used the highest overall growth
rate from each taxon based on the time intervals mentioned
above. For the PTR indices, the growth rates estimated from
the time points before and after the point at which the PTR
index was calculated were used for comparisons. For
instance, if the PTR index was calculated from time point 1,
the growth rate it was compared to was estimated using time
points 0 and 2. For all comparisons, Pearson correlation
coefficients and p values were calculated in R version 3.5.3
using the package Hmisc [35]. When a MAG had no
apparent growth during the time frame, their corresponding
CUB or PTR index values were removed before statistical
analyses. Further, outliers as calculated using Tukey’s
fences in PTR index values and their corresponding growth
rates were excluded from statistical analyses.

Results

Metagenome-assembled genomes

We recovered 101 MAGs that passed our quality criteria.
The MAGs are on average 70% complete, 3% redundant,
and cover most major groups of marine planktonic bacteria
as well as MGII Euryarchaeota (Fig. 1). Several MAGs
were from groups that have no cultivated representatives
(Supplementary Table 1).

Growth rate estimation from metagenome-
assembled genomes

Based upon read recruitment and cell counts, the overall
range of highest estimated growth rates in the incubation
bottles for all MAGs with detectable growth was 0.08–5.99

per day (Figs. 2 and 3). Oceanospirillales Saccharospir-
illaceae MAGs had the highest observed growth rates, of
3.17–5.99 per day. Among Pelagibacterales, the highest
observed growth rates ranged from 0.40 to 0.58 per day.
The majority (60 of 101) of MAGs had higher growth rates
in the September experiment than in May (Fig. 2). How-
ever, many of the fastest-growing taxa grew faster in May,
such as MAGs affiliated to SAR92 and Flavobacteriales.

Highest observed growth rates compared to codon
usage bias max growth rates

CUB-derived maximum growth rates had a range of
0.40–16.47 per day (Supplementary Table 1). The highest
predicted maximum growth rates were from Oceanospir-
illales Saccharospirillaceae, Vibrionaceae, and Alter-
omonadaceae MAGs and the lowest were from
Betaproteobacteria, Pelagibacterales, Actinobacteria, and
SAR406 MAGs. Seventy-four of the 101 MAGs had a
lower observed maximum growth rate during the experi-
ments than a predicted maximum growth rate (Fig. 4).
Pearson correlation analysis with predicted max growth
rates and highest observed growth rates of all MAGs found
a good correlation (r= 0.57, p < 0.00001, n= 101), espe-
cially considering the observed growth in the unamended
filtered seawater we used is unlikely to be at or even near
the organism’s maximum rate.

Observed growth rates compared to peak-to-trough
ratio indices

The range of the three PTR indices were 1.69–4.99 (iRep,
mean= 3.15), 1–4.4 (GRiD, mean= 1.63), and 1.01–12.82
(DEMIC, mean= 1.99). The correlations between PTR
indices and observed growth rates of all taxa combined
were either negative (iRep, r=−0.27, p value= 0.053,
n= 52) or weak (GRiD, r= 0.077, p value= 0.20, n= 273;
DEMIC, r= 0.072, p value= 0.13, n= 446). However,
because PTR indices could have taxon-specific relationships
with growth, we compared the observed growth rates and
PTR values on a taxon-by-taxon basis. The overall picture
showed many weak or even negative relationships, and very
few taxa having a significant positive relationship between
any PTR index and observed growth (Fig. 5 and all
regression data shown in Supplementary Table 2). Only a
few fast-growing Gammaproteobacteria were exceptions,
particularly with the DEMIC PTR index. Oceanospirillales
Saccharospirillaceae had significant correlations between
observed growth rates and DEMIC (r= 0.63, p value=
0.0022, n= 21), and small sample sizes may have ham-
pered statistical significance with iRep (r= 0.78, p value=
0.22, n= 4) and GRiD (r= 0.40, p value= 0.22, n= 11).
Oceanospirillales OM182 growth also had significant
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correlations with the DEMIC index (r= 0.92, p value=
0.0004, n= 9), and a positive relationship with GRiD
showing r= 0.49 (p value= 0.18, n= 9). The DEMIC
index for these two taxa yielded the only significant positive
correlations with observed growth when applying a
Bonferroni-corrected alpha of 0.0025.

Measurable PTR indices were also found in MAGs that
showed no detectable growth. Of 1166 calculable PTR
indices, 304 occurred during times when the MAGs had no
observable growth. Two different PTR indices calculated
for the same MAG accounted for 128 of these 304 instances
(Supplementary Table 3).

Discussion

CUB and PTR growth estimation methods have previously
been studied only with pure cultures, but for reasons we
explained in the “Introduction”, there are questions about
the applicability of such pure culture-based results to natural
samples even though such organisms are typically the target
of recent field research. Hence, we created a situation where

such heterogeneous mixed communities would grow at
rates similar to what we might expect in the field, on natural
dissolved organics, and where we could track the growth of
over a hundred MAGs, in order to apply these techniques
and directly compare the results to measured growth rates.
We reiterate that this is a validation approach for the
methods, with highly manipulated samples, and not an
attempt to measure the actual in situ rates of these taxa in
the field at the time of the study.

Codon usage bias maximum growth rate predictions

CUB-based maximum growth rate predictions had a
significant statistical relationship with the observed
MAG-derived maximum growth rate estimates (r= 0.57,
p < 0.00001, n= 101). While Kirchman [1] applied this
methodology to cultured organisms with complete gen-
omes and found a similarly strong relationship, this is the
first validation of the method using MAGs and their
growth rates observed in a mixed microbial community.
Note that MAGs are partial genomes at best and are very
different from cultivated clonal genomes, in that they are
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necessarily somewhat chimeric representatives of natural
populations that have some within-population diversity.
The good relationship between the highest observed
growth rates and predicted maximum growth rates sug-
gests that CUB works reasonably well for prokaryotes
that can be binned into a high-quality MAG (as defined in
the “Methods”). These results allowed us to estimate at
least the potential growth rates of members of ecologi-
cally important marine microbial subdivisions that have
not yet been cultivated, such as SAR406, SAR86, and
MGII Euryarchaeota. Note that as expected, organisms
previously known to be adapted to oligotrophic envir-
onments, and with slow-growing cultured relatives, such
as Pelagibacterales, had low predicted maximum growth
rates (0.57–1.31 per day) and organisms with high growth
rates in previous studies, such as Vibrio (up to 14 per day

in [36]), had high predicted maximum growth rates (15.4
per day). These results confirm Kirchman’s [1] conclu-
sion from cultured marine bacteria that CUB can be
applied reasonably well for the estimation of maximum
growth rates for many fast and slow-growing marine
bacteria. We extend these results to incomplete genomes
and at least one archaeal clade, and importantly to a
variety of incomplete genomes and to uncultivated
organisms. However, some slow-growing organisms, like
Prochlorococcus, had a higher predicted maximum
growth (2.05 per day) than any previous estimation of
their growth rates from cultures (0.1–1 per day; e.g., [37–
39]). Thus, while the relationship between observed
growth rates and predicted growth rates across all taxa is
strong, some taxa may have their growth potential over-
estimated with CUB. Others, as evidenced by the 27 of

Fig. 2 Phylogenomic tree with associated heatmap showing the highest observed growth for each taxon in each experiment and replicate.
The detailed taxonomy information and observed growth rates can be found in Supplementary Table 1.
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101 MAGs with higher observed growth rates than pre-
dicted maximum growth rates, apparently have their
growth potential underestimated, but few observed rates
were very far from predictions. It is possible that CUB
might be modified to more accurately predict maximum
rates, by incorporating more training data from this and

other similar experiments. CUB-based maximum growth
rate predictors may be further improved by coupling
metatranscriptomics with growth rate experiments to
tailor highly expressed genes rather than using only
ribosomal protein genes as is the case with growthpred,
the predictor used in this study.

Fig. 4 The highest observed
growth rates, as measured
over three time points, plotted
against predicted maximum
growth rates from codon usage
bias predictor (growthpred).
Solid line is x= y, so MAGs
with symbols above the line
grew more slowly than its
predicted maximum, and below
the line had faster growth than
its predicted maximum. Note
that when growth exceeded the
predicted maximum, it was
usually not by much. The
dashed line is the linear
regression between observed
growth and predicted maximum
growth, with the correlation,
equation, and p value shown.
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Peak-to-trough ratio growth indices

In contrast to CUB, PTR indices as currently applied with
MAGs did not work well for the vast majority of marine
planktonic taxa we observed. Until PTR indices are tested
and validated in other natural environments, we suggest
results derived from these methods should be interpreted
with caution. Several MAGs did not have any growth
observed for parts of the experiment yet did have calculable
PTR indices, suggesting not all PTR values are indicative of
growing organisms. For taxa that did grow, the weak rela-
tionship between observed growth rates and all the variants
of the PTR growth indices suggests that these methods
poorly predict the growth of the large majority MAGs in the
naturally derived microbial communities we observed.

Oceanospirillales MAGs, the fastest-growing MAGs in the
experiments, were a notable exception to this, suggesting
PTR methods may be more suited to rapidly growing
organisms. One reason may be that the very low initial
Oceanospirillales MAG abundance and subsequent rapid
growth suggest that Oceanospirillales MAGs were more
genomically clonal and physiologically homogeneous than
the organisms with high initial abundances and slow growth
rates. Because one of the challenges in applying PTR to
natural communities is cross-recruitment from close rela-
tives when mapping reads, it is reasonable that a more
clonal population would reduce the noise generated from
such cross-recruitment. Co-occurrence of many close rela-
tives is a characteristic frequently observed in natural
populations, particularly the most abundant oligotrophs

Fig. 5 Observed growth rate, measured over three consecutive
time points, plotted against peak-to-trough ratio indices at the
middle time point. The PTR indices are a iRep, b GRiD, and c
DEMIC. Lines are linear regressions for each taxon with more than
two observations of both growth rates and PTR indices. Slopes should
be positive and significant if the PTR index reflects growth. The

similar extent of positive, flat, and negative slopes illustrates the poor
general relationship between PTR and observed growth rates, with the
exception of a few fast-growing Gammaproteobacteria (see text).
Underlying data and regression statistics are in Supplementary
Table 2.
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(e.g., [40, 41]). This relates to questions about the extent to
which MAGs represent an amalgamation of closely related
strains with potentially different growth rates. When MAGs
represent highly microdiverse clusters of relatives that could
potentially exhibit concomitantly diverse growth rates, it
may lead to irregular and noisy read recruitment and less
informative PTR index calculation.

Other challenges to the application of PTR include dif-
ferent microenvironments (rich versus less so) that indivi-
duals within a population could have been collected from,
the extent some population members may be infected by
viruses, the lack of knowledge on the physiology and
replication strategy of many slow-growing microbes, and
the extent of synchronization of the growth of particular
populations. Synchronicity is common in phototrophs (diel
cycles) and reported for at least some physiological pro-
cesses even in oligotrophic heterotrophs like SAR11 [42],
and it can also influence PTR interpretation.

We considered two methodological artifacts that may
yield inaccurate PTR data. First, some MAG generation
steps may merge related strains that might legitimately be
considered part of a “population” but grow differently,
yet all strains would recruit reads resulting in a noisy PTR
calculation. To begin examining the effect of such merging,
we altered our regular MAG generation protocol by elim-
inating the overlap assembly step that merges very close
(but not identical) relatives, using only MAGs generated by
one method (anvi’o). This should have merged fewer clo-
sely related strains into one MAG. Still, results from these
MAGs yielded no better relationships between growth and
PTR indices (Supplementary Fig. 1 and Supplementary
Table 4). The second possible artifact relates to sequencing
library preparation. Metagenomes today are most com-
monly generated with library preparation kits that involve a
PCR-amplification step (i.e., linker amplified shotgun
libraries), including this study and the dataset used to test all
PTR indices [4]. It has been recently recognized that this
amplification step alters the relative abundance of metage-
nomic reads compared to the original DNA, specifically
yielding a small-insert bias due to amplifying and sequen-
cing small inserts more readily than larger inserts [43]. This
bias produces artifacts in quantitative read mapping,
potentially altering PTR index values, or at least introducing
considerable noise in the PTR estimation. We tried to avoid
this artifact by sub-setting the read mapping files according
to insert sizes (100–350, 200–450, 300–550, 400–650). We
found that when we did so, PTR index values trended lower
for the same MAG when using shorter insert sizes (Sup-
plementary Table 5). However, the lowered PTR index
values still produced weak and negative correlations when
compared to observed growth rates and did not improve the
PTR-based predictions of growth (Supplementary Table 2).
We also considered how the method chosen for growth rate

estimations might affect the relationship between growth
and PTR index. The results we reported used all the two-
point growth calculations, which allowed many separate
determinations of growth and the maximum number of
comparisons. If we restricted the comparisons to three-point
regression-based growth estimates where the regression was
significant, we had fewer comparisons, yet rates were about
the same. This did not alter the relationship between growth
and PTR indices, with correlations remaining weak and
often negative (Supplementary Fig. 2 and Supplementary
Table 2).

Bacterial growth rates of uncultivated clades

While the primary aim of this study was to test PTR and
CUB, the MAG-derived growth rate estimation approach
itself allowed us to obtain growth information from clades
without cultured representatives such as SAR406, SAR86,
and MGII Euryarchaeota. This growth rate estimation method
is based on the calculation of absolute abundances under the
assumption of uniform DNA extraction efficiencies, as
assumed previously in growth rate estimations using quanti-
tative PCR [e.g., 44] and by Brown et al. [4] using a similar
method to estimate absolute abundances of species within an
infant fecal microbiome which were used to estimate the
doubling time of Klebsiella oxytoca. It is encouraging that our
calculation of growth rates for taxa with cultivated members
fits in well with what is known from cultures; for example the
ranges of both observed and predicted growth rates for the
several Pelagibacterales MAGs were within the range of
previously published observed growth rates from this group
(0.4–0.6 per day; reviewed in [1]).

Even though the growth rate estimates are from
manipulated conditions where grazers (along with in situ
nutrient replenishment sources like phytoplankton) were
filtered out and viruses are greatly reduced by dilution, they
provide growth information on clades that would otherwise
have none, and do reflect growth on natural dissolved
organic matter in unamended seawater, thus meriting dis-
cussion. For example, the growth rates estimated for pre-
viously uncultivated SAR406 (0.29–0.39 per day) were
similar to those of several other marine heterotrophs, such
as MAGs belonging to Pelagibacterales and SAR116. The
observed growth rates were lower but close in value to the
CUB-predicted maximum growth rates. This result is
interesting because SAR406 has usually been found at
higher abundances in suboxic and hypoxic environments,
leading researchers to think they preferred such conditions
[45], and our conditions were fully aerobic. In addition,
SAR86 MAGs also had a low range of both observed
(0.53–1.84 per day) and predicted (0.64–1.82 per day)
maximum growth rates. Most previous studies examining
SAR86 growth also suggest low activity (e.g., [46–48]),
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except for a study in the coastal North Sea [49]. However,
as SAR86 is thought to have at least three distinct subclades
[50, 51], these previously published results may not be
directly applicable to the SAR86 MAGs recovered in
our study.

Two groups of MGII Euryarchaeota were present in our
experiments: MGIIa and MGIIb. MGIIa are typically found
in higher abundances in surface waters [52], whereas
MGIIb are more prevalent in deeper waters (e.g., [53–55]).
Despite the relatively low observed growth rates (0.19–0.44
per day), all three MGII MAGs had predicted maximum
growth rates based on CUB near or over 2 per day. This
suggests that MGII may be quite active in certain envir-
onments, as we previously reported for SPOT where MGII
16S rRNA sequences comprised over 40% of the microbial
community (higher than SAR11) on one post-spring-bloom
day [56]. Further, MGII have also been found to be very
abundant in Monterey Bay, CA [57] and the Northern Gulf
of Mexico “Dead Zone”, where they were found to be over
10% of the total microbial community [45].

Conclusions

We studied bacteria and archaea, represented by MAGs, in
mixed naturally derived marine communities grown under
manipulated conditions that allowed us to track gross
growth rates. We found they had growth rates that related
fairly well to the CUB-based estimates of maximum growth
rates, but not so well to metagenomic PTR-based estimates
of in situ rates (except for the fastest growers). Assuming
our results derived from marine plankton apply generally to
other comparable habitats (at least), the data suggest that
applying the CUB method to MAGs is likely to provide
somewhat reasonable estimates of maximum growth rates,
but that the current PTR methods do not reliably predict
in situ growth rates. Looking forward, the CUB method
could possibly be improved by an updated training dataset
that considers more slowly growing organisms, many of
which are now in culture. Other alterations to the CUB
approach may include consideration of other genes that are
known to be highly expressed in addition to ribosomal
proteins. It is also possible that improvements in metage-
nomic assembly, binning, and read mapping, as well as
better information on DNA replication strategies in diverse
nutrient-limited slow-growing populations, may improve
prospects for PTR-based growth estimates and other related
approaches.

Data availability

Raw reads and sample information have been submitted to
NCBI under project ID PRJNA551656, the de-replicated

assemblies and manually curated MAGs have been
deposited at https://doi.org/10.6084/m9.figshare.9730628.
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