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Persistent developmental stuttering is a speech disorder that primarily affects normal speech fluency but encompasses a complex set of
symptoms ranging from reduced sensorimotor integration to socioemotional challenges. Here, we investigated the whole-brain struc-
tural connectome and its topological alterations in adults who stutter. Diffusion-weighted imaging data of 33 subjects (13 adults who
stutter and 20 fluent speakers) were obtained alongwith a stuttering severity evaluation. The structural brain network properties were
analysed using network-based statistics and graph theoretical measures particularly focussing on community structure, network hubs
and controllability. Bayesian power estimationwas used to assess the reliability of the structural connectivity differences by examining
the effect size. The analysis revealed reliable andwide-spread decreases in connectivity for adults who stutter in regions associatedwith
sensorimotor, cognitive, emotional and memory-related functions. The community detection algorithms revealed different subnet-
works for fluent speakers and adults who stutter, indicating considerable network adaptation in adults who stutter. Average andmod-
al controllability differed between groups in a subnetwork encompassing frontal brain regions and parts of the basal ganglia. The
results revealed extensive structural network alterations and substantial adaptation in neural architecture in adults who stutter
well beyond the sensorimotor network. These findings highlight the impact of the neurodevelopmental effects of persistent stuttering
on neural organization and the importance of examining the full structural connectome and the network alterations that underscore
the behavioural phenotype.
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Graphical Abstract

Introduction
Persistent developmental stuttering, also known as child-
hood onset fluency disorder, is primarily a problem with
the fluent production of speech but also encompasses a com-
plex set of symptoms ranging from problems in sensorimotor
integration to socioemotional challenges. Compared with
non-stuttering fluent speakers (FS), adults who stutter
(AWS) tend to show a range of functional and structural
brain differences that have been the focus of much neuroima-
ging work. Studies involving functional imaging have identi-
fied over-activation in dominantly right hemispheric motor
areas (primary motor cortex, premotor cortex, supplemen-
tary motor area and inferior frontal gyrus), the cerebellum
(CBM) and reduced activation of left inferior frontal gyrus
and superior and middle temporal gyri.1–8 Structurally, stut-
tering is associated with reduced grey and white matter vo-
lumes9 and disrupted white matter organization in left
central operculum, bilateral inferior frontal, peri-Rolandic,

inferior frontal, subcortical regions and in deep white matter
tracts.10–14 In addition, abnormal lateralization for speech
production has been reported15–17 with reduced structural
asymmetry18,19 and inadequate cortical thinning in Broca’s
area with age.20 Recent studies of AWS examining white
matter connectivity using diffusion data have found reduced
connectivity strength in a number of areas with a predomin-
ance in the left hemisphere.10,21 The corticocortical connect-
ivity of AWS is generally weaker in bilateral brain areas
associated with speech production including parts of the
left peri-Rolandic sensorimotor and premotor cortex, most
notably the left ventral premotor cortex and middle primary
motor cortex. Overall, the majority of neuroimaging studies
of AWS have focussed on brain areas directly associatedwith
the sensorimotor process of speaking22,23, even though ver-
bal communication is dependent on and reflects the inter-
action of cognitive and emotional processes.24,25

Individuals who stutter experience feelings of fear of hu-
miliation, embarrassment and negative evaluation in social
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or performance-based situations which contribute to the de-
velopment of a high rate of social anxiety disorder.26,27 The
negative consequences of stuttering can begin early, with evi-
dence of pre-school children who stutter experiencing bully-
ing, teasing, exclusion and negative peer reactions.28–30

These consequences are intensified during the school years
when children become more involved in social and speaking
situations and continue into adulthood, with negative effects
on quality of life and socioemotional experiences.31,32 AWS
associates the moment of stuttering with a sensation of an-
ticipation and loss of control, which leads to behavioural re-
actions that become deeply ingrained over time.32 These
aversive communicative events become generalized and asso-
ciated with a breakdown in speech fluency. In this context, it
is important to recognize that persistent stuttering is first and
foremost a neurodevelopmental disorder,33 and its cognitive,
social and emotional consequences are likely secondary,
stemming from the difficulty that these individuals have co-
ordinating their speech.

The precise neurodevelopmental origin of stuttering is
currently unknown, complicated by the fact that it is only ob-
servable after the onset of speech. Epidemiological studies re-
flect a range of potential causal factors that reflect genetic,
epigenetic and environmental interactions. One of the strik-
ing consequences of neurodevelopmental disorders, in gen-
eral, is a complex ontogenetic adaptation of brain
networks due to alterations in neurogenesis, cell migration
and neuronal connectivity.34–36 Using a combined analysis
of functional connectivity MRI data and gene expression
maps from both children and AWS, a potential causal link
between gene mutations and aberrant brain connectivity in
stuttering has been proposed, having to do with lysosomal
dysfunction.37 For AWS, additional adaptations impacting
brain structure and function include environmental factors
such as socioeconomic status, impaired child–parent interac-
tions, conflicts with parents, negative parental reactions to
normal childhood dysfluency and other socioemotional de-
velopmental consequences leading to emotional reactivity,
social anxiety26,38–41 and problems with executive function,
learning, memory and emotional (self)-regulation.25,42–44

While empirical data clearly suggest a complex neurodeve-
lopmental disorder that extends beyond the overt symptoms
of dysfluency,33,45–47 there has not been an extensive and
comprehensive evaluation of the structural networks in
AWS. Most of the neuroimaging work evaluating brain
structure has focussed on assessing connectomic differences
in brain areas directly associated with the speech production
and speech motor planning10,11. In the current study, we
chose to examine the full spectrum of brain regions in a co-
hort of AWS and FS using network and graph theoretical
analyses48–50 to assess network connectivity, organization
and integrity. The expectation is that genetic/neurodevelop-
mental differences,37 in combination with environmental/
risk factors, have resulted in structural connectivity changes
that impact the organization and interaction amongst brain
regions that extend well beyond the speech motor network.
These structural alterations contribute to network-level

changes that impact the speech motor network, overall net-
work communication and processing efficiency across mul-
tiple behavioural domains.

Methods
Data acquisition
A total of 33 subjects were analysed including 13 adults
(5 males, 8 females) who stutter (AWS: mean age: 28.77+
11.11 years) and 20 FS (10 males, 10 females) (FS: mean
age: 29.6+ 10.41 years). The subjects, also included in our
previous studies,51,52 had no known neurological, speech
or language problems besides stuttering and FS having no
history of stuttering. This study was approved by the
McGill Faculty of Medicine Institutional Review Board
and the Yale Institutional Review Board in accordance
with principles expressed in the Declaration of Helsinki; in-
formedwritten consent was obtained from participants prior
to their involvement in the project.

For all subjects, whole-brain high-resolution T1-anatomical
image and diffusion-weighted images (DWI) were obtained
using 3T MR-scanner (Siemens TrioTim). The T1-anatomical
imagewas obtained using anmagnetization-prepared rapid ac-
quisition with gradient echo (MPRAGE) sequence with repeti-
tion time (TR)= 2300 ms, echo time (TE)= 2.98 ms,flip angle
= 9° and field of view (FoV)= 256 mm. DWI was obtained
using a single-shot spin-echo diffusion-weighted echo-planar
imaging sequence of 2 mm isometric voxel resolution covering
an FoVof 244 mm×244 mm,matrix size of 122×122, TR=
8800 ms, TE= 87 ms and slice thickness of 2 mm. DWI was
acquired along 60 non-collinear gradient directions with a
b-value of 1000 s/mm2 along with 9 reference volumes with
b= 0 s/mm2 (no diffusion weighting) for each acquisition.

All subjects underwent a speech evaluation before the
MRI data acquisition, details of which are described in our
previous studies.53,54 In brief, a trained speech–language
pathologist specializing in stuttering, blinded to each partici-
pant’s classification, was given 10-min videos of natural
speech productions from the testing session and was asked
to classify them along with rating the severity of each stutter-
ing participant according to the Stuttering Severity
Instrument, fourth edition (SSI-4). In addition, every stutter-
ing participant self-rated their stuttering severity and speak-
ing anxiety on a scale of 1–9 with 1 corresponding to ‘no
stuttering/anxiety’ and 9 being ‘very severe stuttering/anx-
iety’ reflecting their experience with speech in daily life. FS
also rated their anxiety about speaking generally. The details
of the demographics are presented in Table 1.

Data processing
Probabilistic tractography
The obtained DWI from all subjects were controlled for data
quality55,56 and pre-processed using inbuilt functionality in
FMRIB software library (FSL) (version 6.0.1) described in
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detail elsewhere.57–59 In brief, susceptibility andmotion arte-
fact correction and diffusion tensor modelling were per-
formed using the diffusion toolbox (FDT, part of FSL).
Crossing fibres’ distribution was estimated using
BEDPOSTX (implemented in FSL) and the probability of
major and secondary fibre directions was calculated. All
images were aligned and affine transformed into the stereo-
tactic Montreal Neurosciences Institute (MNI)-152 space.
A multi-fibre model was fit to the diffusion data at each vox-
el, allowing for tracing of fibres through regions of crossing
or complexity. Here, we drew 5000 streamline samples from
each seed voxel to form an estimate of the probability distri-
bution of connections from each seed voxel. The obtained
probabilistic distribution was used to build the connectivity
matrix. A connectivity matrix was obtained using the seed
masks for 116 regions of interest (ROIs) each as a node de-
fined by the Automated Anatomical Labelling atlas60 for
each subject. The links or entries in the connectivity matrix
represent the ratio of the number of samples (or streamlines)
that pass through an ROI to all generated streamlines from
an ROI or the probability of the connection that exist be-
tween any two regions.

Network-based statistic
Network-based statistic (NBS) analysis was applied to assess
differences in the interregional connectivity matrices be-
tween the groups. NBS analysis deals with the multiple com-
parisons problem posed by connectomic data by evaluating
the null hypothesis at the level of interconnected subnet-
works rather than individual connections.61,62 Here, the
connectivity matrices obtained from probabilistic tractogra-
phy were subjected to NBS analysis to identify the difference
between the groups. Two thresholds of the t-statistic .1.7
(P= 0.047) and .2 (P= 0.02) were selected for showing
two different networks with different number of connections

and levels of statistical significance (P, 0.05). Five thousand
permutations were generated shuffling the participant labels
to build the null distribution.63 Note that the choice of
threshold only affects the sensitivity of the method and still
guarantees the significance and control for family wise error
rate. Finally, the networks showing impaired connectivity
between regions compared with FS were reported.

Bayesian power analysis
Given our small sample size, we assessed whether the struc-
tural connectivity differences were reliable by examining the
effect size with Bayesian power analyses computed using the
freely available software Bayesian estimation64,65 in R. All
the connections showing significant difference in the NBS
analysis were used as inputs for both groups y1 (FS) and y2
(AWS) to test for group differences using the Bayesian pos-
terior distribution analyses. The Markov Chain Monte
Carlo approach was used to compute Bayes factor for the
choice of priors with the simulation of 100 000 sampling
steps.66,67

Behavioural correlations
The relationship of the connectivity difference to the behav-
ioural measures was assessed by computing the Pearson cor-
relation coefficient for both groups [AWS: n= 13, FS: n= 14
(complete behavioural measures were only available for 14
of 20 FS), controlled for age and sex] for the ratings of stut-
tering severity and self-rated anxiety scores from the AWS.

Community structure
Modules or network communities are defined as clusters of
nodes derived from a decomposition of the network into sub-
components. These subcomponents have strong internal
coupling, but weak external interrelation.68,69 Based on the
topology of the network, these modules were detected in a
purely data-driven way with each node assigned to each
module to assess network function.70 Two different methods
to compute the modules based on assortative and disassorta-
tive models were implemented. The first, modularity maxi-
mization, was used to capture the communities which were
internally dense and externally sparse (assortative) reflecting
a segregated and autonomous organization.71–73 However,
recently, it has been discussed that modularity maximization
and related techniques may overlook some important and
functionally relevant characteristics of neural circuits which
exhibit non-assortative wiring.74,75 Because of this, we also
used a weighted stochastic block model (WSBM), a genera-
tive modelling approach to describe a wider range of com-
munity structure topologies by explicitly considering
patterned interactions between communities.76,77 In general,
WSBM communities exhibit greater hemispheric symmetry,
are spatially less compact than those derived from modular-
ity maximization and more closely reflect functional
networks.

Here, we applied both methods to capture the features of
both assortative and non-assortative networks. For assorta-
tive modules, the modularity maximization algorithm as

Table 1 Demographics of the stuttering subjects
included in the study

Subject
Age

(years) Sex
SSI-4
score

Self-rated
severity

Self-rated
anxiety

1 24 Female 23 5 3
2 22 Female 13 3.5 4.75
3 28 Female 29 7 3
4 40 Female 17 4 2.5
5 23 Female 32 5 3.5
6 18 Female 10 2 7
7 31 Male 13 3.5 5
8 23 Male 25 4 4
9 27 Female 8 3.33 4
10 51 Male 26 7.5 6
11 49 Male 13 3 5
12 20 Female 14 4 4.5
13 18 Male 22 4.5 4.5

Here, SSI-4 is the Stuttering Severity Instrument, fourth edition used by the speech–
language pathologist for classifying stuttering in terms of severity. For self-rated
stuttering severity and speaking anxiety, a scale of 1–9 was used with 1 corresponding to
‘no stuttering/anxiety’ and 9 to ‘very severe stuttering/anxiety’.

4 | BRAIN COMMUNICATIONS 2022: Page 4 of 17 V. L. Gracco et al.



implemented in the brain connectivity toolbox (BCT; https://
sites.google.com/site/bctnet)68 was used for each individual
subject. At its core, the algorithm uses the Louvain method
for community detection, which optimizes the modularity
as the algorithm progresses.73 For computation, we used
weighted and undirected connectivity matrices, resolution
parameter greater than one and negative weights were trea-
ted symmetrically. Five thousand iterations were performed
and the assignment of each region to a particular module was
based on the maximum number of times/iterations a region
was assigned to a module.78 Similarly, modules based on
WSBM were computed using the script made available by
Betzel et al.77 at http://tuvalu.santafe.edu/�aaronc/wsbm/.
WSBM is an extension which includes weighted edges in a
stochastic block model, a probabilistic model of determining
pairwise interactions between different nodes (see Aicher
et al.79,80 and Faskowitz et al.76 for detailed mathematical
description). The inputs of the algorithm consisted of the
‘edge list’ and the number of blocks (7), matching the num-
ber of modules obtained from the modularity algorithm.
Again, 5000 iterations were performed for the assignment
of each region to a particular module, as done for the max-
imum modularity computation.78

Controllability
The dynamics of complex systems depend upon the organ-
ization of the underlying network such that their elements
can be associated with internal states that evolve over
time.81 The control of a system dynamics is complex but re-
lies heavily on the anatomical structure, or its topology.82–84

To estimate network-level control from structural connectiv-
ity, we calculated the average and modal controllability for
the respective modules obtained from maximization modu-
larity analysis. Both parameters were computed using the
scripts available at https://complexsystemsupenn.com/
codedata.82,85 Average controllability identifies a brain
node or network that, on average, can steer the system into
easily reachable and nearby states with little effort (i.e. min-
imal input energy). Modal controllability identifies a brain
node or network that can drive the system into
difficult-to-reach states (states that require substantial input
energy). Here, we define a state to be the vector of neuro-
physiological activity at a single time point. From a cognitive
perspective, these areas may be important in switching the
brain between functions that require significant cognitive ef-
fort.82 For this study, as we were interested in observing the
network-level control or the loss of it in AWS, we pooled the
controllability values obtained from each node to obtain an
average value for each module per group.We then compared
each module from the AWS group to the same module from
FS group (matched for age and sex to AWS) using the t-test
for statistical significance. The controllability analysis was
only carried out for the modules obtained from maximum
modularity, as we were interested in observing if the vari-
ation in the (fewer) non-overlapping nodes between the
groups might be the reason for loss of controllability in the
AWS. For the modules obtained using the WSBM, the nodes

in the modules for different groups were highly non-
overlapping, making it ill-suited for the comparison between
groups.

Network hubs
The weighted connectivity index between ROIs in the matrix
was further analysed using algorithms implemented in the
BCT.86 The network parameters of distance, clustering and
centrality were computed to observe the influence over infor-
mation transfer, principle hubs and network reorganization
for segregation or integration. Here, network hubs were
computed using two network measures—degree and be-
tweenness centrality. A node is considered as a hub if its re-
gional degree/betweenness centrality is substantially higher
than the average network degree/betweenness.87 We com-
puted hubs based on 1 and 2 standard deviations (SDs)
from the average for each group. A concise explanation of
these measures is presented below.

Degree of a node is the number of links it has with other
nodes in the network. It is one of the fundamental network
measures and is an obvious measure for computing hubs re-
presenting the importance of an individual node to network
efficiency.48 The efficiency of a network here is a measure of
how easily it exchanges information.88

Betweenness centrality of a node is the fraction of all short-
est paths in the network that contains a given node and mea-
sures the extent to which the node lies on paths between other
nodes. A node with higher betweenness centrality is consid-
ered a hub as it participates in a large number of shortest paths
and has considerable influence in the network by virtue of its
control over information passing between nodes.89

Data availability statement
The raw, anonymized and defaced MRI along with the be-
havioural data could be made available upon reasonable re-
quest to the corresponding author and relevant Institutional
Review Board approval needed for obtaining the patients’
data.

Results
Structural connectivity
From the NBS analysis, we observed a network encompass-
ing cortical, subcortical and cerebellar (CRBL) regionswhich
had significantly (P, 0.020) lower connectivity for AWS in
comparison to FS (Fig. 1; Table 2); there were no instances of
increased connectivity. Regions with reduced connectivity
included pre-central gyrus (PreCG), postcentral gyrus
(PoCG), posterior cingulate gyrus (PCG), cuneus (CUN),
caudate (CAU), putamen (PUT), pallidum (PAL), amygdala
(AMYG), hippocampus (HIPP), parahippocampal gyrus
(PHG) and thalamus (THA); structures represented bilat-
erally included the AMYG, PAL, PCG and the CUN. All
the CRBL regions were located on the right hemisphere
and included Crus I, II and Lobules VIII, X. The cortical
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and subcortical regions were mostly distributed evenly with
9 on the left and 10 on the right side, however, of the 28 pairs
showing reduced connectivity, only 4were intra-hemispheric
(in the left hemisphere) with the remaining 24 pairs compris-
ing differences that were inter-hemispheric (see Table 2).

A larger network with additional cortical, subcortical and
CRBL regions was observed at a lower level of significance
(P= 0.047) (Fig. 1, Table 2, t-values in bold). The additional
reduced connectivity profiles were comprised of bilateral—
angular gyrus (ANG), left—paracentral lobule (PCL), super-
ior parietal gyrus (SPG), inferior parietal gyrus, inferior tem-
poral gyrus (ITG), superior temporal gyrus (TPOsup) and
right—inferior occipital gyrus (IOG), precuneus (PCUN)
and the middle temporal gyrus (TPOmid). The additional
subcortical and CRBL regions were the left—HIPP, CRBL
Lobule VIIB, VIII, IX, X and right—CRBL VI, VIIB, IX.

Bayesian power analysis
Using the Bayesian approach to test the group differences
and effect size, we found that, out of all the NBS structural
connectivity differences, the majority (73% in the lower
threshold and 79% in the higher threshold) were of medium
(.0.3) to large (.0.5) effect size. The details of the effect size
distribution along with its modal value are presented as a
Supplementary Figs. 1 and 2.

Correlations with stuttering severity
and self-rated anxiety
We found a number of significant relationships between be-
haviour and connectivity for the self-rated anxiety scores of

the AWS but not for FS (Fig. 2). Specifically, self-rated anx-
iety in AWS was negatively correlated with connectivity
strength between right PCUN to left PUT, left PreCG to
the left HIPP and right CUN to left PAL [AWS: r2= 0.36
(P= 0.030), r2= 0.48 (P= 0.008), r2= 0.37 (P= 0.027);
FS: r2= 0.01 (P= 0.719), r2= 0.004 (P= 0.820), r2= 0.08
(P= 0.329), respectively]. However, both self-rated stutter-
ing severity and severity obtained from the SSI-4 [highly cor-
related to each other (r2= 0.61)] showed no relationship to
the reduced connectivity in the sample.

Network hubs
From the graph theory analysis, significant differences in net-
work hubs based on degree and betweenness centrality (P,

0.05, FDR corrected) were observed between the groups
(Fig. 3). Four nodes for FS and five for AWS were identified
as hubs whose nodal degrees were 2 SD above the average.
For AWS, the bilateral THA nodes were more prominent
with reduced strength for left PCUN node compared to the
FS. At a less stringent threshold (1 SD) a number of other dif-
ferences were noted in degree hubs including the right—su-
perior orbital frontal gyrus (ORBsup), median cingulate
and paracingulate gyri (DCG) and fusiform gyrus (FFG)
for FS and left olfactory cortex and right middle occipital
gyrus (MOG) for AWS. For hubs based on betweenness cen-
trality, the left PCUN and lingual gyrus (LING) reflected re-
duced betweenness in AWS compared to FS. At the less
stringent threshold, some hubs were missing for the AWS
compared to the FS (CRBL 4 of 5 on the left, the FFG on
the right) while the left MOG was present in AWS but not
in the FS. Furthermore, in the group-wise comparison for

Figure 1 Connectivity difference between adults who stutter and fluent speakers. Reduced connectivity for the adults who stutter
compared with fluent speakers depicted using the structural connectivity obtained using probabilistic tractography and compared using NBS. The
figure on the left is thresholded at P= 0.020 and on the right is thresholded at P= 0.047. The background template is a Colin Brain with cerebellum
(LH, left hemisphere; RH, right hemisphere) registered in MNI space.
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each node, we found lower degree in left MOG and right
THA and lower betweenness centrality in left LING,
MOG, SPG and right PreCG andmedial orbital frontal gyrus
(ORBsupmed) in the AWS.

Community structure—maximum
modularity
The optimization based on maximummodularity yielded se-
ven non-overlapping communities (modules) for each of the
groups. The modules and their associated regions are shown
in Fig. 4 and detailed in Supplementary Table 1. Module
(pseudo) names were assigned based on the cortical regions
most prominently represented for the FS. Five of the seven

modules were distinctly different between the groups. The
two identical modules include the medial module encom-
passing bilateral supplementary motor area (SMA), the mo-
tor portion of the cingulum and the PCL (MEDIAL; in
orange) and the CBM (in light blue). The modules that dif-
fered significantly for the groups included; (i) a Frontal mod-
ule (FRONTAL; left. right, in red), (ii) an anterior medial
module (A_M_F; in blue) extending into the right frontal
area for the AWS, (iii) a posterior medio-temporal module
(POST_MED_LAT; in gold) that included the right middle
and inferior temporal area for AWS but not for the FS,
(iv) a temporoparietal module (TEMP_PAR; in purple)
with the bilateral organization for the FS but only left
sided for the AWS and (v) a frontoparietal module

Table 2 Network-based statistics results detailing the networks having lower structural connectivity in AWS
compared with FS

Left hemispheric network Right hemispheric network

Regions

T-stats values

Regions

T-stats valuesLeft — Left Right — Right

CAU — THA 2.23 PCG — IOG 1.72
PCG — AMYG 2.05 — TPOmid 1.79

— CUN 1.79 PCUN — STG 2.01
— TPOsup 1.99

PCL — CRBL7b 2.09
— CRBL8 1.94
— CRBL9 2.46

PoCG — PAL 2.24
— CRBL10 1.87

PreCG — HIP 1.81
— CUN 2.22

SPG — THA 1.77
— ITG 1.88

Inter-hemispheric network

Regions

T-stats values

Regions

T-stats valuesLeft — Right Left — Right

ANG — PAL 1.74 PreCG — HIP 2.53
CAU — CRBL7b 1.89 — PHG 2.46

— PCG 2.15 — AMYG 2.61
— CUN 2.08 — PAL 2.4
— CRBL10 1.97 — CRBLCrus1 2.37

IPL — PAL 1.88 — CRBLCrus2 1.87
— CRBL10 1.72 — CRBL8 2.08

PAL — CRBLCrus2 2.91 — CRBL9 1.74
— PCG 2.32 — CRBL10 2.1
— CUN 2.49 PUT — CRBLCrus1 1.9
— CRBL7b 1.87 — CRBLCrus2 2.87
— CRBL8 2.41 — PCUN 1.74

PCG — PCG 2.19 — PCG 2.54
— PHG 1.71 — CRBL7b 1.84
— AMYG 1.87 — CRBL8 2.2
— PCUN 2 — CRBL10 2.3

PCL — CRBLCrus2 1.93 PoCG — ANG 1.87
— CRBL8 1.7 — PAL 2.46
— CRBL9 1.86 — CRBLCrus1 2.19
— CRBL10 1.95 — CRBLCrus2 2.04

SPG — CRBL10 1.98 — CRBL6 1.88
TPOsup — PCUN 2.24 — CRBL10 2.27
AMYG — PCG 2.6 THA — CRBL10 2.33

The t-stat values for significant differences at P, 0.020 are in bold font and for significant differences at P, 0.047 are in italic font.
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(FRONTAL_PAR; in green) that was bilaterally represented
in the AWS and only right-sided for the FS. Of particular
note are the differences that include (i) the large
FRONTAL module on the left hemisphere for FS which is
split into two modules at the central sulcus for AWS,
(ii) the fractionated dorsal auditory pathway on the left for
AWS compared to FS, (iii) the bilateral parietal regions for
AWS which is split across three modules for FS and (iv) the
bilateral inferior temporal regions which is bilateral for
AWS but is split into two modules for FS.

Community structure—WSBM
Consistent with the more generative and less constrained
approach, the WSBM resulted in more fractionated com-
munities for both groups compared to the communities
based on maximum modularity. The modules and their as-
sociated regions for FS and AWS are shown in Fig. 5 and
detailed in Supplementary Table 2. Here, frontal and par-
ietal regions (left hemisphere) were assigned to a single
module for FS, but the same regions make up two modules
for AWS, separating the pre-frontal cortex from frontal
areas including the precentral and inferior frontal gyri.
The right hemisphere frontoparietal region contains two
modules for both groups. However, the sensorimotor por-
tion of the modules (precentral and supramarginal gyri)
was clustered differently. The CBM is more fractionated
and predominantly lateralized for AWS but was organized
bilaterally in a superior/inferior dimension for FS. In add-
ition, the frontal and parietal midline medial structures
clustered with the right frontoparietal module for the FS
but were more fractionated for the AWS with the left and
right sides clustering to different modules.

Controllability
For controllability, significant differences were noted pri-
marily in the frontal module. The AWS showed higher aver-
age controllability (AWS: 1.05126, FS: 1.04360, P=
0.0129) and lower modal controllability (AWS: 0.95719,
FS: 0.96233, P= 0.0222) compared with the FS in this mod-
ule. There were no significant differences for the remaining
modules (see Table 3 for details).

Discussion
In the current study, we assessed the structural connectome
in a small cohort of AWS using network properties derived
from DWI. Consistent with the literature and extended clin-
ical features associated with the disorder, we found wide-
spread reduced connectivity in both motor and non-motor
brain areas. Reduced connectivity, predominantly inter-
hemispheric, was observed in limbic areas, in regions
associated with the default mode network (DMN) and in
non-motor areas of the CBM. Graph theoretical analysis
identified differences in network hubs suggesting reduced
subnetwork efficiency as well as changes in community
structure that are consistent with network-level adaptations
in AWS. An exploratory analysis of network controllability
found preliminary evidence of frontal lobe changes related
to speech motor control and executive function. In order to
offset the lack of power due to the small sample size, we sub-
jected the data from the two groups to a Bayesian analysis to
examine effect sizes for the connectivity results. Interestingly,
we found a range of effect sizes that appear to reflect the sig-
nificant clinical heterogeneity associated with the disorder.

Figure 2 Association to behavioural measures. Connection between the regions in the network which were significantly negatively
correlated with self-assessed anxiety in AWS and the corresponding correlations for the FS. Y-axis values represent the connectivity strength
between the regions computed as the ratio of number of samples (or streamlines) that passes through those ROIs to all generated streamlines.
The background template is a Colin Brain registered in MNI space.
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Structural connectivity
For stuttering, a persistent neurodevelopmental disorder
with multiple aetiologies, risk factors and socioemotional
and cognitive features, we expected a wide range of struc-
tural changes. Using NBS (Fig. 1), we observed wide-spread

reduced structural connectivity differences in AWS, indicat-
ing spatially distributed degradation in white matter connec-
tions compared to FS; increased connectivity was not
observed. Reduced connectivity from the left pre-central re-
gion was predominantly interhemispheric to the right globus
pallidus (GP), HIPP, parahippocampus, AMYG and CBM

Figure 3Network hubs. Network hubs, based on degree and betweenness centrality, for adults who stutter and fluent speakers based on 1 and
2 SDs from the average for each group, with blue highlights identifying differences between the groups. Larger nodes indicated hubs with more
than 2 SDs from the average of the group.
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(Crus I, II and Lobules VIII, X). The left pre-central region is
often under-activated in functional studies when individuals
who stutter produce fluent speech.6–8,11,90,91 Interestingly,
with the exception of the GP and Lobule VIII of the CBM,
reduced connection strength was associated with brain
regions associated with cognitive, memory and emotional
processing rather than solely related to sensorimotor con-
trol.92,93 The connectivity of the PoCG on the left with the
right GP and CBM (Lobule X and Crus I, II) was reduced
as well. Reduced connectivity of left PoCG to right CBM
(Lobule X) and bilateral GP has been associated with audi-
tory and somatosensory feedback in fMRI studies of non-
stuttering adults.94,95 The reduced connection between GP
(which has been associated with motor learning96) and left
posterior central gyrus may be a manifestation of the often
reported deficiency in sensorimotor integration which im-
pacts sensorimotor learning in AWS.97–99

However, the other brain regions associated with the re-
duced connectivity with the left pre- and post-central gyrus
(AMYG, HIPP and parahippocampus) have not been widely
reported. In this regard, many of the areas of reduced struc-
tural connectivity are components of the DMN, including
the posterior cingulate cortex and PCUN, medial pre-frontal
cortex, ANG, temporoparietal junction, anterior and lateral
temporal cortex, HIPP, parahippocampus, posterior inferior
parietal lobe and the retrosplenial cortex, medial pre-frontal
cortex from the frontal pole to the anterior cingulate.100–104

A major area of reduced connectivity was found between the
right PCG and left—AMYG, CAU, GP and PUT. In addition
to being a hub of the DMN the right PCG has been asso-
ciated with more cognitive-related conditions for speech
such as semantic processing and picture description.105,106

The contribution of left AMYG to the bilateral PCG is of
interest in its potential role in emotional regulation,

Figure 4Networkmodules—maximummodularity. Network modules (shown in terms of nodes and topologically) of adults who stutter,
and fluent speakers based on maximum modularity. Background template is a Colin Brain with cerebellum registered in MNI space. The details of
the regions in each module are presented in Supplementary Table 1.
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specifically associated with threat detection107 and response
to emotional valence.108 Resting state hypoconnectivity be-
tween the left AMYG and PCG has been reported in older
childrenwith anxiety disorder.109 All these regions are impli-
cated in cognitive, emotional and memory-related pro-
cesses110 and goal-oriented tasks involving interpersonal
experiences and interaction.104 Even at the more lenient
threshold no right hemisphere motor regions (pre-central,
pre-motor), no left inferior frontal or superior/medial tem-
poral regions (only the right TPOsup) showed reduced struc-
tural connectivity, regions that are routinely reported in
functional neuroimaging studies of individuals who stutter
when producing fluent speech.111,112 The current results sug-
gest that reduced structural connectivity is manifest in mul-
tiple brain regions potentially impacting a wide range of
behaviour.

Network hubs
Analysis of network hubs provide insight into neural integra-
tion and communication that impacts all behavioural do-
mains. In the current study, we focussed on nodal degree,
as a measure of the number of connections at a node, and be-
tweeness centrality, as a measure of the influence of a struc-
tural node over the flow of neural information. The network
hubs (Fig. 3) obtained using nodal degree and betweenness
centrality differed for the two groups. The left PCUNwas re-
duced for both hub measures for the AWS while the bilateral
THA was more prominent for nodal degree compared to the
FS. The reduced degree and betweenness suggests that the
left PCUN has less influence over the flow of information as-
sociatedwith its functional role for the AWS compared to the
FS. As a specialized hub of the DMN,104,113 the PCUN

Figure 5 Networkmodules—weighted stochastic blockmodel. Network modules (shown in terms of nodes and topologically) of adults
who stutter and fluent speakers, based on weighted stochastic block modal. Background template is a Colin Brain with cerebellum registered in
MNI space. The details of the regions in each module are presented in Supplementary Table 2.
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provides a bridge between other nodes and plays a crucial
role in engaging functional integration across multiple
cognitive-related networks114,115 engaged for autobio-
graphical memory retrieval,116 reward outcome monitor-
ing,117 emotional stimulus processing118 and has increased
functional connectivity with the left frontoparietal net-
work.113 Examining resting state connectivity differences
in children and AWS, the DMN has been shown to exhibit
decreased functional connectivity with pre-frontal areas.119

While the AWS were missing only the left PCUN, it can be
assumed that this missing node puts a substantial strain on
information transfer in much of the left hemispheric network
nodes. In contrast, the bilateral THA was more heavily re-
presented for nodal degree for the AWS, suggesting a more
prominent role for the THA and a potential imbalance in
the weighting of sensory input in a wide range of behaviours.
Considering the hubs results together, it is possible that loss
of left PCUN creates nodal overload in the THA, impacting
information flow through the network. And, in turn, this
overload may have a substantial effect in the information
transfer to cortical regions related to both the THA and
the DMN. Overall, the network hub results suggest that
there are differences in the structural organization that un-
derliesmultisystem neural communication for the AWS com-
pared to the FS.

Community structures
We also compared network organization of topologically re-
latedmodules to evaluate differences in community structure
for the groups resulting from the white matter changes.68,120

Community structure was evaluated with two different ap-
proaches, maximum modularity (Fig. 4) and WSBM
(Fig. 5), providing complementary and unique information
on network architecture. Maximum modularity identified
seven modules that reflect densely connected brain regions
that are sparsely connected to other communities of brain re-
gions. Of the seven modules identified using maximum

modularity for AWS, two contained the same regions as
those derived for FS. The similar modules encompassed the
entire CBM and midline non-primary motor and sensory
areas (bilateral supplementary motor and cingulate motor
areas, and the PCL). For the CBM, despite reduced connect-
ivity with multiple cortical and subcortical regions, there
were no differences in the modular organization for both
groups. The CBM has been implicated in increased function-
al activation in AWS8,121 with changes in CRBL connectiv-
ity122 and along with cortical structures possibly
underlying recovery123,124 or compensation related to re-
duced stuttering severity.6,21,125 The lack of difference be-
tween the groups suggests that structurally the CBM is
relatively unaffected by persistent stuttering; differences are
apparently more associated with tracts running to and
from rather than a change in its intrinsic organization52.
For the non-primary motor regions, a portion of the frontal
aslant tract runs from supplementary motor area (SMA) to
inferior frontal gyrus and has been implicated in stutter-
ing.126,127 However, no differences with either the SMA or
cingulate motor areas (CMAs) for the AWS was observed,
again suggesting a problem with connectivity rather than in-
trinsic organization of the respective sensorimotor areas.

The remaining modules differed in multiple ways. The
large left hemisphere frontal module for the FS contained
areas related to speech motor control including those asso-
ciated with auditory and somatosensory feedback
[Rolandic operculum (OR), insula, supramarginal gyrus,
PoCG and TPOsup]. In contrast, these same regions for the
AWS were part of a large and bilateral parietal module. In
contrast to the FS, the module containing the anterior cingu-
lum and superior medial frontal gyrus, areas associated with
numerous cognitive functions, including decision making
and memory with extensive connections to limbic regions,
was associated with additional right hemisphere pre-frontal
and subcortical regions for the AWS. There were also mul-
tiple examples of a differential lateralization in the modules
involving limbic structures (HIPP, AMYG and PHG).

Table 3 Controllability measures for both groups for each module

Measures Modules AWS (mean+++++SD) FS (mean+++++SD) P-value (*, 0.05)

Average controllability FRONTAL 1.05126+ 0.011 1.04360+ 0.010 0.0129*
A_M_F 1.04440+ 0.012 1.03560+ 0.003 0.1722
MEDIAL 1.03530+ 0.007 1.03222+ 0.005 0.3977
POST_MED-LAT 1.04220+ 0.012 1.04397+ 0.012 0.6038
TEMP_PAR 1.04286+ 0.009 1.03628+ 0.007 0.1093
FRONTAL_PAR 1.03479+ 0.006 1.03847+ 0.010 0.1968
CBM 1.05654+ 0.018 1.05492+ 0.014 0.7178

Modal controllability FRONTAL 0.95719+ 0.007 0.96233+ 0.008 0.0222*
A_M_F 0.96123+ 0.009 0.96828+ 0.003 0.1754
MEDIAL 0.96934+ 0.006 0.97137+ 0.005 0.5156
POST_MED-LAT 0.96348+ 0.009 0.96281+ 0.009 0.7966
TEMP_PAR 0.96228+ 0.007 0.96769+ 0.006 0.1007
FRONTAL_PAR 0.96870+ 0.005 0.96579+ 0.009 0.2345
CBM 0.95375+ 0.014 0.95458+ 0.011 0.807

AWS, adults who stutter; FS, fluent speakers; SD, standard deviation; A_M_F, anterior medial module; POST_MED-LAT, posterior medio-temporal module; TEMP_PAR,
temporoparietal module; FRONTAL_PAR, frontoparietal module; CBM, cerebellum module.
*P-values, 0.05 for statistical significance.
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Overall, the modular organization of 5 of the 7 modules sug-
gests a differential and presumably compensatory structural
organization for the AWS compared to the FS.

Community structure from theWSBM analysis provides a
more complex and interesting picture. WSBM is a generative
modelling approach, which not only serves as a description
of the network structure but also encompasses wide range
of other topological features by explicitly considering pat-
terned interactions between communities.76 Overall,
WSBM resulted in more fractionated communities in AWS,
especially in the left hemisphere, compared to FS. The front-
al–parietal–superior temporal regions subserve a range of
speech, language and cognitive functions and the internal or-
ganization for the FS suggests processing within a large and
distributed module. In contrast, for the AWS, the same brain
regions on the left hemisphere are made up of three different
modules. The fractionated organization for AWS suggests
more localized processing in the individual pre-frontal, fron-
toparietal and superior temporal modules, potentially result-
ing in the processing of information that is more heavily
dependent on communications across modules. A similar
fractionation was found for the anterior and mid portion
of the medial cortex. For the FS, the medial portion, which
includes much of the DMN, is part of a large right hemi-
sphere module that encompasses the frontal and parietal cor-
tex. For the AWS, the same structures are part of the left
frontoparietal region, the middle temporal region and the
right frontoparietal region. While functional interpretations
are difficult from structural data, the fractionation suggests
that the processing of information for the AWS engages
more short-distance connections, which are more energetic-
ally costly and inefficient compared to long-distance connec-
tions because they increase the number of processing
steps.128,129 In contrast to the results from maximummodu-
larity, the CRBL organization differs considerably for the
groups. For themost part, the CRBL regions within amodule
are bilateral for the FS, while for the AWS they are not, sug-
gesting a decoupling of CRBL organization. In addition,
CRBL regions for the AWS are more extensively distributed
to cortical, subcortical and limbic areas than for the FS.
Finally, the medial motor area, DMN and limbic structures
all clustered differently in the two groups, consistent with
an overall change in network organization to modulate or
modify emotional and transmodal processing.

Controllability
The controllability results were confined to a single module
that included much of the frontal cortex. For the AWS, the
average controllability for this module was higher and
the modal controllability was lower than for the FS. Recall
that average controllability identifies brain areas that, on
average, can steer the system into different states with little
effort (that is, little input energy) and modal controllability
identifies a brain node or network that can drive the system
into difficult-to-reach states (states that a require substantial
input energy). In this regard, it is interesting to consider the

brain areas that appear to drive the controllability differ-
ences. For the AWS—the RO, Insula, SupraMarginal gyrus,
Heschl’s gyrus, superior temporal gyrus (STG) were missing
from the left hemisphere along with the superior and middle
frontal regions in the right hemisphere. The left hemisphere
regions are specifically related to sensorimotor functions, in-
cluding speech motor production and sensory feedback,
while the right hemisphere regions are associated with cogni-
tive and socioemotional functions, including social anx-
iety.130–134 The decoupling of these brain areas may reflect
a functional adaptation facilitating the production of fluent
speech in AWS, albeit in an alternative manner from FS.
Consistent with this interpretation is the documented differ-
ences in multiple aspects of the fluent speech of individuals
who stutter.53,135–138 That is, even when AWS produce flu-
ent speech, the kinematic characteristics and sensorimotor
mechanisms used to produce and control that speech have
been shown to differ, and this difference is often explained
in terms of a variable or unstable control system.139–144 In
contrast, modal controllability was lower for AWS, suggest-
ing a constraint on the ability to deal with demanding tasks,
especially those associated with cognitive effort.82

Interestingly, the right hemisphere frontal regions for the
AWS are part of the medial pre-frontal module, which sup-
ports a range of higher-level functions related to social cog-
nition and social interactions.145 The greater association of
AWS with social anxiety disorder26,27,31 may be a manifest-
ation of the lower modal controllability in the pre-frontal
cortex.

Statistical power and clinical
heterogeneity
Stuttering is a developmental disorder with genetic and epi-
genetic (environmental) factors impacting brain and behav-
ioural development. These varied influences on the
disorder lead to one of its typical features, phenotypic het-
erogeneity.146–149 While AWS display some form of speech
dysfluency, less common are associated problems with lan-
guage, executive and socioemotional function. Our purpose
in the current study was to examine whole-brain connectiv-
ity for evidence that was more consistent with the clinical
heterogeneity of the disorder rather than focus primarily
on the sensorimotor/speech motor aspects. Our results clear-
ly illustrate connectivity changes that are associated with
both the sensorimotor character of the disorder as well as so-
cioemotional and cognitive concomitants. Interestingly, our
use of Bayesian statistics to evaluate the effect sizes of the
structural connectivity differences appear to reflect the
phenotypic heterogeneity that characterizes the disorder.
That is, the larger effect sizes, associated with more robust
differences, were found for areas directly involved in the
speech motor process. The more moderate effects were asso-
ciated with brain areas that, while impacting speech produc-
tion, are not directly related to the sensorimotor action; areas
such as the AMYG, HIPP, parahippocampus, CUN, PCUN
and posterior cingulate. Overall, a Bayesian procedure to
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assess effect size improved the ability to interpret the results
from our small sample and provided amore complete picture
of the individual differences in the consequences of the neu-
rodevelopmental disorder.

Conclusion
The current whole-brain analysis identified reduced connect-
ivity for AWS in brain areas that extend beyond the speech
motor regions. Areas such as the PCUN, HIPP and CUN
are associated with processes involving behavioural inhib-
ition, forming relational memories, episodic memories, af-
fective responses and working memory. Recent work
suggests that there is an association betweenmemory control
deficits and affect,150 and that reduced connectivity in these
regions may be related to socioemotional processing. Also
consistent with this idea, we showed reductions in connectiv-
ity that are correlated with subjective ratings of anxiety.
Non-speech regions had reduced connectivity to left hemi-
sphere sensorimotor areas, indicating that they may eventu-
ally influence the speech motor process itself. Finally,
controllability differences in the functional utility of the
frontal cortex in switching brain states, potentially related
to fluent speech production and cognitive and emotional
processing. While there are no data directly addressing
whether the reduced connectivity is a cause or an effect of
chronic stuttering, resting state connectivity differences exist
in young children who stutter in major brain networks for
situational, emotional and attentional processing119 suggest-
ing that reductions in structural connectivity between these
regions and the speech motor system may be an early bio-
marker of the disorder. Wide-spread network changes seen
in this study reflect the consequences of a chronic neurodeve-
lopmental disorder and its social repercussions.
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