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Identification of key enzymes regulating melanoma progression and drug resistance has the potential to lead to the development
of novel, more effective targeted agents for inhibiting this deadly form of skin cancer. The Akt3, also known as protein kinase
B gamma, pathway enzymes regulate diverse cellular processes including proliferation, survival, and invasion thereby promoting
the development of melanoma. Accumulating preclinical evidence demonstrates that therapeutic agents targeting these kinases
alone or in combination with other pathway members could be effective for the long-term treatment of advanced-stage disease.
However, currently, no selective and effective therapeutic agent targeting these kinases has been identified for clinical use. This
paper provides an overview of the key enzymes of the PI3K pathway with emphasis placed on Akt3 and the negative regulator of
this kinase called PTEN (phosphatase and tensin homolog deleted on chromosome 10). Mechanisms regulating these enzymes,
their substrates and therapeutic implications of targeting these proteins to treat melanoma are also discussed. Finally, key issues
that remain to be answered and future directions for interested researchers pertaining to this signaling cascade are highlighted.

1. Introduction

Kinases and phosphatases are the key components of sig-
naling cascades regulating metabolic processes such as cell
survival, proliferation, apoptosis, differentiation, and cell
motility [1–4]. Aberrant expression and activities of these
enzymes have been reported to lead to the development
of several cancers including melanoma [4–10]. Due to
genetic and epigenetic modifications, deregulating oncogenic
kinases and tumor inhibitory proteins, melanocytes acquire
transformed characteristics leading to malignant melanoma
[4–10]. Members of the PI3K and Akt3 signaling cascades
have been implicated in initiation, progression, invasive, and
drug resistance phenotypes of melanomas [1–4]. Enzymes
in this signaling cascade are therefore attractive targets for
treating or preventing melanoma development [11–13]. This

paper provides an overview of enzymes involved in PI3K-
Akt signaling pathway focusing specifically on the tumor
suppressor phosphatase PTEN, lipid kinase PI3K, and the
oncogenic survival kinase Akt3. Key structural features,
mechanisms regulating the expressionm and activities of
these proteins as well as therapeutic implications of targeting
this pathway to treat melanoma are reviewed.

1.1. Tumor Suppressor PTEN Is a Key Phosphatase Regulating
PI3K-Akt3 Signaling and Thereby Melanoma Development.
The PTEN (phosphatase and tensin homolog deleted on
chromosome 10) gene, which is also known as MMAC1
(mutated in multiple advanced cancers), and TEP1 (TGF-β
regulated and epithelial cell-enriched phosphatase) is a
unique 55 kDa dual specificity phosphatase located on
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the long arm of chromosome 10 at 10q23 [14, 15].
PTEN dephosphorylates proteins [16–18] and hydrolyzes
the secondary messenger inositol trisphosphates (PIP3s) [17,
19] thereby inhibiting the activities of several proteins or
pathways, which regulate cell proliferation, survival, and
apoptosis [14, 20].

Preclinical and clinical evidence has demonstrated the
inactivation of PTEN in 29 to 43% of melanoma cell lines
or tumors from patients. For example, a recent study showed
decreased PTEN expression in 43% melanoma cases and
demonstrated a significant correlation between alterations
in PTEN expression and primary tumor ulceration [20].
However, only a few studies, although controversial, demon-
strated the clinical implications of PTEN as a prognostic
marker in melanoma. Addressing this aspect, a recent study
concluded that the utility of PTEN status as a prognos-
tic marker is limited despite decreased PTEN expression
observed commonly in primary melanomas associated with
aggressive tumor behavior [20]. This clinical study analyzed
127 primary melanomas and found no significant associa-
tion between PTEN expression and patient survival.

Key experiments demonstrating the tumor suppressor
function of PTEN in melanomas include (a) triggering
and sensitization of melanoma cells to apoptosis following
introduction of PTEN (Figure 1) [8, 22] as demonstrated
by increased cleaved caspase-3 only when wild-type PTEN
is expressed compared to inactive G129R mutant in UACC
903 cells [8]; (b) enhanced phosphorylation of Akt3 in
melanocytes and early melanoma WM35 cells expressing
wild-type PTEN protein only upon PTEN inhibition [23];
(c) loss of cell viability, decreased activity of Akt3, and
downstream pPRAS40 following the introduction of PTEN
in melanoma cells lacking functional protein (Figure 2) [8,
9, 21]; (d) appearance of spontaneous melanoma tumors in
mice lacking PTEN−/− and expressing conditionally induced
V600EB-Raf. B-Raf, one of the key regulators of proliferation,
has been shown to be mutated in ∼60% melanomas [4,
24]. The most common mutation T1799A, which results
in the substitution of valine to glutamic acid, has been
identified in >90% of melanoma patient tumors harboring a
mutant B-Raf protein [4, 24]. Furthermore, targeted deletion
of PTEN in melanomas induced BCl2, which resulted in
enhanced resistance to growth factor receptor inhibitors and
chemotherapeutic agents [8, 9, 20, 21].

PTEN expression has been shown to inhibit melanoma
cell proliferation and survival. Mechanistically, decreased
PTEN activity alters cell cycle progression, migration, and
adhesion of melanoma cells [14]. Recently, PTEN loss
and V600EB-Raf have been shown to cooperate to pro-
mote metastatic melanoma development [24]. Furthermore,
PTEN loss increased melanoma cell and nontransformed
melanocytes invasion and migration by increasing Akt2
activity and by E-cadherin downregulation [25]. It is inter-
esting that targeting PTEN differentially regulates Akt3-
mediated cell survival and Akt2-mediated metastasis in
melanomas.

In addition to PI3K-Akt pathway regulation, PTEN also
regulates the synthesis of proteins in melanoma cells. Mech-
anistically, PTEN controls phosphorylation of eukaryotic

initiation factor-2α (eIF2α), independent of its phosphatase
activity, thereby inducing the antiproliferation and apoptotic
signals [26]. Isogenic melanoma cells lacking PTEN had
low phosphorylated eIF2 compared to cells expressing wild-
type PTEN. Furthermore, reconstitution of wild-type or
phosphatase-defective PTEN in PTEN-null human glioblas-
toma cells enhanced phosphorylation of eIF2α via binding
to PTEN’s PDZ domain [26]. Phosphorylated eIF2α inhibits
eIF2B and blocks the initiation of translation and overall
protein synthesis [26].

PTEN also regulates several key processes such as inhi-
bition of cell proliferation by altering cell cycle progression
through G1 to S phase and control of apoptosis by modulat-
ing Akt activity [20, 27–29]. Furthermore, PTEN expression
using a variety of vectors or from an introduced chromosome
in melanoma cell lines lacking PTEN induced apoptosis and
inhibited tumor development [8, 20, 22]. Cells containing
functionally active PTEN protein exhibited elevated p27
expression, decreased cyclin-D1 and cyclin-D2 protein levels
[14, 29, 30].

1.2. Mechanisms Regulating the Expression and Activity of
PTEN in Melanomas. PTEN expression and activity are
regulated at transcriptional and posttranslational levels [15,
19, 31] by positive regulators EGR-1 (early growth regu-
lated transcription factor), PPARγ (peroxisome proliferator-
activated receptors), and p53 [19] as well as negative
regulators MKK-4 (mitogen-activated protein kinase kinase
4), NFκB (nuclear factor kappa-light-chain-enhancer of
activated B cells), TGF-β (transforming growth factor beta),
and c-JUN [14, 19, 32]. At a posttranslational level, phospho-
rylation, oxidation, acetylation, and ubiquitination are key
factors regulating PTEN activity [19, 33, 34]. For example,
oxidation of cysteine residues C71 and C124 by reactive
oxygen radicals inhibits PTEN phosphatase activity. Simi-
larly, acetylation of PTEN catalytic domain lysine residues
125 and 128 by histone acetyltransferase PCAF (p300/CBP-
associated factor) decreases affinity towards PIP3’s thereby
regulating melanoma development [35]. Other posttrans-
lational modifications such as phosphorylation of the C-
terminal tail serine and threonine residues (S362, T366,
S370, S380, T382, T383, S385) by CK2 (casein kinase 2),
LKB1, Src, GSK3β have been shown to play critical roles
regulating PTEN activity by altering protein stability [19, 33].
Phosphorylated PTEN is stable but less active compared
to unphosphorylated PTEN [19, 36]. For example, PTEN
proteins either lacking the C-tail or harboring mutations in
C-tail are short lived [33, 36, 37]. However, it is not known
whether such posttranslational modifications contribute to
human melanoma development.

The subcellular localization of PTEN also plays a key role
in melanoma development [14, 19] as PTEN has intrinsic
membrane translocation signals in the phosphatase and
C2 domains. Mutations in these regions and interactions
with other proteins impair ability of PTEN to translocate
to the plasma membrane. For example, ubiquitination
of PTEN catalyzed by NEDD4-1 (neural precursor cell
expressed, developmentally downregulated 4) influences
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Figure 2: Targeting Akt3 signaling inhibits melanoma cell survival. SiRNA-mediated targeting of Akt3 or downstream PRAS40 inhibited
anchorage independent growth and induces caspase-3/7 activity in melanomas compared to control buffer or scrambled siRNA transfected
cells [21].

its cellular localization, as monoubiquitination promotes
nuclear localization while polyubiquitination causes PTEN
protein to remain in the cytosol [38, 39]. It would be inter-
esting to determine whether similar ubiquitination patterns
occur in melanomas.

Genetic and epigenetic mechanisms such as loss of
a whole chromosome, mutations, and epigenetic miR-
NAs also modulate the expression as well as activity of
PTEN [18, 19]. For example, loss of chromosome 10 (the
site of PTEN gene), occurs in 30%–60% of noninherited
melanomas [8]. Similarly, screening of melanoma cell lines
and paired uncultured metastatic melanoma to peripheral

blood specimens for PTEN loss and/or alterations, found
homozygous deletions in ∼20% melanoma cell lines, while
9% had nonsense, frame shift, or intronic mutations.
However, only ∼12% of uncultured melanoma specimens
contained nonsense mutations or homozygous deletions
[40, 41]. Intragenic polymorphisms in introns have also
been reported to regulate PTEN expression in melanomas.
Furthermore, ∼12% of melanomas have mutations in the
PTEN gene [40, 41].

Early melanocytic lesions frequently have undergone loss
of one allele of PTEN or haploinsufficiency occurring due
to loss of the entire chromosome 10 [14, 42–45]. Allelic
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loss or mutations of PTEN have been reported in 5%–15%
of uncultured melanoma specimens and in 30%–40% of
established melanoma cell lines [40, 41]. Decreased PTEN
levels due to haploinsufficiency plays an important role in
early melanomas by specifically increasing Akt3 activity in
these cells, thereby protecting these cells from apoptosis
as well as releasing quiescent melanocytes from V600EB-Raf
induced cell senescence [25, 46–48]. Loss or inactivation
of PTEN also induces phosphorylation and monoubiqui-
tination of DNA damage checkpoint kinase, Chk1, which
then causes genomic instability, double-stranded DNA
breaks, culminating in cancer development [41]. Amino acid
altering mutations (P95S, F154L, L325F) induced by UV
radiation have also been shown to impair PTEN function
and thereby promote the development of early melanomas
[49].

Epigenetic modifications such as methylation of CpG
islands or microRNAs also regulate PTEN activity. For
example, CpG islands methylation has been reported in
melanomas [14, 50, 51]. Recently, PTEN promoter methy-
lation leading to inactivation of transcription was found
to occur in ∼62% of metastatic melanoma patients [52–
60]. However, contradictory to this observation, the most
recent studies by Liu et al., 2008, and Bonazzi et al., in
2009, found no DNA methylation of the PTEN promoter
[61, 62]. Therefore, although regulation of PTEN expression
by DNA methylation appears to be important, further studies
are warranted to measure its contribution to melanoma
development. If mutational and epigenetic silencing studies
of PTEN are combined together, functional inactivation
might occur in∼77% of nonfamilial melanomas [54, 63–65].

1.3. PI3K Is a Key Regulator of Melanoma Development.
Phosphatidyl inositol 3 kinases (PI3Ks) are a family of
intracellular lipid kinases that phosphorylate the 3′ hydroxyl
group of phosphatidylinositols (Pis) and phosphoinositides
[66, 67]. Activation of PI3K affects cell growth, proliferation
and survival thereby influencing the tumorigenic potential
of melanoma cells [66, 67]. PI3Ks are classified based on
substrate specificity and structure, into class-I, class-II, and
class-III kinases [66, 68] (Figure 3). Whereas class-I PI3Ks
convert PIP2 into PIP3, class-II, and class-III PI3Ks use PIs
to generate PI-3-P. Class-I PI3Ks are further subdivided into
class-Ia and class-Ib [66, 67]. Activity of class-Ia PI3K is
triggered by growth factor receptor tyrosine kinases, whereas
class-Ib is activated by G protein-coupled receptors. Class-Ia
PI3K is a heterodimer comprising of p85 regulatory and p110
catalytic subunits [66, 68]. At the plasma membrane class-
Ia PI3Ks phosphorylate PIP2 at the 3′ position and convert
it into PIP3 upon growth factor stimulation. PIP3 binds to
the PH domain containing PDK1 and Akt proteins leading
to recruitment to the plasma membrane. In addition to
lipid kinase activity, class-I PI3Ks also exhibit protein kinase
activity. The physiological relevance of this activity differs
between the members of class I PI3Ks. For example, class-
Ia PI3K phosphorylates insulin receptor substrate-1 (IRS-1),
whereas class-Ib PI3K activates the MAPK signaling cascade
[66, 68].

PI3K-mediated activation of Akt occurs as a result of
ligand-dependent activation of tyrosine kinase receptors, G-
protein-coupled receptors, or integrins [69]. Many of theses
ligands are overexpressed in cancers, making this a route for
Akt activation in melanomas [70, 71]. Receptor-independent
activation of PI3K also occurs in 10%–20% melanomas
expressing constitutively active Ras proteins [72–74]. Ele-
vated PI3K activity itself can also cause Akt activation.
Chromosome 3q26 containing the p110 catalytic subunit
of PI3K, which is frequently amplified in cancer of the
ovary [75] and cervix [76], leads to increased PI3K catalytic
activity. The importance of PI3K signaling in melanoma was
demonstrated by overexpressing a deleted subunit of PI3K
(Deltap85) to reduce PI3K signaling [77]. In this manner,
Delta p85 functioned as a dominant-negative disrupting
p85/p110 subunit interaction, consequently inducing apop-
tosis in the melanoma cell line G361.

PI3K is a critical regulator of melanoma progression.
Targeting this kinase using siRNAs or pharmacological
agents such as ZSTK474, which binds to ATP-binding
pocket of PI3K, reduced melanoma tumor development
[66, 68]. In addition, preclinical studies have shown that
therapeutic agents inhibiting PI3K activity synergizes with
MAPK inhibitors. Although PI3K appears to be a critical
regulator of melanoma development, to date, not many
studies have shown its expression in patient tumor samples.
Furthermore, results of publications are controversial, as
some studies found no or low expression of PI3K in patient
samples, while others have reported high level of expression
[66, 68]. Addressing this aspect a recent study quantitatively
assessed the expression of PI3K in 523-melanoma and
540-nevi samples, and showed that p85 and p110 subunit
expression is high in melanomas compared to nevi [66, 68].
However, neither subunit served as prognostic marker in
either primary or metastatic patients.

1.4. Akt3 Is Central to the Development of Melanomas. Akt,
also known as protein kinase B, is a member of AGC family
kinases and has three isoforms Akt1 (PKBα), Akt2 (PKBβ),
and Akt3 (PKBγ) [71, 78] (Figure 4). These three isoforms
share >80% homology and contain pleckstrin homology
(PH), catalytic and regulatory domains [70, 71, 78–84]. The
N-terminal PH domain spans amino acids 1 to 107, mediat-
ing protein-protein and protein-lipid interactions [85, 86],
whereas the central catalytic domain (CD) contains a key
phosphorylation residue T305 [87, 88]. The carboxy terminal
regulatory domain (RD), also referred as hydrophobic motif
(HM), contains a second phosphorylation site serine (S472),
whose phosphorylation is required for complete activation of
this kinase. Other possible phosphorylation sites may also be
important, and research in this area continues [89]. In one
study it has been shown that the E40K mutation enhances
the enzymatic activity of Akt3 in melanomas [21, 46]. Splice
variants of Akt3 lacking serine 472 have been identified but
the significance of this form of the protein remains unknown
[90, 91].

Akt is a positive regulator of cell proliferation and
survival, which are controlled by various growth factors and
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extracellular stimuli (Figure 5) [10]. Despite sharing high
degree of homology and some cellular activities, Akt1, Akt2,
and Akt3 also exhibit isoform-specific functions [92, 93].
Studies using isoform-specific knockout mice have demon-
strated that Akt1 has a key role in maintaining cell survival
[93]. Akt1 knockout mice are smaller compared to wild-type
mice, and cells lacking Akt1 undergo apoptotic cell death
[93, 94]. Likewise, Akt2 knockout mice developed type-
2 diabetes, whereas mice lacking Akt3 displayed impaired
brain growth [95, 96]. However, not much is known about
how these isoform-specific functions are regulated. Some
of the key factors regulating isoform-specific functions of
Akt include (a) differential tissue distribution [93], (b)
differences in the Akt responses to extracellular stimuli [97,
98], (c) structural variations in the key domains regulating

translocation, substrate binding, and catalytic activity [10,
99], and finally (d) intracellular compartmentalization [93,
97].

Aberrant activation of Akt kinases has been reported
in several malignancies including melanoma. Mechanisms
leading to Akt activation can involve (a) mutations in the
upstream regulators PI3K and PTEN; (b) overexpression of
the gene due to increased copy number or activating point
mutations in Akt itself, (c) deletion of negative regulators
such as PTEN; (d) altered expression of interacting proteins
such as TCL1, HSP90, APPL1, and RasGAP [5, 6, 8, 67]. Akt
activity is also regulated by posttranslational modifications
such as phosphorylation, ubiquitination and also by physical
interactions with effector proteins such as Hsp90 and Pin1
[92, 100, 101]. Although physiological functions of Akt
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Figure 5: Akt is the key regulator of cell survival and proliferation. Growth factors and hormones trigger the Akt pathway by a series
of phosphorylation and dephosphorylation events. Shown are some of the substrates of Akt implicated in cell survival, proliferation, and
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isoforms are regulated through similar mechanisms, the
activity of a particular isoform is cell type dependent [70, 71,
78–84].

Translocation to the cell membrane followed by phos-
phorylation of key amino acid residues activates Akt signal-
ing. In normal cells, Akt is cytoplasmic and inactive. Upon
growth factors binding to a cell surface receptor or through
G-protein-coupled receptors, PI3K gets activated, which,
then phosphorylates phosphatidylinositol-4,5-bisphosphate
(PIP2) on the 3-OH group, generating second messen-
ger phosphatidylinositol-3,4,5-trisphosphate (PIP3) [102].
PIP3 binds to the PH domain of Akt thereby facilitating
translocation to the plasma membrane. Akt activation
is initiated when the translocated Akt is phosphorylated
on T308 residue by membrane-localized phosphoinositide-
dependent kinase-1 (PDK-1). However, complete activation
is achieved only when a PDK2 phosphorylates the second
phosphorylation site S473. Recent studies have shown that
serine 473 phosphorylation is mediated by rapamycin-
insensitive mTORC2 [103, 104]. PDK2 activity of the mTOR
complex has been recently established but in melanomas

its role in maintaining Akt3 phosphorylation has not been
studied [103, 104]. Akt autophosphorylation might also play
a role in the activation process [70, 71, 78–84]. Furthermore,
it has been shown that prior phosphorylation of tyrosine
315 (Y315) and 326 (Y326) residues is a prerequisite for the
activation of Akt kinases (Figure 4).

Preferential activation of a specific Akt isoform has
been reported in cancers of breast, ovarian, pancreas, and
skin [93]. For example, Akt2 gene amplification has been
observed in ovarian and pancreatic cancers. Similarly, Akt3
found to be selectively activated in melanomas [5, 6, 9].
Therefore, selective activation of a speficic Akt isoform
appears to regulate the development of a particular cancer.
But, to date, the mechanistic basis for this isoform-specific
regulation is not known and slowly starting to emerge [93].

Akt activity is also regulated by dephosphorylation of
phosphorylated Thr308 and Ser473. Phosphatases are the
key enzymes controlling phosphorylation status of Akt.
Whereas PTEN dephosphorylates secondary messenger PIP3
into PIP2, the protein phosphatase 2A (PP2A) and PH
domain leucine-rich repeat protein phosphatase (PHLPP)
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remove phosphate groups from T308 and S473, respectively,
to deactivate Akt kinases [92, 105, 106]. Okadaic acid, a
strong inhibitor of PP2A, promotes phosphorylation of Akt,
whereas ceramide, an activator of PP2A, reduces Akt activity
[92, 107, 108]. Although extensive studies have been reported
on the critical role of PTEN phosphatase, not much is known
about the status of PP2A and PHLPP in melanomas.

Another posttranslational modification that has been
shown to regulate Akt activity is ubiquitination. Ubiqui-
tination-dependent upregulation of Akt activity has been
reported in various cancers [92, 100]. Studies have demon-
strated that TRAF6 E3 ligase is required for Akt ubiquiti-
nation [109]. Cells overexpressing TRAF6 exhibit high Akt
kinase activity, whereas TRAF6 null cells had negligible
phosphorylated active Akt [109]. Experiments measuring the
effect of TRAF6 expression on Akt activity before and after
translocation revealed that TRAF6 is essential for membrane
translocation of Akt, but once the Akt is bound to cell
membranes, TRAF6 has no effect on regulating Akt activity
[100, 109].

Primary structure of Akt also influences its activity. Since
the constituent amino acid sequences, especially ubiqui-
tination sites, are involved in regulating protein stability,
mutations in these key sites might influence the protein
stability thereby enzyme activity. For example, site-directed
mutagenesis analysis showed that ubiquitination of Akt
occurs at K8 and K14 residues located in the PH domain
[100]. Growth-promoting somatic mutations in the PH
domain of Akt have been reported in several cancers [92,
100, 110]. For example, E17K mutation in Akt is found in
cancers of breast (8%), colon (6%), skin (1.5%), and ovaries
(2%) [92, 99, 100, 110, 111]. Similarly, E49K mutation
is identified in a subset of bladder cancer patients [112].
However, the abundance of E17K mutation is either too
low, or, in some instances, no such mutations were found
making it difficult to consider this as a biomarker of tumor
progression. For example, in nonsmall cell lung cancers
and acute myelogenous leukaemias no such mutations in
Akt1 were identified [113, 114]. Moreover, no differences
in the ability to translocate to the plasma membrane were
observed in experiments where the PH domain of Akt1 was
switched with Akt2 PH domain indicating that it is not just
the PH domain mediating translocation of the protein but
other factors such as posttranslational modification, which
might also play a role [93]. Thus, basal Akt activity in a cell
primarily depends upon several factors regulating subcellular
localization, specifically a balance between positive and
negative regulators controlling Akt phosphorylation status
and proteins that interact with the kinase itself.

2. Functional Characterization of Akt3
Signaling in Human Melanomas

2.1. Akt3 Is a Key Protein Kinase Regulating Melanoma
Development and Chemotherapeutic Resistance. Increased
Akt3 expression/activity occur in 60%–70% of sporadic

melanomas demonstrating a key role in melanoma develop-
ment [23, 115]. Activated Akt3 phosphorylates several sub-
strate proteins containing Arg-X-Arg-X-X-[Ser/Thr]-Hyd
(where X is any amino acid and Hyd is a bulky hydrophobic
amino acid) consensus sequences thereby regulating cellular
survival and chemotherapeutic resistance (Figure 5). For
example, phosphorylation of (a) GSK3β inhibits its activity
thereby promoting cell cycle progression through increased
cyclin D levels [116, 117]; (b) PRAS40 at threonine 246 (T246)
inhibits the interactions with mTORC1 thereby increasing
the nutrient status of the cells [21, 118, 119]; (c) V600EB-
Raf decreases its activity to levels that promote rather than
inhibit cell proliferation [46, 120]; (d) osteopontin, a glyco-
phosphoprotein, promotes melanoma progression levels to
a highly metastatic state [121]. Furthermore, Akt3 inhibits
cellular apoptosis by decreasing caspase-3/7 activity and
increasing the expression of cleaved caspase-3 and cleaved
PARP levels [9, 122]. Decreased apoptosis makes melanoma
cells less sensitive to chemotherapeutic agents functioning
through this mechanism.

Increased Akt3 activity also plays a significant role in
progression to more advanced aggressive tumors [6, 21,
23]. For example, expression of Akt3 has been elevated in
cell lines derived from primary melanoma tumors at the
radial and vertical stages of cell growth compared to normal
human melanocytes (Figure 6). No significant changes were
observed in the levels of Akt1 and Akt2 in the same lysates,
indicating that Akt3 activation performs critical functions
in melanoma development [6, 23]. Consistent with this
observation, a recent report also showed elevated Akt3
expression in melanoma cell lines having high pAkt [123].
Analysis of a panel of 58 melanoma cell lines and 96
melanoma metastases showed elevated pAkt in cells harbor-
ing a mutant V600EB-Raf compared to cells containing N-Ras
[123]. However, it is unknown why Akt3 and not the other
isoforms is activated in melanomas. Various explanations
with experimental evidence have provided some clues by
demonstrating (a) increased copy numbers of the Akt3
gene compared to other isoforms in melanomas, which
might contribute to some extent for the preferential Akt3
activation [14, 23] and (b) selective activation of Akt3 by
preferentially interacting with PIP3 and/or accessory proteins
that bind to PH domain of Akt3 but not to Akt2 or Akt1.
Structurally Akt3 has different phosphorylation sites within
the PH domain compared to other Akt isoforms [70, 71, 78–
84]. For example, TCL1 selectively binds to the Akt3 PH
domain, thereby promoting hetero-oligomerization of Akt1
with Akt3, causing transphosphorylation of Akt in leukemias
[124–126]. Thus, factors interacting preferentially with Akt3
may lead to selective activation in melanomas.

Recent studies have identified another mechanism for
isoform-specific regulation of Akt signaling. These studies
have shown that the phosphatidylinositol 3-phosphate bind-
ing FYVE domain-containing protein WDFY2, localizes to
a distinct subset of early endosomes that are close to the
plasma membrane thereby serves as a molecular scaffold to
regulate the phosphorylation of Akt kinases in an isoform-
specific manner [127]. For example, WDFY2-depleted cells
expressed very low levels of Akt2 and pAkt compared to
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control cells containing WDFY2. Similarly another study
also demonstrated the endosome mediated, isoform-specific
regulation of Akt activity and substrate selectivity [127].
Rab5 effector endosomal protein Appl1 interacts with
transmembrane receptors and Akt thereby influencing Akt
activity and substrate selectivity [128]. Human adaptor
protein containing PH domain, PTB domain, and leucine
zipper (Appl1) is an Akt-interacting protein involved in the
regulation of cell survival and proliferation [128]. Targeted
depletion of Appl1 decreased phosphorylation of GSK3 but
not TSC2 indicating the substrate selectivity induced by this
endosomal protein [128]. However, it is not known whether
similar regulatory mechanisms also occur in melanoma. We
now know that GSK3 regulates cell survival and proliferation
rates of melanoma cells but whether Appl1 regulates GSK3
activity in melanoma is not known. Addressing this might
open up new avenues for understanding the mechanistic
basis of Akt-mediated cell survival regulation and help
designing potent therapeutic agents to inhibit this signaling
cascade in melanomas.

A central role of the Akt3 isoform in melanoma
development is well established; however, a recent report
using human melanoma biopsy samples found Akt2 as a
predominantly activated isoform in melanomas [129]. In
addition, a different study demonstrated that loss of PTEN
promoted melanoma cell metastasis via activating Akt2
but not Akt1 or Akt3 [25]. Interestingly, this study also
demonstrated that expression of myrAkt3 inhibited invasion
of melanoma cells without influencing the expression levels
of pFAK and pSTAT3 [25]. Mechanistically, Akt2 induces
the expression of miR-200 microRNAs thereby decreasing

the expression of E-Cadherin [25], which in turn increases
cell invasion. Therefore, it might be interesting to study
whether different isoforms of Akt have different functions
in regulating melanoma tumor development and metastasis,
and if so, how this preferential regulation is occurring. These
studies will help addressing some of the key aspects of
Akt signaling in melanomas and provide new insights for
understanding the mechanistic basis of melanoma tumor
development.

2.2. Mechanism Promoting Akt3 Deregulation in Melanomas.
A key mechanism for increased Akt activity in cancer
cells involves gene copy number increases or mutations
leading to constitutive activation. Recently a low-frequency
activating mutation (E17K) in the PH domain of Akt3
has been identified in melanoma cell lines and ∼4% of
patient tumors [111]. This mutation enables Akt3 to get
recruited to cell membranes independent of PI3K, which
leads to cellular transformation. Genetic amplifications
increasing Akt1 or Akt2 expression occur in carcinomas
of the stomach, ovary, pancreas, and breast [130–137].
Specifically, Akt2 amplification occurs as part of the 19q13.1–
q13.2 amplicon in high-grade aggressive ovarian tumors
[138]. Even though no amplifications of Akt genes have been
reported in melanomas [139, 140], Akt3 protein is frequently
overexpressed [23], as a result of copy number increases of
the long arm of chromosome 1 containing the gene [43–
45]. No increases in the long arms of chromosome 14 or
19 containing the Akt1 and Akt2 genes, respectively, have
been reported [43–45]. Thus, increase in Akt3 copy number
is one mechanism contributing to increased expression and
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activity in melanoma. Since expression of Akt3 protein
might not represent the activation status of the protein, it
is thought that other processes must also contribute, leading
to preferential activation of Akt3 versus the other isoforms in
melanomas.

Phosphatases that directly dephosphorylate Akt may
also play a role in the preferential activation of Akt3
in melanomas. While the identity of these phosphatases
remains uncertain, PP2A phosphatase may be involved in
this process [141]. Proteins binding to Akt also have the
potential to modulate cellular activity as is observed with
the protooncogene TCL1, which enhances oligomerization
of Akt1 with Akt3, thereby facilitating activation of Akt3
in leukemia [124–126]. Another example is the heat-shock-
protein 90 (Hsp90) that can complex with Akt. Inhibition of
Akt-Hsp90 complex formation can inactivate Akt by PP2A-
mediated dephosphorylation [142, 143].

Deregulated Akt3 expression and activity could also
be controlled by noncoding microRNAs. For example,
miR-149 has been shown to inhibit Akt1 activity thereby
inducing apoptosis in neuroblastoma and cervival cancers
[144]. Ectopic expression of miR-149 induced apoptosis
by inhibiting Akt1 expression and activity [144]. However,
miRNAs specifically regulating Akt3 expression have not
been identified. Only recently, miRNAs 15a and 16 have been
shown to inhibit the expression of Akt3 in multiple myelo-
mas [145]. However, these miRNAs also inhibited ribosomal
protein-S6, MAP-kinases, and NF-κB activator MAP3KIP3
[145]. Discovering miRNAs specifically regulating Akt3 is

important to assess the clinical progression of the disease
and for developing novel tools for preventing or treating
melanomas.

3. Cellular Processes Regulated by Akt3
Signaling in Melanomas

3.1. Akt3 Signaling Regulates Cell Survival, Migration, Metas-
tasis, and Chemoresistance. Akt3 has been shown to be a
prosurvival kinase in melanomas [23]. SiRNA or pharma-
cological agents targeting Akt3 protein levels or expression
of PTEN selectively lowers Akt3 activity, thereby reducing
the tumorigenic potential of melanoma cells by altering
apoptotic sensitivity of the cells (Figure 7) [21, 23]. Further-
more, increased activity correlates with tumor progression,
providing cells with a selective advantage in the tumor
environment [21, 23]. Inhibiting Akt signaling in tumor cells
by adenoviral transfer of an Akt kinase-dead mutant, in
which the two regulatory phosphorylation sites have been
mutated to alanines thereby converting it to a dominant
negative, led to selective induction of apoptosis in tumor
cells expressing activated Akt [146]. In contrast, a minimal
effect was observed in normal or tumor cells expressing low
levels of active Akt [146]. In addition, a recent study showed
that Akt could act as a molecular switch by increasing angio-
genesis and producing superoxides [147]. Experimentally,
overexpression of Akt in radial growth phase WM35 cells
transformed them into malignant phenotypes by stabilizing
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cells with extensive mitochondrial DNA mutations, which
can generate ROS, and by inducing expression of NOX4, a
ROS generating enzyme [147].

The vital role of Akt in melanoma tumor progression and
development is further confirmed by showing that hyperac-
tivated Akt signaling upregulated Notch1 via NFκB activity
thereby inducing the transformation of melanocytes under
prevailing hypoxic conditions in tumors [148]. Upregulated
Akt activity in melanoma tumors appears to protect cells
from low oxygen pressures and apoptotic cell death induced
by various chemotherapeutic agents [48]. For example, a
recent study demonstrated that Akt3 mediates the resistance
to apoptosis in B-Raf-targeted melanomas [48]. Targeting
V600EB-Raf using PLX-4072 rendered invasive melanoma
cells susceptible to anoikis, a form of apoptosis generally
induced by loss of adhesion and is mediated by BH3-only
proteins, Bim-EL and Bcl2-modifying factor (Bmf) [48, 149].
However when expression of Akt3 is induced by adhesion
to fibronectin in these cells, the cells exhibited resistance to
apoptosis caused by B-Raf inhibition [48]. Therefore, Akt3 is
a key regulator of melanoma cell survival and helps protect
cells from apoptosis induced by chemotherapeutic agents
[48]. Another recent study also demonstrated the induction
of chemotherapeutic resistance by Akt activation. Human
melanoma cells under endoplasmic reticulum stress showed
more resistance to apoptosis induced by microtubule-
targeting chemotherapeutic agents such as docetaxel and
vincristine, which is mediated by Akt activation [150].

Processes such as metastasis, cell-cell adhesion, cell
migration, and development of chemoresistant tumors
under hypoxic conditions are also regulated by PI3 kinase
and Akt signaling pathways [6, 147, 152]. Activated Akt
in metastatic melanoma cells have been shown to regulate
Notch1 expression via NFκB thereby promoting tumor
development under hypoxic tumor conditions [148]. A
different study has shown that Akt inhibits RhoB, a GTPase,
in melanomas and thereby induces tumor cell survival,
transformation, invasion, and metastasis [153].

3.2. Substrates of Akt3 Kinase Involved in Melanoma Develop-
ment. Akt substrates can be cytoplasmic or nuclear proteins,
and numbers of proteins regulated by Akt continue to
increase as studies such as those using the minimal consensus
peptide sequence Arg-X-Arg-X-X-[Ser/Thr]-Hyd (where X
is any amino acid and Hyd is a bulky hydrophobic amino
acid) search for putative substrates [154, 155]. The functions
of many of these substrates in cellular processes have
been identified, demonstrating that Akt regulates multiple
processes in cells including apoptosis and proliferation
(Figure 5).

Substrates for Akt3 do not appear to be specific but
rather seem to be identical to those acted on by all three
Akt isoforms. Substrates of Akt3 involved in melanoma
development include (a) Bad-whose inactivation promotes
cell survival [156]; (b) NFκB-inhibition of Akt activity led to
increased apoptosis and decreased NFκB promoter activity in
melanoma cells [115]; (c) hTERT-inhibition of Akt reduced
hTERT peptide phosphorylation and telomerase activity

[157]; and (d) Rac1-targeting Akt decreased phosphorylated
serine 71 of Rac1 thereby modulating the Rac1 signal
transduction pathway in SK-MEL-28 melanoma cells [158]
(Figure 5).

Recently, Akt3 has been reported to phosphorylate
V600EB-Raf on S364 and/or S428 to reduce its activity to levels
that promote rather than inhibit melanoma development
from melanocytes [46]. Ectopic expression of V600EB-Raf
in primary cell lines such as melanocytes has been shown
to induce cellular senescence not only by elevating the
levels of MAPK activity for unusually longer periods but
also by upregulating the expression of cyclin-dependent
kinase (cdk) inhibitors [159, 160]. Therefore, genetic changes
such as loss of tumor suppressor genes (PTEN, p53 or
p16INK4A) or upregulation of cooperating oncogenes is
necessary to progress into advanced metastatic stages [161].
For example, activation of Akt3 has been demonstrated
to facilitate the progression of quiescent melanocytic nevi
into aggressive vertical and metastatic stages by inhibiting
V600EB-Raf activity thereby releasing cells from a senescence
block [46, 162]. This demonstrates that in melanomas,
Akt3 kinase not only increases cell survival but also aids
early melanoma development [46]. Likewise, a recent study
demonstrated the induction of melanomas only when PTEN
is silenced [47]. Using a conditional mouse model it has
been demonstrated that V600EB-Raf induction resulted in the
development of melanocytic hyperplasias, which failed to
progress into melanomas [47]. However, when the PTEN
gene was silenced while maintaining the expression of V600EB-
Raf, melanocytic hyperplasias progressed into melanomas
with 100% penetrance, short latency, and metastatic ability
[47].

PRAS40 is another substrate regulated by Akt3. PRAS40
is a cytosolic protein found ubiquitously in all eukaryotes
[118] and is phosphorylated by Akt at T246 [118]. Phospho-
rylated PRAS40T246 protects neuronal cells from ischemic
injury by inhibiting caspase-3-mediated apoptotic cell death
[163]. Expression of pPRAS40 levels are also associated with
tumor malignancy [164]. Compared to paired control nor-
mal cells, cancer cell lines (MCF10A/MCF7, BEAS/H1170)
exhibited high pPRAS40 expression [164]. However, the
detailed functional characterization, in vitro and in vivo,
was not reported. Compared to normal melanocyte con-
trols, 43 to 60% of flash frozen tumors collected from
melanoma patients express high pPRAS40 and pAkt [21].
Furthermore, targeted inhibition of PRAS40 using siRNA
reduced melanoma tumor growth in xenografted melanoma
studies (Figure 8) [21]. Mechanistically, PRAS40 inhibition
induced caspase-3/7-mediated apoptosis in melanoma cells
and increased sensitivity to apoptosis inducers such as stau-
rosporine [21]. However, the molecular basis for caspase-
3/7 activity inhibition by pPRAS40 in melanomas remains
unknown.

Recent reports have demonstrated that PRAS40 is a phys-
iological target of mTORC1 kinase and regulates its activity
by functioning as a direct inhibitor of substrate binding [119,
165, 166]. PRAS40 has two additional phosphorylation sites
S183 and S221 other than the one phosphorylated by Akt
[167]. A recent study demonstrated that phosphorylation
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of T246 by Akt facilitates the phosphorylation of S183 and
S221 by mTORC1 [167]. 14-3-3 proteins via physical inter-
actions sequester phosphorylated PRAS40 thereby release
mTOR. Therefore, increased pPRAS40T246 may releasing its
inhibitory effects on mTORC1 kinase and downregulate
caspase-3/7 activity. Although phosphorylation of PRAS40
at threonine 246 by Akt is primarily involved in inhibit-
ing cellular apoptosis and increasing survival, the role of
unphosphorylated PRAS40 in the cancer cells needs further
investigation.

Another well-known substrate of Akt is GSK3 [6, 117],
which is present in cells as two structurally similar GSK3α
and GSK3β isoforms [168]. Akt has been shown to phos-
phorylate S9 of GSK3β and S21 of GSK3α to inhibit their
activity thereby promoting cell proliferation by stabilizing
cyclin-D1 protein [29, 117]. Therefore, unphosphorylated
active GSK3 is considered as an apoptosis inducing tumor
suppressor. However, recent studies have shown that GSK3
expression is elevated in advanced cancers and deregulation
of GSK3 activity increases malignant transformation of
cells [168–171]. Recently it has been observed that inhi-
bition of GSK3β enhances sorafenib-induced apoptosis in
melanoma cells [172]. Furthermore, targeting GSK3β using
organometallic inhibitors (DW1/2) decreased Mdm2 activity

thereby elevating p53-mediated apoptosis in melanoma cell
lines expressing wild-type p53 protein [173]. Finally, GSK3α
and not GSK3β has been shown to regulate pancreatic cell
survival [174]. However, similar studies have not been
reported in melanomas. Therefore, identifying the actual
isoform regulating melanoma development by selectively
inhibiting these isoforms using siRNA is warranted. Fur-
thermore, studies are also warranted to demonstrate which
isoform is expressed in melanoma patient tumors in order to
establish its clinical relevance.

4. Clinical Implications of Targeting the
PI3k-Akt3 Signaling Cascade in Melanomas

Targeting PI3K-Akt3 signaling has significant clinical poten-
tial for inhibiting melanoma tumor development [23]. For
example, introduction of PTEN into melanoma cells or
inhibiting Akt3 using siRNA or small molecule inhibitors
such as ISC-4 inhibited melanoma tumors growth in vitro
and in animals [175, 176]. Furthermore, expression of PTEN
or reduction of Akt3 activity has been found to increase
melanoma cell sensitivity to apoptotic stimuli that occurs
with most chemotherapeutic agents [9, 21, 176].
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4.1. PTEN Reexpression Prevents Melanoma Development.
Tumor suppressor PTEN has been demonstrated to inhibit
melanoma development in cultured cells and in spontaneous
melanoma models [9, 21, 47]. For example, introduction
of PTEN into advanced-stage melanoma cells via a chro-
mosomal transfer or ectopic expression using a plasmid-
based vector inhibited tumor development in xenografted
melanoma models [8, 15, 177]. Thus, targeted delivery of
PTEN into melanoma cells has potential to be an effective
therapeutic agent. Restoration of functional PTEN in these
cells would increase the therapeutic efficacy of antimelanoma
agents [8, 9, 21]. For example, isogenic cell lines expressing
PTEN containing low pAkt are sensitive to staurosporine-
induced apoptotic cell death, whereas cell lines that lost
PTEN are resistant to therapeutic agents [8, 9, 21] (Figures
1 and 2). Furthermore, if PTEN expression was regulated
by endogenous microRNAs, inhibiting using antimers could
significantly upregulate PTEN activity thereby restoring the
chemosensitivity of the melanoma cells. However, PTEN
regulation by microRNAs has not yet been reported in
melanomas.

4.2. Therapeutic Agents Targeting PI3K and Akt3 Signaling
Cascades in Melanoma. Targeting Akt3 alone or in com-
bination inhibits growth by inducing apoptosis, decreasing
survival, and inhibiting proliferation of melanoma cells
[5, 9, 21]. Several synthetic and naturally occurring small
molecule inhibitors specifically inhibiting Akt activity have
been developed and efficacy tested for inhibiting melanoma
development in cultured cells and xenografted animal mod-
els [6, 9, 21, 46, 122, 151, 176, 178]. For example, isose-
lenocyanate ISC-4 has been demonstrated to inhibit early
melanocytic lesions and advanced xenografted melanoma
tumors in animals [122]. Compared to known inhibitors
of Akt signaling such as API-2, the selenium containing
ISC-4 appears to be more effective for melanoma treatment
[122]. BI-69A11 is another Akt inhibitor, demonstrated
to effectively inhibit melanoma tumors [179]. However,
clinical utility of these inhibitors for decreasing melanoma
development has not been evaluated yet. Similarly, safety and
efficacy of other inhibitors of PI3K-Akt signaling such as
GSK690693 (developed by GlaxoSmithKline), a novel ATP-
competitive inhibitor of Akt kinases [180] and SR13668
(developed by SRI international), an NCI approved Akt
inhibitor [181, 182], also need to be tested in clinic.

Since the efficacy of a particular inhibitor in vitro or
in preclinical animal models may not exactly reflect the
potency of the compound in clinical trials, testing these new
inhibitors in clinic is highly recommended. For example,
perifosine, the alkylsphophocholine analogue, is found to
be very effective (inhibiting growth of cancer cells at 0.2
to 0.3 μM concentration) in vitro and in animal models.
However, a Phase-II study using perifosine in 18 previously
untreated patients with metastatic melanoma demonstrated
no objective response [183].

4.3. Targeting Multiple Pathways to Synergistically Treat
Melanoma. Several lines of evidence now suggest that it

might be required to target multiple signaling pathways
to inhibit melanoma development. For example, a recent
study shows that inhibiting V600EB-Raf using PLX-4720
induced resistance to apoptosis by activating Akt signaling
[48, 149]. Furthermore, it is also now well established
that targeting V600EB-Raf not only induces resistance to
various therapeutic agents but also stimulates the activity
of C-Raf and wt B-Raf signaling thereby triggering the
formation of keratoacanthomas and basal cell carcinomas [7,
184]. Therefore, it is important to target multiple signaling
cascades to inhibit melanoma development. However, it is
not completely known which targets should be inhibited.
Studies have provided some directions in this regard by
showing synergistically acting melanoma tumor inhibition
by simultaneously targeting PI3K/Akt3 and MAP kinase
signaling pathways [32, 46, 151, 185–187]. For example (a)
delivering siRNAs inhibiting Akt3 and V600EB-Raf synergis-
tically inhibited melanoma tumor cells growth in culture
or in xenografted melanoma tumors [46, 151] (Figures
9 and 10); (b) combining nanoliposomal ceramide with
sorafenib synergistically reduced melanoma cell growth
[188]; (c) pharmacological agents inhibiting MAPK (U0126,
PD98059 and PD325901) and mTORC1 (using rapamycin)
more effectively reduced melanoma cells growth compared
to either of the agents tested singly [24, 189, 190]; (d)
topical application of LY-294002 and U0126 in combination
effectively decreased melanoma tumor incidence in the
transgenic TPRas mouse model when compared to either of
these agents alone [191]; (e) targeting PI3K and mTOR using
dual inhibitors NVP-BBD130 and NVP-BEZ235 effectively
reduced the size of primary melanoma tumors and inhib-
ited cervical lymph node metastasis in a syngenic mouse
melanoma model. Although these studies demonstrate the
potential therapeutic efficacy of combined target inhibition,
no complete tumor reduction occurred in any of these
studies, warranting the identification of other candidates and
target combinations for treating this disease.

Other key targets regulating melanoma development
have been recently identified. For example, Yang et al. showed
the effect conditional ablation of Ikkb on melanoma tumor
development using an established HRasV12 mouse model
of spontaneous melanoma [192]. Ink4a/Arf−/− mice with
melanocyte-specific deletion of Ikkb were protected from
HRasV12-initiated melanoma only when p53 was expressed.
Ikkb ablation was found to decrease Aurora-A kinase and
IL-6 in melanomas [192]. Therefore Ikkb and Aurora-A
could be potential targets in melanomas [192]. However,
it is not known whether targeting these pathways would
synergize with Akt inhibition. In support of this direction of
investigation, a recent study reported that Aurora-A regulates
cancer cell survival by inducing Akt activity and inhibiting
Aurora kinase with VX-680 synergizes with pharmacological
inhibition of Akt (wortmannin) activity [193]. However,
experimental evidence pertaining to which Aurora kinase
isoform needs to be targeted for the greater synergistic effect
is currently unknown.

It is fairly certain that both MAP and PI3 kinase pathways
will need to be targeted for inhibiting melanoma. For
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Figure 9: Cotargeting Akt3 and V600EB-Raf inhibits melanoma cell
proliferation in vitro. Two hundred picomoles of siRNA targeting
Akt3 and increasing (3, 6, and 12 picomoles) amounts of siRNA
inhibiting V600EB-Raf were introduced alone or in combination into
UACC 903 melanoma cell line by Amaxa transfection and effect
on anchorage independent growth ability measured using MTS
assay. The data shows a dose-dependent inhibition of cell viability
when Akt3 and V600EB-Raf were inhibited. However, maximal effect
was observed only when Akt3 and V600EB-Raf targeted together,
indicating the necessity of inhibiting multiple signaling cascades
[46, 151].

example, hybrid compounds that inhibit these pathways
such as HMBA (hexamethylene bisacetamide—HMBA),
which simultaneously inhibits Akt and MAPK pathways and
represses NFκB activity in breast cancer cell lines, needs
to be tested in melanomas [194]. Similarly, recent studies
have demonstrated the utility of a novel selenium containing
iNOS inhibitor, called PBISe, for inhibiting melanoma
cell growth in vitro and in vivo [195]. Intraperitoneally
administered or topically applied PBISe inhibited iNOS and
PI3K/Akt3 signaling thereby inducing significant apoptosis
in melanoma cells. Furthermore, PBISe-mediated inhibition
of Akt3 signaling induced cell senescence by upregulating
pErk1/2 to inhibitory levels which triggered the induction
of cell cycle inhibitors p21, p16, and p27 [196, 197].
Inhibitors targeting PI3K also have potential to inhibit
melanoma growth [67]. For example, SF1126, a conjugate of
LY294002 and a pan-PI3K inhibitor, developed by Semafore
Pharmaceuticals, is currently in Phase-I clinical trial for
solid tumors [198]. Other PI3K inhibitors that are under
clinical investigation include GDC-0941, an inhibitor of
p110α subunit developed by Genentech, Inc; and XL-147
and XL-765, developed by Exelixis [198]. However, it is
not known whether these inhibitors could synergistically
inhibit melanoma development when combined with agents
inhibiting other key signaling cascades.

5. Conclusions

Activation of Akt3 is a key event regulating the develop-
ment of melanomas. Enzymes involved in this signaling
pathway regulate cell survival, proliferation, metastasis and
are implicated in development of resistance to a variety
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of chemotherapeutic agents. Mechanisms regulating Akt3
phosphorylation such as loss of PTEN, and activation of
PI3K signaling need to be further unraveled to aid in the
design of novel therapeutic strategies for treating melanoma.
Therefore, PI3K-Akt3 signaling remains an attractive target
in melanomas. Although this review provides an overview of
the PI3K-Akt signaling in melanomas, several aspects need
further investigation. Several unanswered questions also
remain pertaining to this key signaling cascade. For example,
it is not known (a) which microRNAs are regulating Akt
signaling in melanomas, (b) whether endogenous Akt3 is also
regulating metastasis development in human melanomas,
and (c) how Akt2 is regulating melanoma metastasis and
whether targeting Akt2 alone could inhibit metastasis devel-
opment? Addressing these questions might provide a better
understanding of the role of Akt signaling in melanoma and
help design more potent selective agents for targeting this
disease.
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Belda-Iniesta, and M. González-Barón, “P13K/Akt signalling
pathway and cancer,” Cancer Treatment Reviews, vol. 30, no.
2, pp. 193–204, 2004.

[118] K. S. Kovacina, G. Y. Park, S. S. Bae et al., “Identification
of a proline-rich Akt substrate as a 14-3-3 binding partner,”
Journal of Biological Chemistry, vol. 278, no. 12, pp. 10189–
10194, 2003.

[119] L. Wang, T. E. Harris, R. A. Roth, and J. C. Lawrence Jr.,
“PRAS40 regulates mTORC1 kinase activity by functioning
as a direct inhibitor of substrate binding,” Journal of Biological
Chemistry, vol. 282, no. 27, pp. 20036–20044, 2007.

[120] T. Ikenoue, F. Kanai, Y. Hikiba et al., “Functional conse-
quences of mutations in a putative Akt phosphorylation
motif of B-raf in human cancers,” Molecular Carcinogenesis,
vol. 43, no. 1, pp. 59–63, 2005.

[121] L. Packer, S. Pavey, A. Parker et al., “Osteopontin is a down-
stream effector of the PI3-kinase pathway in melanomas that
is inversely correlated with functional PTEN,” Carcinogenesis,
vol. 27, no. 9, pp. 1778–1786, 2006.

[122] A. Sharma, A. K. Sharma, S. V. Madhunapantula et al.,
“Targeting Akt3 signaling in malignant melanoma using
isoselenocyanates,” Clinical Cancer Research, vol. 15, no. 5,
pp. 1674–1685, 2009.

[123] M. A. Davies, K. Stemke-Hale, E. Lin et al., “Integrated
molecular and clinical analysis of AKT activation in
metastatic melanoma,” Clinical Cancer Research, vol. 15, no.
24, pp. 7538–7546, 2009.

[124] J. Laine, G. Künstle, T. Obata, MA. Sha, and M. Noguchi,
“The protooncogene TCL1 is an Akt kinase coactivator,”
Molecular Cell, vol. 6, no. 2, pp. 395–407, 2000.

[125] J. Laine, G. Künstle, T. Obata, and M. Noguchi, “Differential
regulation of Akt kinase isoforms by the members of the
TCL1 oncogene family,” Journal of Biological Chemistry, vol.
277, no. 5, pp. 3743–3751, 2002.

[126] Y. Pekarsky, A. Koval, C. Hallas et al., “Tcl1 enhances
Akt kinase activity and mediates its nuclear translocation,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 97, no. 7, pp. 3028–3033, 2000.

[127] H. A. Walz, X. Shi, MY. Chouinard et al., “Isoform-
specific regulation of akt signaling by the endosomal protein
WDFY2,” Journal of Biological Chemistry, vol. 285, no. 19, pp.
14101–14108, 2010.

[128] A. Schenck, L. Goto-Silva, C. Collinet et al., “The endosomal
protein Appl1 mediates Akt substrate specificity and cell
survival in vertebrate development,” Cell, vol. 133, no. 3, pp.
486–497, 2008.

[129] S. S. Shin, B. A. Wall, J. S. Goydos, and S. Chen, “AKT2 is
a downstream target of metabotropic glutamate receptor 1
(Grm1),” Pigment Cell and Melanoma Research, vol. 23, no.
1, pp. 103–111, 2010.

[130] S. P. Staal, “Molecular cloning of the akt oncogene and its
human homologues AKT1 and AKT2: amplification of AKT1
in a primary human gastric adenocarcinoma,” Proceedings
of the National Academy of Sciences of the United States of
America, vol. 84, no. 14, pp. 5034–5037, 1987.

[131] J. Q. Cheng, A. K. Godwin, A. Bellacosa et al., “AKT2,
a putative oncogene encoding a member of a subfamily
of protein-serine/threonine kinases, is amplified in human
ovarian carcinomas,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 89, no. 19, pp.
9267–9271, 1992.

[132] J. Q. Cheng, B. Ruggeri, W. M. Klein et al., “Amplification
of AKT2 in human pancreatic cancer cells and inhibition
of AKT2 expression and tumorigenicity by antisense RNA,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 93, no. 8, pp. 3636–3641, 1996.

[133] Y. Lu, Z. Li, and M. Sun, “Multiple gene alterations involved
in the processor of human gastric carcinogenesis,” Chinese
Medical Journal, vol. 75, no. 11, pp. 679–682, 1995.

[134] A. Bellacosa, D. De Feo, A. K. Godwin et al., “Molecular
alterations of the AKT2 oncogene in ovarian and breast
carcinomas,” International Journal of Cancer, vol. 64, no. 4,
pp. 280–285, 1995.

[135] H. Van Dekken, E. Geelen, W. N. M. Dinjens et al., “Com-
parative genomic hybridization of cancer of the gastroe-
sophageal junction: deletion of 14Q31-32.1 discriminates
between esophageal (Barrett’s) and gastric cardia adenocar-
cinomas,” Cancer Research, vol. 59, no. 3, pp. 748–752, 1999.

[136] A. Bellacosa, D. De Feo, A. K. Godwin et al., “Molecular
alterations of the AKT2 oncogene in ovarian and breast
carcinomas,” International Journal of Cancer, vol. 64, no. 4,
pp. 280–285, 1995.



18 Enzyme Research

[137] J. Q. Cheng, B. Ruggeri, W. M. Klein et al., “Amplification
of AKT2 in human pancreatic cancer cells and inhibition
of AKT2 expression and tumorigenicity by antisense RNA,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 93, no. 8, pp. 3636–3641, 1996.

[138] F. H. Thompson, M. A. Nelson, J. M. Trent et al., “Ampli-
fication of 19q13.1-q13.2 sequences in ovarian cancer: G-
band, FISH, and molecular studies,” Cancer Genetics and
Cytogenetics, vol. 87, no. 1, pp. 55–62, 1996.

[139] V. Waldmann, J. Wacker, and M. Deichmann, “Mutations of
the activation-associated phosphorylation sites at codons 308
and 473 of protein kinase B are absent in human melanoma,”
Archives of Dermatological Research, vol. 293, no. 7, pp. 368–
372, 2001.

[140] V. Waldmann, J. Wacker, and M. Deichmann, “Absence
of mutations in the pleckstrin homology (PH) domain
of protein kinase B (PKB/Akt) in malignant melanoma,”
Melanoma Research, vol. 12, no. 1, pp. 45–50, 2002.
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