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Stochastic reinforcement benefits skill acquisition
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Learning complex skills is driven by reinforcement, which facilitates both online within-session gains and retention of the

acquired skills. Yet, in ecologically relevant situations, skills are often acquired when mapping between actions and reward-

ing outcomes is unknown to the learning agent, resulting in reinforcement schedules of a stochastic nature. Here we trained

subjects on a visuomotor learning task, comparing reinforcement schedules with higher, lower, or no stochasticity. Training

under higher levels of stochastic reinforcement benefited skill acquisition, enhancing both online gains and long-term re-

tention. These findings indicate that the enhancing effects of reinforcement on skill acquisition depend on reinforcement

schedules.

[Supplemental material is available for this article.]

Learning new skills is driven by reinforcement, which can be ei-
ther extrinsic, as in the form of monetary rewards (Wachter
et al. 2009; Abe et al. 2011), or intrinsic (Shohamy 2011), as in a
sense of fulfillment and pride. Normative models of valuation
(Bell et al. 1988) view humans as reward-maximizing entities.
Consequently, learning novel skills with reinforcement schedules
where successful performance is continuously reinforced should
maximally facilitate learning. Indeed, previous studies of reward-
based motor skill acquisition utilized reinforcement schedules of
this sort (Wachter et al. 2009; Abe et al. 2011). Yet, in ecologically
valid settings complex skills are often acquired when mapping be-
tween actions and rewarding outcomes is not continuous and
fixed but, rather, variable and unknown. This results in reinforce-
ment schedules of a stochastic nature, and a state commonly re-
ferred to as uncertainty (Platt and Huettel 2008; Bach and Dolan
2012). For procedural skills, performance improvements can oc-
cur not only during training (“online”), but also between training
sessions in periods where there is no active practice occurring
(“offline”). These two forms of learning lead to formation of long-
term memory (Doyon and Benali 2005; Dayan and Cohen 2011),
and both appear to be affected by reinforcement (Wachter et al.
2009; Abe et al. 2011). Here, we studied how procedural learning
would proceed under the incentive of stochastic reinforcement.
We trained four groups of subjects (n ¼ 48) on a sequential visuo-
motor task (Reis et al. 2009; Schambra et al. 2011), manipulating
reinforcement schedules between groups. The task required sub-
jects to move a cursor back and forth between a “home” position
and five individually colored numbered targets (four gates and
one thick line) by modulating pinch force applied onto a force
transducer (Fig. 1A). Successful trials were ones where the se-
quence of movements (1-home, 2-home, 3-home, 4-home, 5)
was performed accurately within a fixed amount of time (8 sec).
Performance-based auditory feedback (a “beep” sound) was given
whenever a target gate was passed through successfully. The ex-
periment comprised three sessions (Fig. 1B). Following the first
block of 20 trials, where baseline performance was assessed, rein-
forcement schedules were implemented for five blocks of training,

where successful completion of each trial could result in visual re-
ward feedback (“you win 0.6$”). Tests of skill levels were then ad-
ministered with no reinforcement immediately after training as
well as 24 h and 7 d post-training, to assess offline skill gains
and long-term retention of skill, respectively. Training was carried
out under four different reinforcement schedules (Fig. 1C), ma-
nipulated in a between subject design, varying reward probability
to create four levels of stochastic reinforcement (with probability,
P, at 0.25, 0.5, 0.75, 1). Under this experimental manipulation un-
certainty as to whether a successful trial would get rewarded is
maximal at P ¼ 0.5 and decreases with higher and lower probabil-
ities (Schultz et al. 2008), since these probabilities are associated
with higher certainty pertaining to possible chances of being re-
warded or unrewarded (Fig. 1D).

Skill acquisitionwasquantified perblock usinga skill measure
combining movement time and error rates to capture shifts in the
task’s speed–accuracy trade-off function along training (Reis et al.
2009; Schambra et al. 2011; see Supplemental Methods). The two
groups that trained with lower levels of stochasticity (0.25 and
0.75) showed indistinguishable performance across all four testing
sessions (F(3,66) ¼ 2.541, ns), and therefore data from these two
groups were collapsed into one group, henceforth the “low sto-
chasticity” group (n ¼ 24), and compared with a high stochasticity
group (reward probability, P ¼ 0.5, n ¼ 11) and a fixed reward
group (no stochasticity, reward probability, P ¼ 1.0, n ¼ 11). A
repeated measures analysis of variance (ANOVA) revealed a sig-
nificant interaction between the level of stochasticity and test-
ing session (F(6,129) ¼ 5.36, P , 0.0001) (Fig. 2A). Specifically, all
groups had comparable baseline performance levels prior to train-
ing (F(2,43) ¼ 2.438, ns). After training, the three training groups
showed significantly different performance (F(2,43) ¼ 4.794, P ,

0.02). Namely, the high stochasticity group showed significantly
more skillful performance than the low stochasticity (P ¼ 0.023,
post hoc Fisher’s least square differences test) and the fixed
reward groups (P ¼ 0.004). One day post-training, the three groups
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maintained their levels of performance but skill levels did not dif-
fer (F(2,43) ¼ 2.472, ns). One week after training, most subjects in
the high stochasticity (7/11) and the fixed reward (9/11) groups
showed additional gains compared to their performance right after
training. In the low stochasticity group, on the other hand, more
subjects (13/24) showed evidence of forgetting (i.e., worse perfor-
mance at 1 wk, compared to immediately after training). Overall,
1 wk after training, performance of the three training groups dif-
fered (F(2,43) ¼ 8.71, P , 0.001), whereby the high stochasticity
group performed significantly better relative to the low stochastic-
ity (P , 0.0001) and the fixed reward groups (P , 0.001). To evalu-
ate the observed differences further, we also assessed the degree of
online within-session gains (Fig. 2B), defined as the difference in
skill between test and baseline (DTest–Baseline). Online gains
were significantly different among the groups (F(2,43) ¼ 4.668,
P , 0.02), with the group that trained under high stochasticity
showing significantly larger gains relative to the two other groups
(P , 0.04 and P , 0.005, when compared to the low stochasticity
and fixed reward groups, respectively; see also Supplemental
Results). Next we further assessed long-term retention of skill
(Fig. 2C), defined as the difference between skill at 1 wk and perfor-
mance immediately post-training (DRetest2–Test). This analysis
again showed differences among the training groups (F(2,43) ¼

4.466, P , 0.02), with the group training under high stochasticity
showing better retention relative to the low stochasticity (P ,

0.005) or to the fixed reward groups (P , 0.05).
The results reported here show that, contrary to what might

be assumed from normative models of valuation (Bell et al. 1988),
humans who learn new motor skills do not maximally benefit
from training schedules where successful performance is continu-
ously reinforced. Rather, training with high levels of stochastic re-
inforcement benefits skill learning more strongly, enhancing
online within-session skill gains and further resulting in a stron-
ger long-lasting memory trace of the acquired skill.

Sensorimotor control is carried out in the face of various
sources of sensory, motor, and outcome uncertainties. Progress
has been made recently in understanding how the brain controls
movement facing inherent sensory and motor noise (Orban and

Wolpert 2011). Yet, less is known about the behavioral conse-
quences of outcome uncertainty and the possible strategies uti-
lized to compensate for it, owing in part to lack of relevant
empirical data (Bach and Dolan 2012). Earlier work established
that removal of various forms of augmented extrinsic feed-
back about task success results in improved retention of skills
(Schmidt et al. 1989; Winstein 1991). Augmented information
feedback refers to the extrinsic feedback provided to the learner
to support learning (Swinnen 1996). In the current experimental
paradigm, visual and auditory performance feedback were provid-
ed in real time to allow subjects to perform the task accurately and
did not differ across all training groups. Reinforcement, on the
other hand, was provided probabilistically at the end of each trial,
as an incentive for successful performance, independently from
augmented information feedback. Important differences exist
with respect to intermittent delivery of feedback and reinforce-
ment (Swinnen 1996). Whereas removal of augmented informa-
tion feedback affects retention but not learning (Schmidt et al.
1989; Winstein 1991), the current results documented enhancing
effects of stochastic reinforcement on both learning and reten-
tion, further demonstrating the difference between how rein-
forcement and feedback guide skill acquisition.

Reinforcement-mediated motor learning has been shown in
a variety of paradigms (Fischer and Born 2009; Wachter et al.
2009; Abe et al. 2011; Huang et al. 2011; Izawa and Shadmehr
2011; Shmuelof et al. 2012). Although it is still unresolved what
constitutes a reward signal for the motor system (Wolpert et al.
2011), an emerging framework suggests that an underlying objec-
tive of voluntary movement is to achieve more valuable states
(Shadmehr and Krakauer 2008). Along these lines, motor learning
can be conceptualized as a process of optimization, where motor
commands that minimize costs and maximize reward are shaped
(Shadmehr and Krakauer 2008). To account for the findings re-
ported here a mechanistic framework for reinforcement-mediated
motor learning necessitates valuation systems that can integrate
variables such as probability and magnitude to drive learning, of

Figure 1. Task and design. (A) By varying the magnitude of pinch-force
applied onto a force transducer, subjects moved a cursor back and forth
via five numbered targets within a fixed period of time. (B) Experimental
design. The experiment comprised three sessions, including a training
session with reward feedback, followed by three tests of skill. (C)
Reinforcement schedules. Four reinforcement schedules were tested,
with reward feedback provided on 25%, 50%, 75%, or 100% of success-
ful trials. (D) Reward uncertainty. Stochastic reinforcement was maximal
and was associated with maximal levels of outcome uncertainty when
reward probability was 0.5. With probabilities of 0.25 and 0.75, stochas-
ticity and uncertainty were lower since the learning agents were operating
with greater certainty pertaining to lower and higher chances of being re-
warded, respectively.
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Figure 2. Training-related skill changes. (A) Changes of skill along
training. Skill (a metric expressing shifts in the speed–accuracy trade-off
function) at baseline, immediately after training (Test), 24 h later, and
7 d post-training. (B) Online learning. Online within-session gains
were assessed by subtracting baseline skill scores from those measured
immediately after training (test). (C) Long-term retention. To assess
long-term retention, skill scores measured immediately after training
were subtracted from scores measured 1 wk after training ended.
Error bars depict SEM. (Ls) low stochasticity, (Hs) high stochasticity,
(FR) fixed reward.
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the sort suggested by models of reinforcement learning (Kaelbling
et al. 1996; Sutton and Barto 1998).

A range of information processing systems, both artificial
and organic, appear to benefit from stochastic biological noise
(McDonnell and Ward 2011), possibly by improving the system’s
overall signal-to-noise ratio. The beneficial effects of stochastic re-
inforcement may also stem from the influence these schedules
and the uncertainty associated with them have on the saliency
and the amount of attention directed toward reward-predicting
cues (Pearce and Hall 1980; Dayan et al. 2000; Esber and Hasel-
grove 2011). Thus, training with stochastic reinforcement may
render learning agents more susceptible to gain from training by
allocation of more attentional and cognitive control resources
during learning. The stochastic reinforcement schedules used in
our experimental design may induce what has been referred to
as “expected uncertainty,” which results from a known unreliabil-
ity of predictive relationships within a familiar environment (Yu
and Dayan 2005). Previous modeling work linked expected uncer-
tainty with faster learning (Yu and Dayan 2003), providing a pos-
sible mechanism for the within-session learning gains reported
here. Other earlier findings based on animal models established
that intermittent reinforcement schedules applied during operant
conditioning are associated with greater resistance to extinction,
expressed in increased response rate during this phase (e.g., lever
presses), but no effects on acquisition (Humphreys 1939; Jenkins
and Stanley 1950). It was also shown that the increased response
rate varies monotonically with the thinning of the reinforcement
schedule (Gallistel and Gibbon 2000). The current results chal-
lenge these earlier accounts showing effects during acquisition
which do not vary monotonically with reward probability and
are followed by a stronger memory trace. More generally, our re-
sults suggest that stochastic reinforcement also exerts effects on
higher forms of learning such as the acquisition of complex novel
visuomotor skills in humans, where successful task performance
requires a skillful combination of speed and accuracy.
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