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We describe a method to infer signatures of determinism and stochasticity in the sequence of apparently
random intensity dropouts emitted by a semiconductor laser with optical feedback. The method uses ordinal
time-series analysis to classify experimental data of inter-dropout-intervals (IDIs) in two categories that
display statistically significant different features. Despite the apparent randomness of the dropout events,
one IDI category is consistent with waiting times in a resting state until noise triggers a dropout, and the
other is consistent with dropouts occurring during the return to the resting state, which have a clear
deterministic component. The method we describe can be a powerful tool for inferring signatures of
determinism in the dynamics of complex systems in noisy environments, at an event-level description of
their dynamics.

D
eterministic nonlinearities and noise are present in many natural systems and the distinction of their
relative influence is a long-standing challenge1–12. This can be particularly difficult in complex systems and
in systems with time delayed interactions, since high-dimensional chaos can be in practice indistinguish-

able from stochastic dynamics.
A semiconductor laser with optical feedback is a well-known example of this situation. It displays a complex

dynamical behavior that results from the interplay of deterministic nonlinear light-matter interactions, spon-
taneous emission noise and time-delayed feedback13–17. Close to the lasing threshold, and for moderate feedback
strengths, the laser output intensity displays apparently random dropouts [see Fig. 1(a)] that resemble neuronal
spikes. This dynamics has attracted a lot of attention, not only because for practical applications a stable output is
required and the dropouts need to be avoided18–20, but also because it involves fundamental questions related to
the interplay of delay, noise and nonlinearities. Several statistical studies have been performed in order to validate
the models used in the literature and to yield light into the underlying mechanisms that trigger the dropouts21–28.

Here we describe a method of time-series analysis that allows to distinguish signatures of determinism and
stochasticity in the sequence of intensity dropouts. We analyze experimental data consisting in long time series of
inter-dropout intervals (IDIs) by means of ordinal analysis29, by which the IDI sequence is transformed into a
symbolic sequence of ordinal patterns (OPs), also referred to as words. We choose a threshold, Tth, to first classify
IDIs into two types: those shorter than Tth are referred to as short intervals (SIs) and those longer than Tth, as fixed
long intervals (LIs). In this way the laser spiking activity is separated in periods of fast dropout events that
alternate with periods of no events [see Fig. 1(a)]. The motivation for this classification is that some dropouts can
be noise-induced while others can be due to a deterministic underlying dynamics30–32. Thus, some IDIs corre-
spond to waiting intervals in a resting state until noise triggers a dropout, while others correspond to time
intervals between dropouts that are more likely to have a deterministic origin.

We perform the analysis by varying the laser drive current within the whole range where the laser displays
spiking dropouts: from low pump currents where the intensity is low and the dropouts are almost too small to be
distinguished from small fluctuacions, to high pump currents, where the dropouts become very frequent and can
not be distinguished from one to another as individual events. We compute the probabilities of the words formed
by consecutive SIs and by consecutive LIs, and find that there is a range of pump currents where they are
significantly different; the LI probabilities are consistent with stochastic dropouts while the SI probabilities are

SUBJECT AREAS:
NONLINEAR OPTICS

SEMICONDUCTOR LASERS

NONLINEAR PHENOMENA

APPLIED PHYSICS

Received
5 December 2012

Accepted
17 April 2013

Published
7 May 2013

Correspondence and
requests for materials

should be addressed to
A.A. (andres.

aragoneses@upc.edu)

SCIENTIFIC REPORTS | 3 : 1778 | DOI: 10.1038/srep01778 1



more deterministic. These results are obtained with a threshold of
0.9T*, where T* is the most probable IDI value. Similar results can be
obtained with other threshold values around 0.9T*. Since the type of
dynamics analyzed here occurs in various natural complex systems
under the influence of noise, the method that we propose can be a
powerful tool of time-series analysis of these systems, at an event-
level description of the dynamics.

Results
The experiments were performed with a commercial semiconductor
laser, and two sets of measurements were obtained at temperatures
18uC and 20uC (see methods). Similar results were found in both data
sets and thus we present only the results for the data obtained at
18uC. In order to perform a robust statistical analysis we recorded
time series of 32 million points each, with a sampling time of 0.5 ns.
The time series contain, at low pump currents, about 45,000 drop-
outs, and at high pump currents, more than 220,000 dropouts.

For each pump current the IDI sequence, DTi 5 ti11 2 ti (with ti

being the time when a dropout occurs), is transformed into a
sequence of OPs of length D, by considering the relative length of
D consecutive IDIs29. For example, for D 5 2 there are two possible
OPs: DTi , DTi11 gives word ‘01’ and DTi . DTi11 gives word ‘10’;
for D 5 3 there are six possible OPs: DTi , DTi11 , DTi12 gives
‘012’, DTi12 , DTi11 , DTi gives ‘210’, etc. [see Fig. 1(a)]. This
symbolic transformation keeps the information about the correla-
tions in the dropout sequence and the short-time memory in the
system, but neglects the information contained in the duration of
the IDIs.

By counting the number of times a word appears in the symbolic
sequence we compute the probabilities of the various words (pi with i
5 1 … D!). The results are displayed in Fig. 2, that shows, for each
pump current, the probabilities of the two D 5 2 OPs [Fig. 2(a)] and
of the six D 5 3 OPs [Fig. 2(b)]. The error bars represent the con-
fidence interval computed with a binomial test, corresponding to a
confidence level of 95%, and the gray region represents the probabil-
ity values consistent with the null hypothesis (N.H.) that there are no
correlations in the sequence of dropouts and thus, the OPs are
equally probable. Probability values in the gray region, p 6 3sp

[where p 5 1/D! and sp~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1{pð Þ=Nð Þ

p
with N being the number

of OPs in the sequence] are consistent with the N.H.

Figures 2(a) and 2(b) show that the most probable words are ‘10’
for D 5 2 and ‘210’ for D 5 3, respectively, except at low pump
currents. These OPs correspond to two and three consecutively
decreasing IDIs respectively. For D 5 4 (not shown) a similar result
is found, with the word ‘3210’ being the most probable except at low
pump currents. Notice that, for D 5 3 [Fig. 2(b)], for all pump
currents there are several OPs with probabilities outside the N.H.
gray region, indicating a certain degree of deterministic behavior.
Also, it can be noticed that at low pump currents, the analysis with
D 5 2 [Fig. 2(a)] gives probabilities that are consistent with stoch-
astic behavior (they are within the N.H. region); however, the ana-
lysis with D 5 3 [Fig. 2(b)] actually reveals a significant degree of
determinism, since the probabilities of all the OPs are outside the
gray region. The six probabilities form two groups: there are two
more probable OPs (012 and 210) and four less probable ones.

To further analyze the underlying structure of the experimental
sequence of dropouts we select a threshold, Tth, close to the most
probable IDI value, T* (see discussion below for selecting the thresh-
old) and classify the IDIs into two types: those shorter than Tth, as SIs,
and those longer than Tth, as LIs. By counting the number of times a
word appears in the sequence of consecutive LIs or consecutive SIs,
we now compute new probabilities of words formed by consecutive
LIs (referred to as LI OPs) and by consecutive SIs (SI OPs).

Because the words are now formed with consecutive LIs or SIs, we
have shorter sequences of words, as compared to those in the full
sequence of IDIs; however, the data sets are long enough to still allow
calculating the LIs and SIs probabilities with good statistics. One of
the criteria used for choosing the threshold is to obtain enough LI
and SI words to allow for a robust statistical analysis. For example, for
Tth 5 0.9T* and D 5 2, the number of SI OPs is about 6,000–7,000
for low and high current respectively, and the number of SI OPs is
about 9,000–68,000; for D 5 3 the number OPs is smaller, formed by
SIs is about 1,900–1,300, and by LIs, about 3,800–35,000.

The probabilities of the LI OPs and of the SI OPs are displayed in
Fig. 3 for D 5 2 and in Fig. 4 for D 5 3 OPs. In both figures, the LI
probabilities are displayed in the left column, and SIs in the right
column. To analyze the influence of the threshold, various thresholds
are used: in Fig. 3 Tth 5 0.85T* top, 0.9T*middle and 0.95T* bottom;
in Fig. 4 we use only two, 0.90T* top and 0.95T* bottom, because
for 0.85T* the number of words that can be formed with three
consecutive SIs is not enough to compute the probabilities with good
statistics.
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Figure 1 | (a) Experimental time series of the laser intensity displaying

several dropouts. The pump current is 26.4 mA. The words ‘012’ and ‘210’

are indicated as examples. Also as examples, a few IDIs are classified either

as SIs or as LIs (see text for details). Histogram of the inter-dropout-

intervals (IDIs) for a pump current of 26.4 mA (b) and 27.8 mA (c). In (b)

and (c) the threshold, Tth 5 0.9T*, used to classify IDIs as LIs or SIs is

indicated with a line.
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Figure 2 | Probabilities of OPs formed with: (a) D 5 2 and with (b) D 5 3
consecutive IDIs. The gray region indicates probabilities consistent with

the null hypothesis (that there are no correlations in the IDI sequence).
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In these figures we observe that the OPs formed by consecutive LIs
appear equally probable for all pump currents, as it is expected in a
random process like noise-induced escapes. On the other hand, the
probabilities of the OPs formed by consecutive SIs have a determin-
istic component, except at low pump currents (see discussion below).
Therefore, except at low pump currents, the SI sequence keeps the
deterministic signature of the IDI sequence while the random signa-
tures of the LIs have been removed.

As the choice of the threshold is rather arbitrary, it can be expected
that there will be short LIs that are wrongly classified as SIs and long
SIs that are wrongly classified as LIs. However, Figs. 3 and 4 show that
the differences of the LI and SI probabilities are significant (except at
low pump currents) and that they are robust to threshold variations.
It can be observed that the lower threshold reveals more determin-
istic SIs (with probabilities far from the uniform distribution) but has
the drawback of a larger degree of uncertainty (i.e., the error bars and

the N.H. region are wider due to a low number of OPs in the SI
sequence). On the other hand, for the larger threshold one can
observe that the degree of SI determinism decreases, while increases
the robustness of the analysis (i.e., the error bars and the width of the
N.H. region of the SI probabilities decrease due to a larger number of
OPs in the sequence). As the variation of the threshold leaves rather
unaffected the number of LI OPs, it has almost no effect on the LI
probabilities.

In the above figures the thresholds were selected in order to take
into account the following three goals: i) we can form enough SI and
LI words to compute their probabilities with good statistics (i.e.,
having small error bars and narrow N.H. region), ii) the distribution
of the LIs is close to an exponential and iii) the LI OP distribution is
close to the uniform distribution. While here we have chosen the
threshold in the same way for all data sets (Tth 5 aT*, where a in the
range 0.85–0.95 takes the same value for all pump currents), the
method could be optimized by fine-tuning the threshold such that
it is optimal for each data set, giving a sequence of LIs with the closest
statistics to a random sequence of events.

It should be noticed that at low pump currents, both LIs and SIs are
consistent with the null hypothesis, for D 5 2 [Fig. 3] and also for D
5 3 [Figs. 4]. By fine-tuning we could not find a threshold that
allowed to separate the IDIs into two sets with significantly different
statistical properties. While for D 5 2 this could be expected (as also
the IDIs seem stochastic), for D 5 3 this is rather unexpected as the
probabilities of the OPs formed by consecutive IDIs are all not con-
sistent with the N.H. [Fig. 2(b)]. Moreover, the IDI distribution
[shown in Fig. 1(b)] has a nontrivial structure at low IDI values
and an exponential decay at large IDIs, suggesting the existence of
two IDI categories. The fact that when separating the IDIs in LIs and
SIs we obtain two sets consistent with the N.H. means that by sepa-
rating we actually remove the correlations existing in the IDI
sequence. This effect can be understood in terms of the numerical
results in Refs. 31, 32, where it was shown that the average duration of
the transient dynamics decreases with increasing current values.
Thus, at low pump currents long intervals between consecutive drop-
outs might occur during the transient dynamics, and these ‘‘long SIs’’
have time-scales comparable to noise induced escapes. Thus, in the
low pump current region the method can not distinguish two differ-
ent IDI categories, in spite of the fact that the distribution of IDIs
displays a bimodal structure.

The different statistical properties of the IDIs, LIs and SIs are also
captured by the permutation entropy29, i.e., the entropy of the prob-
abilities of the OPs, S~{

PN
j~1 pj ln pj, normalized to its maximum

value, Smax 5 ln D!. This has been proven to be an appropriate
measure of complexity for chaotic time series in the presence of
noise. Figure 5 displays the permutation entropy computed for
OPs formed by consecutive IDIs (top), LIs (middle) and SIs (bot-
tom), for a threshold Tth 5 0.95T*. Notice that the entropy of SI-OPs
is smaller than that of IDIs and LIs, which is consistent with a lower
degree of randomness in the SI sequence, as compared to the IDI and
LI sequences.

To further demonstrate that the LIs and SIs have indeed different
statistical properties (and thus are likely to correspond to dropouts
triggered by different mechanisms), we computed the histograms of
the time intervals composed by the sum of consecutive SIs, STi,SI,
and by the sum of consecutive LIs,STi,LI. These are shown in figure 6.
The histogram of the sum of consecutive LIs displays an exponential
decay, as can be expected for a variable that is the sum of independent
random variables, each with an exponentially decaying distribution.
On the contrary, the histogram of the sum of consecutive SIs displays
a nontrivial structure. In the interpretation of the SIs as time-inter-
vals between deterministic dropouts, the sum of consecutive SIs
represents the duration of the transient dynamics, before returning
to the resting state. Thus, this distribution of transient times can be
traced back to a deterministic attractor that rules the dynamics, and
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can be compared with recent simulations32. The good agreement
with the simulated statistics of transient times enforces the inter-
pretation of the dropouts observed experimentally as a dynamics
sustained by intrinsic laser noise.

The analysis of the IDI data collected at a higher temperature
(20uC) did not reveal any significant difference in the probabilities
of the OPs formed by the IDI sequence and their dependence with the
pump current, nor for the OPs formed by consecutive LIs and SIs.

Discussion
We proposed a novel method of analysis that allows to distinguish
signatures of determinism and stochasticity in the sequence of drop-
outs of a semiconductor laser with optical feedback. The analysis
reveled the existence of an underlying structure in the IDI sequence.
By choosing an appropriate threshold, the IDIs can be classified into
two categories (SIs and LIs), with significantly different deterministic
components that suggest that different physical mechanisms trigger
the dropouts. These are consistent with interpreting the LIs as wait-
ing intervals in a resting state, and the SIs as intervals between drop-
outs occurring during the return to the resting state. Thus, the
method allows statistically inferring which dropouts could be noise
induced, and which ones could have a deterministic origin, due to a
stochastic trajectory that follows an underlying attractor in its return
to the resting state.

The threshold for classifying the IDIs as LIs or SIs was chosen
taking into account three criteria: i) the probability distribution of the
LIs is exponentially decaying (expected for noise-induced escapes),
ii) the probabilities of the words formed by the LIs are close to the
uniform distribution (also expected for noise-induced escapes), and
iii) there are enough words formed by consecutive LIs and by con-
secutive SIs to perform a robust statistical analysis. There is a range of
threshold values that meet these criteria and we have shown that the
results are qualitatively robust to threshold variations within this
range.

The method is computationally simple to implement and the data
requirements can be easily adapted to small and large data sets by
appropriately choosing the length D of the ordinal patterns. For
improved performance, instead of using a general criterium across
all data sets for selecting the threshold, Tth could be fine tuned to
work optimally for each data set, giving the sequence of LIs with an
statistics closest to a random sequence of events.

The method proposed here can be a very powerful tool for the
analysis of real-world data, such as experimental recordings of neur-
onal inter-spike intervals, or data generated by complex systems such
as inter-event times of user activity in social communities, where
signatures of deterministic underlying dynamics can be obscured
by the presence of noise.

Methods
The experiments were performed with a 675 nm AlGaInP semiconductor laser
(Hitachi Laser Diode HL6724MG) with optical feedback from a diffraction grating.
The external cavity length was 45 cm and thus the feedback delay time was 3 ns. To
detect the laser output power we used a beam-splitter that sent 50% of the light to a
2.5 GHz oscilloscope (Agilent Infiniium 9000). The laser temperature and pump
current were controlled to an accuracy of 0.01 C and 0.01 mA respectively (with a
ITC502 Thorlabs laser diode combi controller). Two sets of measurements were
obtained, at T 5 18uC and 20uC. At 18uC the threshold current of the solitary laser
was 27.6 mA, and with optical feedback it was reduced to 25.7 mA (the feedback
strength being such that the threshold reduction was 7%). In the experiments the
pump current was varied in steps of 0.20 mA, from 26.20 mA to 28.0 mA.
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