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ABSTRACT
Background Active myofascial trigger points
(MTrPs) are major pain generators in myofascial
pain syndrome. Dry needling (DN) is an effective
method for the treatment of MTrPs.
Objective To assess the immediate
neurophysiological and clinical effects of DN in
patients with upper trapezius MTrPs.
Methods This was a prospective, clinical trial
study of 20 patients with upper trapezius MTrPs
and 20 healthy volunteers (matched for height,
weight, body mass index and age), all of whom
received one session of DN. Primary outcome
measures were neuromuscular junction response
(NMJR) and sympathetic skin response (SSR).
Secondary outcomes were pain intensity (PI) and
pressure pain threshold (PPT). Data were
collected at baseline and immediately post-
intervention.
Results At baseline, SSR amplitude was higher
in patients versus healthy volunteers (p<0.003).
With respect to NMJR, a clinically abnormal
increment and normal reduction was observed in
patients and healthy volunteers, respectively.
Moreover, PPT of patients was less than healthy
volunteers (p<0.0001). After DN, SSR amplitude
decreased significantly in patients (p<0.01), but
did not change in healthy volunteers. A clinically
important reduction in the NMJR of patients and
increment in healthy volunteers was
demonstrated after DN. PPT increased after DN
in patients, but decreased in healthy volunteers
(p<0.0001). PI improved after DN in patients
(p<0.001).
Conclusions The results of this study showed
that one session of DN targeting active MTrPs
appears to reduce hyperactivity of the
sympathetic nervous system and irritability of
the motor endplate. DN seems effective at
improving symptoms and deactivating active
MTrPs, although further research is needed.
Trial registration number
IRCT20130316128.

INTRODUCTION
Myofascial pain syndrome, associated with
myofascial trigger points (MTrPs), is a
musculoskeletal disorder that is charac-
terised by the presence of palpable taut
bands and highly irritable points in the
skeletal muscles. MTrPs can be active or
latent. Active MTrPs produce spontaneous
pain and symptoms, while latent MTrPs
do not produce any symptoms unless pres-
sure is applied.1 2 MTrPs more commonly
affect postural muscles including the tra-
pezius.3 4 Formation of MTrPs can cause
pain (sensory component), motor dysfunc-
tion (motor component) and autonomic
reactions (autonomic component) in the
affected muscles.2

Simons et al2 hypothesised that palpable
taut bands in the affected muscles are due
to excessive acetylcholine release at the
neuromuscular junction (motor endplate).
In this situation, continuous contraction of
the muscle fibres, which is accompanied
by increased metabolism and local ischae-
mia, leads to increased secretion of sensi-
tising substances and can subsequently
cause pain and autonomic reactions such
as increased sweating, vasoconstriction or
vasodilation, and pilomotor activity in the
muscle.5 6 Although it is speculated that
such motor and autonomic changes occur
in patients with MTrPs, to our knowledge
no previous human study has evaluated
the extent of such reactions in these
patients after MTrP dry needling (DN).
The sympathetic skin reaction (SSR),
which is commonly used to evaluate func-
tions of the autonomic nervous system7

and neuromuscular junction response
(NMJR) to repetitive nerve stimulation
(RNS), which is frequently used for the
assessment of motor endplate dysfunc-
tion,8 can be used to objectively detect
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autonomic changes and motor dysfunction in patients
with MTrPs.
Various invasive and non-invasive procedures are

available to help manage MTrPs. DN is a minimally
invasive method that has recently gained popularity
for the treatment of MTrPs.9 DN involves inserting an
acupuncture needle directly into an MTrP without
injection of material.10 The effectiveness and safety of
this technique has been confirmed by several
studies.11–13 DN of upper trapezius MTrPs is increas-
ingly documented. Previous studies assessing the
effect of DN on MTrPs of the upper trapezius muscle
have demonstrated reduced pain and pain pressure
threshold (PPT), increased local blood flow,14 a
restored range of motion at the neck,15 16 and
improved quality of life.17–19 To our knowledge, there
are no existing data on the neurophysiological effects
of DN (including changes in NMJR and SSR) in
patients with upper trapezius MTrPs. The aims of this
study were: (1) to examine for differences in SSR,
NMJR and PPT between patients with active MTrPs
and healthy volunteers; and (2) to assess the neuro-
physiological and clinical effects of DN on sensory,
motor and autonomic components of MTrPs in
the trapezius muscle. We hypothesised that DN

stimulation of MTrPs would relieve pain, decrease
sympathetic outflow and improve the NMJR.

METHODS
Study design
Forty participants comprising 20 patients (aged 31.7
±10.8 years) and 20 matched healthy volunteers
(aged 30.4±5.6 years) were included in this study
(figure 1). The patients were recruited from the ortho-
paedic and physiotherapy clinics of Tehran University
of Medical Sciences (TUMS) and were deemed eli-
gible if they had experienced persistent neck pain for
>6 months and were found to have an active MTrP at
the standardised location ‘TrP2’ with spontaneous
pain in the right (dominant) upper trapezius muscle
based on the following definition of an active
MTrP:1 2 presence of a palpable, discrete nodule
within a taut band of skeletal muscle with reproduc-
tion of pain on palpation.5 Patients with whiplash
injury, previous cervical or shoulder surgery, systemic
disorders, neurological deficits, use of sedative or anti-
coagulant drugs, epilepsy, pregnancy, needle phobia,
skin lesions or evidence of infection at the MTrP site
were excluded. Healthy volunteers (with no history of
neck pain) were matched to the patients based on

Figure 1 Flow diagram of the study. DN, dry needling; NMJR, neuromuscular junction response; PPT, pressure pain thresholds; SSR,
sympathetic skin response; TrP, trigger point.
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height, weight, body mass index (BMI) and age. Key
inclusion criteria for the healthy volunteers were good
general health and lack of latent MTrPs within the
upper trapezius muscle. They reported no pain or
discomfort on palpation of the upper trapezius in
the TrP2 region. All participants gave written informed
consent before entering the study, which was ap-
proved by the Ethical Committee of TUMS (reference
no. 2185).

Interventions
The treatment protocol for this study was as previ-
ously described.20 Participants were asked to rest in a
supine position on the treatment table in a silent,
semi-dark room for 10 min before the experiment
began. A comfortable room temperature of 24°C was
maintained for standardisation. Then, baseline
measurements of SSR, NMJR, pain intensity (PI) and
PPT were recorded by a trained physiotherapist.
Subsequently, all participants received one session of
DN that included insertion of an acupuncture needle
of 0.30 mm diameter and 50 mm length (Seirin J,
Japan) into the identified active MTrP of the upper
trapezius muscle in the same supine position
(figure 2A). The needle was partially moved up and
down 3–5 times and then removed irrespective of
whether a twitch response was elicited or not. The
same procedure was performed on the healthy indivi-
duals; however, the needle was inserted into the
middle of the almost horizontal fibres of the right
upper trapezius at a location similar to that of
the upper trapezius TrP2 of the patients.2 Thus, the
needle was inserted into the TrP2 region in the
patients and a corresponding point in the healthy
volunteers. Before the intervention and immediately
afterwards, outcome measures (SSR, NMJR, PI and
PPT) were recorded by the physiotherapist performing
the intervention.

Measurements
Primary and secondary outcome measures were
recorded at baseline and immediately after DN. The
primary outcome measures were SSR and NMJR.
SSR, which is expressed as a potential generated in
the sweat glands of the skin, was assessed by Toennies
Neuroscreen Plus (Toennies, Germany), an electro-
myography (EMG) instrument used to calculate elec-
trodiagnostic parameters measured via surface
electrodes. SSR was measured by electrical stimulation
of the median nerve at the wrist with a sensitivity of
500 μV/div and sweep speed of 1000 ms/div. SSR
signals were filtered at a frequency of 0.08–20 Hz.
The participants rested in a supine position on a treat-
ment table in a semi-dark and silent room for 10 min
before EMG evaluation. The room temperature was
maintained at 24°C. The surface recording electrodes
were applied bilaterally to the palmar and dorsal
aspects of both hands, 2 cm from the medial border.

A grounding electrode was fastened on the wrist.
Electrical stimulation was applied to the proximal part
of the volar wrist in the distribution of the median
nerve only on the affected side, while simultaneous
recordings were made bilaterally. Three repetitive sti-
mulations of the median nerve were delivered at
1-min intervals. The mean score of SSR latency and
amplitude of the three trials were calculated for each
side20 (figure 2B). The other primary outcome,
NMJR, was evaluated using an RNS technique. A
3 Hz RNS was applied using trains of nine supramaxi-
mal electrical stimulations of the spinal accessory
motor nerve with a recording electrode over the
upper trapezius and the EMG instrument (Toennies
Neuroscreen Plus, Germany) with a sensitivity of
5 mV/div, sweep speed of 5 ms/div and filter of 5 Hz–
5 KHz. Surface stimulating electrodes were placed on
the posterior border of the sternocleidomastoid
muscle at the level of the upper border of the thyroid
cartilage, while surface recording electrodes were
located over the upper trapezius muscle 5 cm from
the C7 spinous process. The spinal accessory nerve
was subsequently stimulated and compound muscle

Figure 2 (A) Positioning of participant for dry needling
intervention. (B) Sympathetic skin response (SSR) of the median
nerve. (C) Neuromuscular junction response (NMJR) of the
accessory nerve.
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action potentials (CMAPs) were recorded. To charac-
terise NMJR, the first and fifth CMAPs were com-
pared and the resultant decrement or increment of the
amplitude was represented as a percentage. A decre-
ment of up to 8–10% in the amplitude of the CMAP
was considered normal, while a decrement of >10%
or any increment of the tested muscle was considered
to be an abnormal NMJR (figure 2C).
The secondary outcome measures were PI and PPT.

PI was assessed using a 0–10 numerical rating scale
(NRS), with 0 representing no pain and 10 represent-
ing worst imaginable pain. PPT was measured relative
to the perpendicular pressure from the metal rod of
an algometer (Digital Instrument, Lutron, Taiwan)
applied over TrP2 of the upper trapezius muscle in
patients and the corresponding point in healthy
volunteers in a supine position at 1 kg/cm.2 The pres-
sure was removed when the patient reported an
increase in PI or discomfort. For the healthy volun-
teer, pressure by the algometer was removed when
they felt pain rather than pressure. Measurements
were repeated three times at 40 s intervals and
averaged.

Statistical analysis
The Statistical Package for the Social Sciences (SPSS)
V.17 (SPSS Inc, Chicago, IL, USA) was used to analyse
the data. A sample size calculation was performed
based on a pilot study with the following assump-
tions: effect size 0.8 for primary outcome measures
SSR and NMJR; α=0.05; and power=80%. The
Kolmogorov-Smirnov test was used to examine the
normality of distribution for quantitative data
(p>0.05). Baseline measurements were compared
between the two groups using the independent t-test.
The Wilcoxon signed rank test was used to assess
changes in PI before and after the intervention within
each group. A two-by-two mixed design analysis of
variance (ANOVA) with time (pre-intervention vs
post-intervention) as the within-subject factor and
group (patients vs healthy volunteers, each receiving
DN) as the between-subject factor, was used to deter-
mine the effects of the intervention on SSR and PPT.
The output of interest was the group-by-time inter-
action at α=0.05.

RESULTS
Seventeen of 20 patients and 16 of 20 healthy volun-
teers were women. The right trapezius was the
affected side in all of the patients. By design, there
were no statistically significant differences in age,
weight, height and BMI between the two groups
(table 1). There were also no significant differences in
SSR latency on the affected or unaffected sides
between the two groups; however, patients with active
trigger points had a significantly higher mean ampli-
tude of SSR on both sides compared to healthy volun-
teers. With respect to NMJR, a clinically abnormal

increment percentage response and a normal reduc-
tion were seen in the patients and healthy volunteers,
respectively. Before the intervention, PPT in patients
with MTrPs was significantly less than healthy volun-
teers (table 2).

Primary outcome measure
The mixed-model ANOVA did not indicate a statistic-
ally significant time-by-group interaction for SSR
latencies on the affected and opposite sides. However,
there was a significant effect of time, with both
groups experiencing similar increases in SSR latencies.
The other parameter of SSR, amplitude, showed a
statistically significant time-by-group interaction on
both sides. Patients experienced a decrease in ampli-
tude. With respect to NMJR, it is agreed that a decre-
ment of up to 8–10% in the CMAP of the upper
trapezius muscle as a response to RNS can be consid-
ered to be a clinically normal response.21 As shown in
table 3, the mean NMJR among the patients was
+5.6% and thus outside of the normal range. By
comparison, the NMJR of the healthy group (−0.9%)
was within the normal range. Immediately following
DN, the abnormal incremental response of NMJR of
patients at baseline was decreased to a value within
the normal range (5.6% to −2.9%; table 3).

Secondary outcome measure
The two-by-two mixed-model ANOVA revealed a sig-
nificant time-by-group interaction for PPT; patients
receiving DN experienced an increase in PPTwhereas
the healthy control group showed a decrease in PPT
after DN. The result of the Wilcoxon rank test indi-
cated a significant decrease in PI of patients after DN
(table 3).

DISCUSSION
In the current study, we considered the neurophysio-
logical and clinical changes induced by DN including
SSR, NMJR, PPT and PI in patients with active MTrPs
in the trapezius muscle. Our findings indicated a sig-
nificant decrease in SSR amplitude and NMJR after a
single session of DN. Indeed, there was significant
improvement in PI and PPTafter DN.

Table 1 Baseline characteristics

MTrP patients
(n=20)

Healthy volunteers
(n=20) p Value

Age (years) 31.7±10.9 30.4±5.6 0.6

Weight (kg) 63.4±9.5 61.0±15.9 0.6

Height (cm) 164±6 165±9 0.6

BMI (kg/m2) 23.3±2.5 21.9±3.2 0.1

Data are presented as mean±SD.
BMI, body mass index.
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Effect of DN on SSR

Evaluation of the SSR can be used for the diagnosis of
autonomic disorders.22 However, there is still no con-
sensus on how to process quantitative evaluation of
the SSR. Some researchers have used the latency par-
ameter,23 24 while other investigators have advocated
using the amplitude parameter because they believe
that it is difficult to measure the exact onset of deflec-
tion from the baseline to assess changes in latency.7 25

Accordingly, we focused on changes in amplitude. In
this study, the mean amplitude of SSR recorded from
the patient’s hands (on the affected and unaffected
sides) was higher than that of the healthy volunteer
control group at baseline. The increased SSR ampli-
tude in individuals with MTrPs may be related to
increased psychological stress in these patients.2

Constant stress has been shown to cause functional
changes in the autonomic nervous system, such as
increased SSR amplitude and decreased latency.26

Therefore, in accordance with other studies,27 28 we
believe that increased SSR amplitude, as observed in
the present study, is an indication of sympathetic
system dysfunction in patients with MTrPs.
After unilateral DN of the trapezius muscle, the SSR

amplitude on both the affected and unaffected sides
decreased significantly in the participants with MTrPs

but did not change in the healthy volunteers. This
observation implies, firstly, that DN improves global
sympathetic function via central (spinal or suprasp-
inal) mechanisms rather than local effects (as mea-
sured changes were symmetrical) and, secondly, that
DN impacts sympathetic function only in patients.
Mechanical stimulation such as DN has been shown
to activate afferent Aβ and Aδ fibres.29 In our study,
subjective sensation due to needle penetration differed
between patients and healthy volunteers. Patients
reported pain following needle stimulation, while the
healthy volunteers denied any pain or discomfort. It is
possible that these differences in sensation lead to dif-
ferential effects on the sympathetic nervous system in
the two groups. Excitation of pain due to needle
stimulation via Aδ afferent fibres in patients may have
suppressed the sympathetic nervous system in this
study. Previous studies have reported that acupuncture
stimulation activates various brain regions including
the insula, anterior cingulate cortex, prefrontal cortex,
visual cortex and cerebellar cortex.30 31 Since almost
all cortical brain areas (including the prefrontal
cortex, anterior cingulate cortex, sensorimotor cortex,
inferior parietal lobule, lingual and fusiform gyri, tem-
poral cortex, insular and extrastriate visual cortices
and the cerebellar cortex) are involved in autonomic

Table 3 Comparison of the final values of SSR, PPT and NMJR between the two groups

Variable
Patients (n=20)

Healthy volunteers
(n=20) Time Time×group interaction

Pre-DN Post-DN Pre-DN Post-DN F p Value Effect size F p Value Effect size

Ipsilateral SSR latency (s) 1.15±0.38 1.34±0.29 1.11±0.28 1.35±0.48 16 0.0001 0.3 0.2 0.7 0.005

Ipsilateral SSR amplitude (mV) 2.5±1.4 1.3±1.0 1.4±0.7 1.4±1.1 7.3 0.01 0.2 6.9 0.01 0.15

Contralateral SSR latency (s) 1.2±0.37 1.32±0.34 1.11±0.33 1.28±0.37 8.9 0.005 0.2 0.3 0.6 0.008

Contralateral SSR amplitude (mV) 2.0±1.4 1.2±1.3 1.2±1.1 1.5±1.6 0.5 0.5 0.1 4.2 0.04 0.1

PPT (kg/cm2) 1.15±0.50 1.52±0.59 2.42±1.38 1.71±1.16 2.8 0.1 0.07 28 0.0001 0.4

NMJR (%) 5.6±26.7 −2.9±13.8 −0.9±10.9 0.9±6.8

PI (NRS score) 5 (4–7) 2 (1–3.8) z=−3.9, p= 0.0001

p value<0.05 is significant.
Data are presented as mean±SD or median (IQR).
DN, dry needling; NMJR, neuromuscular junction response; NRS, numerical rating scale; PI, pain intensity; PPT, pressure pain threshold; SSR, skin
sympathetic response.

Table 2 Comparisons of the SSR, PPT and NMJR between the two groups at baseline

Variable Patients (n=20) Healthy volunteers (n=20) t p Value

Ipsilateral SSR latency (s) 1.1±0.3 1.1±0.2 0.3 0.7

Ipsilateral SSR amplitude (mV) 2.5±1.4 1.4±0.7 3.2 0.003
Contralateral SSR latency (s) 1.2±0.3 1.1±0.3 0.8 0.4

Contralateral SSR amplitude (mv) 2.0±1.4 1.1±1.0 2.1 0.03
PPT (kg/cm2) 1.1±0.5 2.4±1.3 −3.8 0.0001
NMJR (%) 5.6±26.7 −0.9±10.9
p value<0.05 is significant.
Data are presented as mean±SD.
NMJR, neuromuscular junction response; PPT, pressure pain threshold; SSR, skin sympathetic response.
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control,32–34 we hypothesise that needle stimulation
of Aδ afferent fibres modulates higher brain centres to
induce inhibitory effects on the autonomic nervous
system. At the very least, these findings suggest that
DN might relieve chronic pain through its effects on
the autonomic nervous system.

Effect of DN on NMJR
In this study, motor endplate activity following the
RNS test on the trapezius muscle in patients with
MTrPs demonstrated an abnormal increment com-
pared to healthy volunteers at baseline; a decrement
of up to 8–10% in the amplitude of the CMAP after
RNS is considered normal.21 Abnormal NMJR values
after the RNS test, noted in the patients with MTrPs
in the current study, support the hypothesis put
forward by Simons et al2 that hyperactive motor end-
plates may contribute to MTrP formation in the
muscle. Many other studies have also reported hyper-
activity of the motor endplate, measured via spontan-
eous endplate activity (SEA) in single-fibre EMG
(SFEMG) studies.35–38 The presence of SEA is an indi-
cation of spontaneous release of acetylcholine (ACh)
at the neuromuscular junction (NMJ).1 Our study is
consistent with the work of Simons et al, given that
we exhibited NMJ dysfunction in MTrP patients.
After DN, the percentage changes in NMJR among

patients decreased back to the normal range, while it
increased into the abnormal range in the healthy
volunteers. Decreased irritability of the motor end-
plate after DN has been shown previously via the
SFEMG technique.39 40 The lack of previous studies
using the RNS technique make it difficult to compare
the findings of this study with other published trials.
It seems that the elevated NMJR is related to
increased concentration of biochemicals such as sub-
stance P and calcitonin gene-related peptide (CGRP)
in the vicinity of active MTrPs. It has been shown that
the levels of such biochemical irritants drop immedi-
ately after DN.14 41 42 Moreover, CGRP can increase
the release of ACh from the motor endplate and
decrease the effectiveness of acetylcholinesterase in
the synaptic cleft and enhance ACh receptor efficiency
at the same time.17 Therefore, DN, by modulating the
biochemical milieu of MTrPs, can lead to reduction of
ACh efficacy and consequently decrease the irritability
of the motor endplate.

Effect of DN on PI and PPT
This study, based on NRS evaluation, has shown that
DN is effective at decreasing PI, consistent with previ-
ous research.10 43–45 A ‘gate control’ mechanism likely
underlies the alleviation of pain after DN,29 although
its analgesic effects are unlikely to be fully explained
by one single mechanism. Analgesia may also be
related to the endogenous opioid system including
β-endorphin and enkephalins.29 Furthermore, the PPT
values of the trapezius muscle were significantly lower

in patients versus healthy volunteers at baseline,
which may reflect greater sensitisation of MTrP
regions, as previously shown.37 46 47 PPT is a valid
clinical method of assessing MTrP sensitivity.48 In our
study, DN decreased PPT in the normal subjects but
increased it in patients. The observed decrease in PPT
value among normal subjects might have been due to
muscle damage by needle penetration. While this was
also likely to have occurred in patients, pain from this
type of minor injury may have been mitigated by
other mechanisms such as neuronal (spinal or suprasp-
inal) effects or biochemical changes at the MTrP site
following DN.49

Advantages and limitations of the study
To the best of our knowledge, this study is the first
clinical investigation to examine the immediate effects
of DN on sympathetic and motor responses, as mea-
sured by SSR and surface EMG, respectively. One
major limitation is that the therapist applying the
intervention and the investigator collecting the data
were not blind to the treatment group. Moreover, this
study did not measure patients’ functional abilities or
the long-term effects of DN.

CONCLUSION
In summary, one session of DN increased PPT and
decreased pain, SSR and NMJR in patients with
upper trapezius MTrPs. Therefore, DN may play an
important role in treating active MTrPs via inhibition
of sympathetic nervous activity and reduction of NMJ
hyperactivity.
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