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Background:During the past years, clinical and epidemiological studies have indicated a

close relationship between Alzheimer’s disease (AD) and other mental disorders like major

depressive disorder (MDD). At the same time, a number of genes genetically associated

with AD or MDD have been detected. However, our knowledge on the mechanisms that

link the two disorders is still incomplete, and controversies exist. In such a situation, a

systematic analysis on these genes could provide clues to understand the molecular

features of two disorders and their comorbidity.

Methods: In this study, we compiled the genes reported to be associated with AD

or MDD by a comprehensive search of human genetic studies and genes curated

in disease-related database. Then, we investigated the features of the shared genes

between AD and MDD using the functional enrichment analysis. Furthermore, the

major biochemical pathways enriched in the AD- or MDD-associated genes were

identified, and the cross talks between the pathways were analyzed. In addition, novel

candidate genes related to AD and MDD were predicted in the context of human

protein-protein interactome.

Results: We obtained 650 AD-associated genes, 447 MDD-associated genes, and 77

shared genes between AD and MDD. The functional analysis revealed that biological

processes involved in cognition, neural development, synaptic transmission, and

immune-related processes were enriched in the common genes, indicating a complex

mechanism underlying the comorbidity of the two diseases. In addition, we conducted

the pathway enrichment analysis and found 102 shared pathways between AD and

MDD, which involved in neuronal development, endocrine, cell growth, and immune

response. By using the pathway cross-talk analysis, we found that these pathways

could be roughly clustered into four modules, i.e., the immune response-related module,

the neurodevelopmental module, the cancer or cell growth module, and the endocrine

module. Furthermore, we obtained 37 novel candidate genes potentially related to AD

and MDD with node degrees > 5.0 by mapping the shared genes to human protein-

protein interaction network (PPIN). Finally, we found that 37 novel candidate genes are

significantly expressed in the brain.
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Conclusion: These results indicated shared biological processes and pathways

between AD and MDD and provided hints for the comorbidity of AD and MDD.

Keywords: Alzheimer’s disease, major depressive disorder, comorbidity, pathway cross-talk, functional

enrichment analysis

INTRODUCTION

As the most common type of dementia, Alzheimer’s disease (AD)
affects ∼10% of people of 65 years or older (Blennow et al.,
2006). Although cognitive impairment is the core feature of
this disease, neuropsychiatric symptoms appear commonly in
patients with AD and are persistent (Fernández et al., 2010; Kales
et al., 2015). Depression and depression symptoms are among
the most common symptoms in patients with AD and may be
the early symptoms of the dementing process (Lyketsos et al.,
1997b). Depression or depressive symptoms may affect as much
as 50% of patients with AD (Starkstein et al., 2005), and about
20–30% of patients with AD are influenced by major depressive
disorder (MDD) (Ballard et al., 1996; Enache et al., 2011). The
continuous increase of aging populations across the world has
led to an increasing prevalence of cognitive impairment, which
has become a major problem both clinically and socially (Prince
et al., 2016; The Alzheimer’s Association, 2020). Specifically, AD
and MDD are both common diseases of the elderly and are
often comorbidity (Lee and Lyketsos, 2003). Thus, exploring
the association between AD and MDD will not only help us to
elucidate the neurobiological mechanisms underlying the two
diseases but also be useful for developing better therapeutic
approaches for them.

However, the relationship between AD and MDD is complex
and not well-understood. Depression and depressive symptoms
not only are common and highly persistent in patients with AD
but alsomay increase the risk of functional decline and behavioral
disturbance (Migliorelli et al., 1995; Ballard et al., 1996; Lyketsos
et al., 1997b; Olin et al., 2002). It is reported that depressed
patients may be more likely to develop AD than people without
the symptoms (Saczynski et al., 2010). In contrast, no connection
between the two conditions has been found in some studies.
For example, in a cohort including 4,615 elderly Canadians, the
history of depression is not significantly associated with the risk
of dementia (Lindsay et al., 2002); in another study based on
people aged 85 years or over, it is reported that depression is
associated with cognitive impairment, but depression alone may
not increase the risk of cognitive decline (Vinkers et al., 2004).

At the molecular level, both AD and MDD are diseases
influenced by multiple genetic factors. During the past years,
a number of genes, such as apolipoprotein E (APOE), ATP
binding cassette subfamily A member 7 (ABCA7), and others
(Steinberg et al., 2015; Serrano-Pozo et al., 2021), have been
found to be genetically associated with AD. Some studies
found the shared genetic risk factors could partially explain
the observed association between AD and MDD. A positive
association between ApoE4 allele and late-onset depression has
been reported in some studies (Krishnan et al., 1996; Kim et al.,
2002). However, in other studies, no association between ApoE4

allele and depression in patients with AD was detected (Lyketsos
et al., 1997a; Scarmeas et al., 2002). Since both AD and MDD
are cognitive disorders, hippocampus plays a principal role in
memory deficits in patients with AD and MDD. In patients
with AD, the decrease in hippocampal volume is related to
cognitive decline and other symptoms of AD neuropathology
(Jack et al., 1999; van der Flier and Scheltens, 2009). Furthermore,
a correlation between hippocampal volume loss in the presence
of ApoE allele epsilon4 and decreased cerebrospinal fluid beta-
amyloid, the biomarkers of AD, has been observed (Schuff
et al., 2009). Structural studies also have found that hippocampal
volume is smaller in patients with MDD compared with people
without depression, and hippocampal atrophy is suggested as a
biomarker for cognitive decline in patients with MDD (Taylor
et al., 2014; Schmaal et al., 2017). Amyloid-β (Aβ) deposition
is an important pathological change in the AD brain, and it
has been found that lifelong major depression is associated with
the deposition of Aβ in the brain (Wu et al., 2014). Abnormal
neuroinflammation is related to the pathological features of AD
and has a negative impact on cognitive function (Cai et al., 2019;
Passamonti et al., 2019). Studies have revealed an association
between neuroinflammation and the pathogenesis of MDD or
AD (Barber, 2011); however, the impact of neuroinflammation
is much larger and more complicated, and further exploration is
necessary. The study found that late-life major depression with
dementia was significantly associated with a neuropathologic
diagnosis of AD (Sweet et al., 2004). However, some studies
report no association between lower hippocampal volume and
AD pathology in late-life depression (De Winter et al., 2017).

Therefore, the correlation between AD and depression is still
not fully understood. Obviously, it is necessary to further explore
the biological mechanisms underlying the comorbidity of AD
andMDD, which may help us design better therapeutic approach
for the diseases.

In current study, we comprehensively collected genes related
to AD or MDD. We next employed the functional analysis to
detect the major biological processes and biochemical pathways
and further investigated the interactions among the significantly
enriched pathways. Of significance, we predicted some novel
candidate genes potentially related to AD andMDD by analyzing
human protein-protein interaction network (PPIN). This study
will provide valuable clues for understanding the molecular
mechanisms underlying the comorbidity of AD and MDD.

MATERIALS AND METHODS

Data Collection
The DisGeNET (https://www.disgenet.org/) is a database that
comprehensively integrates human disease-associated genes and
their variants (Piñero et al., 2020). It compiles data from expert
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curated repositories, text mining data extracted from scientific
literature, experimentally validated data, and referred data. A
gene with a gene-disease associations (GDA) score above 0.2
indicates a strong association with the disease. In the current
study, only genes with a GDA score >0.2 were included in the
analysis. A list of 146 AD-associated genes was retrieved from
DisGeNET. Furthermore, in an earlier study (Hu et al., 2017),
we collected 430 genes related to AD from reports deposited at
PubMed (https://pubmed.ncbi.nlm.nih.gov/). These genes were
identified from either candidate gene association studies (CGAS)
or GWAS on human samples. This gene set was updated to
include the genes reported in the recent publications, and a total
of 587 genes associated with AD were obtained. Then, this gene
list was merged with those retrieved from DisGeNET, a list of 650
unique AD-associated genes were left.

ForMDD, we retrieved 266 genes with a GDA score>0.2 from
the DisGeNET database. Additionally, Fan et al. (2020) compiled
a list of 255 MDD-associated genes. By integrating the two gene
sets, we obtained a total of 447 unique MDD-associated genes.

Functional Enrichment Analysis
The gene ontology (GO) and pathway enriched in the shared
genes were annotated using the WebGestalt (http://www.
webgestalt.org/option.php) (Zhang et al., 2005; Wang et al.,
2013). The Benjamini and Hochberg (B&H) method for false
discovery rate correction was applied to correct the original p-
value. WebGestalt is an online-based system to integrate and
visualize gene set in various biological contexts including GO.
Only the GO terms with FDR value smaller than 0.05 were chosen
as significantly enriched terms in our study. The biochemical
pathways enriched in the 650 AD-associated genes and the 447
MDD-associated genes were identified by ToppGene (https://
toppgene.cchmc.org/enrichment.jsp) (Chen et al., 2009), which
is an online tool that integrates different pathway databases such
as Kyoto Encyclopedia of Genes and Genomes (KEGG) (Aoki-
Kinoshita and Kanehisa, 2007), Pathway Interaction Database
(PID) (Schaefer et al., 2009), and Reactome (Croft et al.,
2011). For the pathway analysis, only KEGG was chosen as the
pathway database, and pathway with FDR < 0.05 was defined as
significant pathway.

Cross-Talk Analysis Among Pathways
Here, we first obtained pathways enriched in the AD-associated
genes or MDD-associated genes, respectively. We selected the
overlapping pathways of AD and MDD to construct the pathway
cross-talk network by integrating AD-associated genes and
MDD-associated genes. As described in our previous report (Guo
et al., 2021), we adopted two measurements (Jia et al., 2011; Liu

et al., 2015), i.e., the Jaccard Coefficient (JC) =
∣

∣

∣

A
⋂

B
A∪B

∣

∣

∣

and the

Overlap Coefficient (OC) =
|A

⋂

B|
min(|A|,|B|) , with A and B being the

lists of genes included in the two tested pathways, and |A| and |B|
representing the number of genes contained in the two pathways.
Finally, the cross talk between pathways was constructed and
visualized using the Cytoscape 3.7.1 software (Kohl et al., 2011).

Prediction of New Candidate Genes
Related to AD and MDD
In this study, the PPIN data were obtained from the
Protein Interaction Network Analysis (PINA) database (Cowley
et al., 2012) by pooling and curating the unique physical
interaction information from six main public protein interaction
databases, i.e., BioGRID, IntAct, DIP, MINT, MIPS/MPact, and
HPRD. In the meantime, Menche et al. (2015) reported an
interactome for human that contained 141,296 edges among
13,460 nodes. Later, we merged the two interactomes data by
excluding the self-interaction and redundant pairs. We excluded
ubiquitin-C, B, and D (i.e., UBC, UBB, and UBD) from this
network because of the non-specific binding of ubiquitin to
proteins for degradation (Ferrari et al., 2018). Finally, we
obtained a relatively complete human physical interactome,
which included 15,435 genes/protein and 218,161 interactions
(Supplementary Material 1).

We mapped the 650 AD-associated genes to the PPIN
and obtained an AD-specific network containing 9,089
genes/protein and 32,065 interactions. Similarly, by mapping
the 447 MDD-associated genes to the PPIN, we obtained
an MDD-specific network containing 6,541 genes/protein
and 18,221 interactions. Then, the irrelevant interactions
were excluded by merging the AD-specific network and
MDD-specific network into a single disease network, which
contained 10,203 genes/protein and 45,385 interactions.
Finally, the AD-specific network was compared against
the MDD-specific network, and the overlapping part
was extracted, and the node degree of each node in this
overlapping network was calculated with the disease network
as background via the “Network Analyzer” (Assenov et al.,
2008) plug-in in the Cytoscape software. After removing AD-
associated genes and MDD-associated genes, the remaining
genes could be expected to be novel candidate genes for
both diseases.

Analysis of Temporal and Cell
Type-Specific Expression
The brain is composed of different but interdependent regions,
with which being made up of many different types of cells
performing specific functions. The precise spatial and temporal
regulation of gene expression in these cells plays key roles in
the function of the brain. To explore the biological features of
new candidate genes in a specific brain cell type, brain region,
and developmental stages, the corresponding gene expression
pattern was analyzed. Cell-type specific expression analysis
(CSEA; http://genetics.wustl.edu/jdlab/csea-tool-2/) (Xu et al.,
2014) was used to compare the expression pattern of new
candidate genes in different brain cells or brain regions. The
Fisher’s exact test was performed across the cell types and
developmental stages at a specificity index threshold (pSI) of
0.05. This threshold measures the possibility of the expression
of a specific gene in the given cell type, brain region, and
developmental stage.
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RESULTS

Susceptibility Genes of AD and MDD
By searching the available genetic studies on AD and
collecting the genes curated in disease-related database
DisGeNET, we compiled a list of 650 AD-associated genes
(Supplementary Table S1; the gene list is referred to as ADgset,
hereafter). Among them were those encoding apolipoprotein,
ATP-binding cassette transporters, nicotinic acetylcholine
receptors, adrenoceptors, serotonin receptors, dopamine
degradation, dopamine receptors, complement receptors, etc.
Similarly, we also compiled a list of 447 MDD-associated
genes (Supplementary Table S2; the gene list is referred to as
MDDgset, hereafter). The MDDgset included genes related to
immune regulation, dopamine neurotransmission, serotonin
neurotransmission, embryonic development, cellular stress
response, etc.

There were 77 shared genes between the two diseases
(Table 1), among which included five oxidative stress-related
genes (i.e., HIF1A, HSPA4, MAOA, MAOB, SOD2), four
interleukin genes (i.e., IL10, IL1B, IL33, IL6), four neural factors
genes (i.e., BDNF, NGF, NPY, NTF3), two 5-hydroxytryptamine
receptor genes (i.e.,HTR2A,HTR6), two solute carrier genes (i.e.,
SLC6A3, SLC6A4), two estrogen receptor genes (i.e., ESR1, ESR2),
two cancer-related genes (i.e., TNF, TP53), two LDL receptor-
related protein coding genes (i.e., LRP1, LRP8), one transcription
factors gene (i.e., TFCP2), one apolipoprotein gene (i.e., APOE),
one dopamine receptor gene (i.e., DRD4), and others.

Biological Process Enrichment Analysis of
Shared Genes
For these 77 shared genes, 74 were significantly enriched
in the biological regulation, 47 in membrane, and 67 in
the protein binding (Figure 1). Totally, 311 BP GO terms
(Supplementary Table S3) were significantly enriched in the
shared genes. The most significantly term is cognition,
which is in line with the fact that patients with AD and
MDD have cognitive impairments (Sierksma et al., 2010).
Furthermore, biological processes related to neural development
and synaptic transmission were enriched, such as neuron death,
dopaminergic neuron differentiation, neuronmigration, synaptic
transmission, dopaminergic, chemical synaptic transmission,
postsynaptic and synaptic transmission, and glutamatergic.
Terms associated with drug reactions and metabolic processes
were overrepresented, such as response to toxic substance,
response to antibiotic, response to oxidative stress, reactive
oxygen species metabolic process, hormone metabolic process,
receptor metabolic process, steroid metabolic process, and
amine metabolic process. Of significance, immune-related
processes, such as neuroinflammatory response, inflammatory
cell apoptotic process, and acute inflammatory response were
significantly over-represented.

Pathway Enrichment Analysis of ADgset
and MDDgset
For the ADgset, 153 significantly enriched pathways were
identified (Supplementary Table S4), while for MDDgset,

146 significantly enriched pathways were identified
(Supplementary Table S5). We obtained 102 shared pathways
by integrating pathways enriched in ADgset and MDDgset
(Table 2). Beside the shared pathways, there were 95 disease-
specific pathways for the two disorders, which included 51
AD-specific pathways and 44 MDD-specific pathways. Among
the 102 shared pathways, several pathways were involved in the
neural function and neurotransmission, for example, cholinergic
synapse, dopaminergic synapse, serotonergic synapse,
neuroactive ligand-receptor interaction, and neurotrophin
signaling pathway. Some pathways were related to neurological
disorders, such as Huntington’s disease and AD. At the same
time, substance addiction-related pathways were identified, such
as amphetamine addiction and cocaine addiction. Metabolism-
related pathways such as drug metabolism (cytochrome P450)
and tyrosine metabolism were also included, indicating these or
related processes may play roles in the pathogenesis of AD and
MDD. In addition, about one-third of the shared pathways were
related to immune response, immune disease, and pathogens
infection, such as inflammatory bowel disease, inflammatory
mediator regulation of TRP channels, Th17 cell differentiation,
T-cell receptor signaling pathway, Epstein-Barr virus infection,
Herpes simplex infection, and HTLV-I infection, suggesting
the immune response was involved in the pathogenesis of
AD and MDD. Moreover, among the 102 shared pathways,
some pathways were related to cell growth and/or survival,
including PI3K-Akt signaling, Jak-STAT signaling pathway,
MAPK signaling pathway, and mTOR signaling. Among the list,
there were also pathways involved in cancer (e.g., bladder cancer,
breast cancer, colorectal cancer, endometrial cancer, pancreatic
cancer, prostate cancer, and small cell lung cancer), indicating
the complicated pathological mechanisms of AD and MDD.

Construction of the Interaction Network of
Pathway-Pathway-Genes
Among the 102 shared pathways, 101 pathways, except the
gamma-aminobutyric acid (GABA) biosynthesis, are included
in the cross-talk analysis. Furthermore, we added the shared
genes into the pathway-pathway interaction network to form the
interaction network of pathway-pathway-shared genes to explore
the biological function in which shared genes participated. Of the
77 shared genes, 56 were included in 99 shared pathways (except
aldosterone-regulated sodium reabsorption, GABA biosynthesis
and Th1 and Th2 cell differentiation). This network consisted
of 2,767 edges (connections) and 157 nodes (pathways and
shared genes) (Figure 2). Of the edges, 2,380 were connections
between pathways, and the other 387 were connections between
pathways and the shared genes. Among the 157 nodes, there were
101 pathways (Figure 2, triangular node) and 56 shared genes
(Figure 2, circular nodes).

Based on the biological function, this network could be
largely divided into four modules, i.e., immune, neural, cancer,
and endocrine (Figure 2). The first module was mainly related
to immunological regulation, immunological disorders, and
pathogens infection (e.g., antigen processing and presentation,
T-cell receptor signaling pathway and Th17 cell differentiation,
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TABLE 1 | Susceptibility gene shared by Alzheimer’s disease (AD) and major depressive disorder (MDD).

Gene ID Gene symbol Gene name Gene source

5243 ABCB1 ATP binding cassette subfamily B member 1 Literature/DisGeNet

1636 ACE Angiotensin I converting enzyme Literature/DisGeNet

155 ADRB3 Adrenoceptor beta 3 Literature/DisGeNet

348 APOE Apolipoprotein E Literature/DisGeNet

406 ARNTL Aryl hydrocarbon receptor nuclear translocator like Literature

540 ATP7B ATPase copper transporting beta Literature/DisGeNet

613 BCR BCR, RhoGEF and GTPase activating protein Literature/DisGeNet

627 BDNF Brain derived neurotrophic factor Literature/DisGeNet

6347 CCL2 C-C motif chemokine ligand 2 Literature/DisGeNet

1029 CDKN2A Cyclin dependent kinase inhibitor 2A Literature/DisGeNet

89832 CHRFAM7A CHRNA7 (exons 5–10) and FAM7A (exons A-E) fusion Literature

9575 CLOCK Clock circadian regulator Literature/DisGeNet

26047 CNTNAP2 Contactin associated protein 2 Literature/DisGeNet

1312 COMT catechol-O-methyltransferase Literature/DisGeNet

1392 CRH Corticotropin releasing hormone DisGeNet

1565 CYP2D6 Cytochrome P450 family 2 subfamily D member 6 Literature/DisGeNet

267012 DAOA D-amino acid oxidase activator Literature/DisGeNet

1621 DBH Dopamine beta-hydroxylase Literature/DisGeNet

27185 DISC1 Disrupted in schizophrenia 1 Literature/DisGeNet

1740 DLG2 Disks large MAGUK scaffold protein 2 Literature/DisGeNet

1742 DLG4 Disks large MAGUK scaffold protein 4 Literature/DisGeNet

1815 DRD4 Dopamine receptor D4 Literature/DisGeNet

5610 EIF2AK2 Eukaryotic translation initiation factor 2 alpha kinase 2 Literature

2099 ESR1 Estrogen receptor 1 Literature/DisGeNet

2100 ESR2 Estrogen receptor 2 Literature/DisGeNet

79068 FTO Alpha-ketoglutarate dependent dioxygenase Literature

2692 GHRHR Growth hormone releasing hormone receptor Literature

2784 GNB3 G protein subunit beta 3 Literature/DisGeNet

2904 GRIN2B Glutamate ionotropic receptor NMDA type subunit 2B Literature

2932 GSK3B Glycogen synthase kinase 3 beta Literature/DisGeNet

3091 HIF1A Hypoxia inducible factor 1 subunit alpha Literature/DisGeNet

3240 HP Haptoglobin Literature/DisGeNet

3308 HSPA4 Heat shock protein family A (Hsp70) member 4 Literature/DisGeNet

3356 HTR2A 5-hydroxytryptamine receptor 2A Literature/DisGeNet

3362 HTR6 5-hydroxytryptamine receptor 6 Literature

3586 IL10 Interleukin 10 Literature/DisGeNet

3553 IL1B Interleukin 1 beta Literature/DisGeNet

90865 IL33 Interleukin 33 Literature/DisGeNet

3569 IL6 Interleukin 6 Literature/DisGeNet

3952 LEP Leptin DisGeNet

4035 LRP1 LDL receptor related protein 1 Literature/DisGeNet

7804 LRP8 LDL receptor related protein 8 Literature/DisGeNet

4128 MAOA Monoamine oxidase A Literature/DisGeNet

4129 MAOB Monoamine oxidase B DisGeNet

4133 MAP2 Microtubule associated protein 2 DisGeNet

9175 MAP3K13 Mitogen-activated protein kinase 13 Literature

4353 MPO Myeloperoxidase Literature/DisGeNet

4524 MTHFR Methylenetetrahydrofolate reductase Literature/DisGeNet

4599 MX1 MX dynamin like GTPase 1 Literature

4803 NGF Nerve growth factor Literature/DisGeNet

(Continued)
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TABLE 1 | Continued

Gene ID Gene symbol Gene name Gene source

4852 NPY Neuropeptide Y Literature/DisGeNet

4908 NTF3 Neurotrophin 3 Literature/DisGeNet

4915 NTRK2 Neurotrophic receptor tyrosine kinase 2 Literature/DisGeNet

84547 PGBD1 piggyBac transposable element derived 1 Literature

65018 PINK1 PTEN induced kinase 1 Literature/DisGeNet

5337 PLD1 Phospholipase D1 Literature

5444 PON1 Paraoxonase 1 Literature

5743 PTGS2 Prostaglandin-endoperoxide synthase 2 Literature/DisGeNet

5649 RELN Reelin Literature/DisGeNet

6285 S100B S100 calcium binding protein B Literature/DisGeNet

9037 SEMA5A Semaphorin 5A Literature

10280 SIGMAR1 Sigma non-opioid intracellular receptor 1 Literature

23411 SIRT1 Sirtuin 1 Literature

6531 SLC6A3 Solute carrier family 6 member 3 Literature

6532 SLC6A4 solute carrier family 6 member 4 Literature/DisGeNet

6648 SOD2 Superoxide dismutase 2 Literature/DisGeNet

6671 SP4 Sp4 transcription factor Literature

6688 SPI1 Spi-1 proto-oncogene Literature

6750 SST Somatostatin Literature/DisGeNet

7024 TFCP2 Transcription factor CP2 Literature/DisGeNet

7040 TGFB1 Transforming growth factor beta 1 Literature

7124 TNF Tumor necrosis factor Literature/DisGeNet

10452 TOMM40 Translocase of outer mitochondrial membrane 40 Literature/DisGeNet

7157 TP53 Tumor protein p53 Literature

7422 VEGFA Vascular endothelial growth factor A Literature/DisGeNet

7434 VIPR2 Vasoactive intestinal peptide receptor 2 Literature

91752 ZNF804A Zinc finger protein 804A Literature

tumor necrotic factor (TNF) signaling pathway, inflammatory
bowel disease, influenza A, rheumatoid arthritis, Epstein-Barr
virus infection, and herpes simplex infection). The second
module primarily included pathways related to neuronal
function, substance addiction, and neurological disorders
(e.g., cholinergic synapse, dopaminergic synapse, serotonergic
synapse, amphetamine addiction, cocaine addiction, Alzheimer’s
disease, and Huntington’s disease). The major theme of the
third module was cell growth and tumorigenesis (e.g., MAPK
signaling pathway, PI3K-Akt signaling pathway, bladder cancer,
breast cancer, pancreatic cancer, and prostate cancer). The
last module was largely concentrated in the regulation of the
endocrine system, like endocrine resistance and renin secretion.
Obviously, these four modules were not independent of each
other; instead, they were connected through one or more
pathways, indicating the existence of an immune-neuronal-
cell development-endocrine regulatory network underlying the
mechanisms of AD and MDD. Meanwhile, some of the 56
shared genes mainly participated in the regulation within
one module (Figure 2, orange circular nodes), but others
participated in the regulation of two or more modules (Figure 2,
red circular nodes). The shared genes between two or more

modules may play essential roles in maintaining the balance of
different systems.

To further explore the connections between disease-specific
pathways and their linked genes, we constructed a network
for AD-specific pathways, MDD-specific pathways, and their
linked genes. Among the 95 disease-specific pathways (51 AD-
specific and 44 MDD-specific pathways), 68 (32 AD-specific
and 36 MDD-specific pathways) met the criterion of pathway
cross talk. The constructed network contained 1,371 edges and
410 nodes (pathways and genes) (Figure 3). Of the edges, 386
were connections between pathways and 985 were connections
between pathways and genes. The 410 nodes included 32 AD-
specific pathways (Figure 3, blue triangular node), 36 MDD-
specific pathways (Figure 3, gray triangular node), 186 AD-
associated genes (Figure 3, red circular nodes), 117 MDD-
associated genes (Figure 3, green circular nodes), and 39 shared
genes (Figure 3, orange circular nodes). This network could be
divided into two modules, namely, the upper left module that
included the MDD pathways and their connected genes, and
the lower right module that included the AD pathways and
their connected genes. The two modules were linked by several
shared genes.
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FIGURE 1 | Functional enrichment analysis of the 77 shared genes. Gene ontology (GO) items belonging to biological process (BP), cellular component (CC), and

molecular function (MF) are shown in gray, white, and black columns, respectively.

Analysis of New Candidate Genes Related
to AD and MDD
We extracted the overlapping part of the AD-specific network
and the MDD-specific network, which contained 3,001 nodes
and 4,900 interactions. Among the nodes, 192 were genes from
ADgset, 106 were genes from MDDgset, and 74 were shared
genes. There were 2,629 first neighbor nodes of the 77 shared
genes, from which we identified the novel candidate genes
via the “guilt-by-association” principle (Oliver, 2000). That is,
a node tends to participate in the same or similar cellular
functions if the majority of its neighbors in the interactome
network associated with specific cellular functions (e.g., a certain
disease or phenotype). Ranking in descending order of node
degree, we found 37 novel candidate genes (Table 3) directly
interacted with 6 or more of the 77 shared genes. Furthermore,
we selected 7 novel candidate genes directly interacted with 9 or
more of the 77 shared genes, including ELAV like RNA-binding
protein 1 (ELAVL1), heat shock protein 90 alpha family class B
member 1 (HSP90AB1), heat shock protein family A (HSPA8),
MDM2 proto-oncogene (MDM2), SRC proto-oncogene, non-
receptor tyrosine kinase (SRC), COP9 signalosome subunit
5 (COPS5), and HDAC1 histone deacetylase 1 (HDAC1). By
mapping these seven genes with the most neighbors to the
disease network, we could retrieve their specific interaction
network (Figure 4), which consisted of 306 nodes (genes) and
522 edges (connections). Besides the seven novel candidate
genes (Figure 4, triangular nodes), this network also included
168 AD-associated genes (Figure 4, red circular nodes) and 98

MDD-associated genes (Figure 4, green circular nodes) and 33
shared genes (Figure 4, orange circular nodes). These seven
novel candidate genes were closely related to AD-associated
genes, MDD-associated genes, and shared genes, indicating the
credibility of our results. Above all, they were expected to provide
guidance for clinical and basic medical researches.

We further performed a spatio-temporal and cell type-
specific expression analysis on the 37 new candidate genes.
Of which, 28 genes could be detected in public available brain

cell type expression dataset CSEA, and 6 of them (i.e., E2F1,
RELA, MAPK1, FYN, CEBPB, STAT3) showed substantial

overrepresentation (pSI = 0.05, Supplementary Table S6)
in cone cells, oligodendrocytes, interneurons, and others
(Figure 5A). In addition, all the 37 genes expressed in the brain
regions of different development stages, and 20 genes (i.e.,ACTB,
CEBPB, COPS5, E2F1, ELAVL1, HDAC2, JUN, LYN, MAP1A,
MAPK1, MYC, NPM1, PPP1CC, PRKCA, RB1, SMAD3, SRC,
SUMO2, TUBB, YBX1) showed substantial overrepresentation
under the threshold pSI = 0.05 (Supplementary Table S7).
Striatum, hippocampus, cortex, and thalamus contained
10, 8, 8, and 8 novel candidate genes under pSI = 0.05,
respectively (Figure 5B). Further, the number of genes
was generally fewer after birth (Figure 5C). In addition,
we searched the expression patterns of 37 novel candidate
genes in Human Brain Transcriptome (HBT) database
(www.humanbraintranscriptome.org). We found that the
expression of most genes changed with different developmental
stages, which are specifically manifested in a downward trend
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TABLE 2 | Pathways commonly enriched in ADgset and MDDgset.

Module Pathway Degree FDR in ADgset FDR in

MDDgset

Number of genes

AD MDD Shared

Immune response Hepatitis B 79 8.37 × 10−05 1.08 × 10−05 19 17 4

HTLV-I infection 77 2.43 × 10−03 7.03 × 10−06 23 24 7

Fluid shear stress and atherosclerosis 76 1.74 × 10−11 1.19 × 10−03 30 13 5

Influenza A 76 1.59 × 10−09 1.41 × 10−09 30 25 8

Tuberculosis 72 1.43 × 10−13 8.03 × 10−03 37 13 5

TNF signaling pathway 69 1.48 × 10−06 1.01 × 10−04 19 13 5

Chagas disease (American trypanosomiasis) 68 4.21 × 10−11 3.32 × 10−06 25 15 7

Epstein-Barr virus infection 66 4.77 × 10−05 3.79 × 10−03 24 15 5

Toll-like receptor signaling pathway 66 5.89 × 10−05 6.90 × 10−05 16 13 3

T cell receptor signaling pathway 63 1.20 × 10−02 3.10 × 10−03 11 10 3

Hepatitis C 63 6.48 × 10−04 1.77 × 10−04 16 14 4

Measles 62 9.96 × 10−05 1.46 × 10−09 18 22 6

Toxoplasmosis 60 3.27 × 10−10 5.67 × 10−04 25 12 3

Amoebiasis 56 5.45 × 10−08 5.39 × 10−04 20 11 5

NOD-like receptor signaling pathway 55 8.97 × 10−06 2.40 × 10−04 23 16 4

Inflammatory mediator regulation of TRP channels 52 2.88 × 10−03 2.06 × 10−06 12 15 3

Herpes simplex infection 51 2.55 × 10−08 6.44 × 10−05 29 18 8

Autophagy - animal 50 5.13 × 10−04 3.25 × 10−02 16 9 1

IL-17 signaling pathway 49 7.90 × 10−07 1.01 × 10−04 18 12 6

Th17 cell differentiation 49 5.74 × 10−06 2.21 × 10−05 18 14 4

Cytokine-cytokine receptor interaction 44 1.04 × 10−03 5.53 × 10−06 25 25 8

Leishmaniasis 40 5.49 × 10−10 2.49 × 10−04 20 10 5

Inflammatory bowel disease (IBD) 38 3.38 × 10−09 1.01 × 10−04 18 10 5

Th1 and Th2 cell differentiation 36 2.03 × 10−03 1.48 × 10−02 12 8 0

Rheumatoid arthritis 36 3.38 × 10−09 3.14 × 10−04 21 11 6

RIG-I-like receptor signaling pathway 35 2.54 × 10−03 1.18 × 10−02 10 7 1

Legionellosis 34 3.34 × 10−12 7.58 × 10−04 20 8 3

African trypanosomiasis 32 1.39 × 10−06 5.84 × 10−07 11 10 4

Malaria 29 3.27 × 10−10 3.62 × 10−04 17 8 7

Graft-versus-host disease 26 7.18 × 10−06 1.61 × 10−02 11 5 3

Endocytosis 21 1.11 × 10−02 1.38 × 10−02 21 16 3

Antigen processing and presentation 17 4.61 × 10−04 5.66 × 10−03 12 8 2

Prion diseases 6 4.35 × 10−04 8.85 × 10−03 8 5 2

Neurodevelopment Neurotrophin signaling pathway 67 2.33 × 10−08 8.36 × 10−04 23 12 6

Focal adhesion 64 1.36 × 10−02 7.74 × 10−03 17 14 3

Glioma 58 4.66 × 10−03 3.27 × 10−06 9 12 2

Cholinergic synapse 58 1.18 × 10−03 5.62 × 10−11 14 22 1

Dopaminergic synapse 55 2.20 × 10−04 1.87 × 10−18 17 32 10

Longevity regulating pathway 53 3.82 × 10−05 6.98 × 10−07 15 15 3

Longevity regulating pathway—multiple species 40 1.10 × 10−03 4.75 × 10−09 10 15 2

Calcium signaling pathway 37 2.80 × 10−03 1.76 × 10−13 18 31 3

Alzheimer’s disease 35 2.37 × 10−17 7.61 × 10−04 41 15 6

Serotonergic synapse 29 4.49 × 10−04 3.36 × 10−19 15 31 8

Amphetamine addiction 24 6.77 × 10−03 2.06 × 10−14 9 21 5

Long-term depression 23 3.02 × 10−02 5.37 × 10−05 7 10 1

Amyotrophic lateral sclerosis (ALS) 23 9.80 × 10−06 2.41 × 10−06 12 11 4

Huntington’s disease 14 6.14 × 10−05 1.38 × 10−02 23 13 5

Neuroactive ligand-receptor interaction 12 3.00 × 10−03 1.33 × 10−19 24 47 8

Cocaine addiction 10 8.31 × 10−04 1.44 × 10−11 9 16 6

(Continued)
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TABLE 2 | Continued

Module Pathway Degree FDR in ADgset FDR in

MDDgset

Number of genes

AD MDD Shared

Drug metabolism—cytochrome P450 4 2.54 × 10−03 7.90 × 10−04 10 9 3

Metabolism of xenobiotics by cytochrome P450 3 1.11 × 10−02 4.78 × 10−02 9 6 1

Catecholamine biosynthesis, tyrosine => dopamine =>

noradrenaline => adrenaline

1 3.55 × 10−02 7.82 × 10−04 2 3 1

Cancer/cell growth Pathways in cancer 87 1.73 × 10−09 1.83 × 10−07 48 35 12

MAPK signaling pathway 81 4.77 × 10−04 2.04 × 10−10 25 32 9

Proteoglycans in cancer 79 1.74 × 10−07 2.37 × 10−06 29 22 6

PI3K-Akt signaling pathway 75 8.50 × 10−07 1.24 × 10−05 38 28 7

HIF-1 signaling pathway 74 2.55 × 10−08 1.64 × 10−08 21 18 3

Osteoclast differentiation 70 6.00 × 10−04 1.77 × 10−03 16 12 4

Ras signaling pathway 70 5.22 × 10−04 7.06 × 10−04 23 18 5

FoxO signaling pathway 68 8.55 × 10−05 1.90 × 10−04 18 14 5

Apoptosis 67 1.04 × 10−06 2.01 × 10−02 22 10 3

Rap1 signaling pathway 66 2.53 × 10−03 3.48 × 10−06 20 22 3

Prostate cancer 63 3.98 × 10−04 5.51 × 10−05 13 12 2

cAMP signaling pathway 61 2.58 × 10−02 9.35 × 10−15 16 34 6

Pancreatic cancer 61 4.66 × 10−03 3.27 × 10−06 9 12 5

EGFR tyrosine kinase inhibitor resistance 60 1.63 × 10−04 1.51 × 10−07 13 15 3

mTOR signaling pathway 60 6.16 × 10−03 2.00 × 10−03 15 13 2

Jak-STAT signaling pathway 59 1.75 × 10−02 2.41 × 10−06 14 19 3

MicroRNAs in cancer 59 1.96 × 10−03 2.20 × 10−02 26 17 6

Colorectal cancer 57 2.22 × 10−04 5.43 × 10−03 11 7 3

Choline metabolism in cancer 54 9.21 × 10−03 1.77 × 10−04 11 12 2

Small cell lung cancer 50 8.61 × 10−03 2.77 × 10−02 10 7 2

Breast cancer 49 2.11 × 10−02 1.35 × 10−04 13 15 4

Non-small cell lung cancer 45 2.59 × 10−02 2.15 × 10−04 7 9 2

cGMP-PKG signaling pathway 43 5.19 × 10−03 1.35 × 10−05 16 18 1

Endometrial cancer 40 3.76 × 10−03 2.00 × 10−03 8 7 2

AMPK signaling pathway 36 5.00 × 10−07 8.96 × 10−03 21 10 2

p53 signaling pathway 23 2.42 × 10−03 1.11 × 10−02 10 7 2

Bladder cancer 23 1.15 × 10−03 6.87 × 10−04 8 7 3

Chemical carcinogenesis 3 2.53 × 10−03 8.05 × 10−03 11 8 1

Endocrine AGE-RAGE signaling pathway in diabetic complications 76 4.26 × 10−07 1.06 × 10−05 19 14 6

Non-alcoholic fatty liver disease (NAFLD) 71 2.82 × 10−12 1.32 × 10−02 32 11 6

Sphingolipid signaling pathway 67 2.28 × 10−04 7.74 × 10−03 16 10 3

Endocrine resistance 65 8.55 × 10−05 7.19 × 10−09 15 18 5

Insulin resistance 65 3.23 × 10−07 4.06 × 10−03 20 10 3

Prolactin signaling pathway 61 2.54 × 10−03 3.70 × 10−05 10 11 3

Phospholipase D signaling pathway 59 2.78 × 10−04 3.48 × 10−06 18 18 1

Acute myeloid leukemia 52 2.04 × 10−02 7.58 × 10−04 7 8 1

Chronic myeloid leukemia 49 8.82 × 10−03 8.62 × 10−04 9 9 4

VEGF signaling pathway 46 2.80 × 10−03 5.03 × 10−03 9 7 2

GnRH signaling pathway 45 3.64 × 10−02 1.07 × 10−06 9 15 1

Apelin signaling pathway 45 6.89 × 10−03 6.51 × 10−06 14 17 1

Adipocytokine signaling pathway 43 9.10 × 10−06 3.01 × 10−03 14 8 3

Type II diabetes mellitus 34 2.42 × 10−03 6.12 × 10−03 8 6 1

Type I diabetes mellitus 27 2.60 × 10−08 1.51 × 10−04 14 8 2

Regulation of lipolysis in adipocytes 27 4.09 × 10−04 1.30 × 10−04 10 9 3

Ovarian steroidogenesis 22 1.94 × 10−07 2.00 × 10−03 14 7 1

(Continued)
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TABLE 2 | Continued

Module Pathway Degree FDR in ADgset FDR in

MDDgset

Number of genes

AD MDD Shared

Aldosterone-regulated sodium reabsorption 20 4.12 × 10−02 4.78 × 10−02 5 4 0

Antifolate resistance 20 1.96 × 10−04 5.43 × 10−03 8 5 4

Renin secretion 16 1.56 × 10−02 1.91 × 10−05 8 11 2

Tyrosine metabolism 4 9.19 × 10−03 1.65 × 10−03 6 6 4

Not included GABA biosynthesis, eukaryotes, putrescine => GABA NA 1.33 × 10−02 5.02 × 10−03 3 3 2

FIGURE 2 | Pathway-pathway-shared genes network of 101 shared pathways and 56 shared genes of Alzheimer’s disease (AD) and major depressive disorder

(MDD). Gray triangular nodes represent pathways, red circular nodes represent genes located within two or more modules, and orange circular nodes represent genes

located within one module. Edges represent connections between pathway-pathway and pathway-shared genes.

after birth (Supplementary Figures 1A–D) and an upward trend
after birth (Supplementary Figures 1E–H). Thus, most of these
novel candidate genes were significantly expressed in the brain
or brain cell lines and changed with different ages, indicating
they could play important roles in the normal function of
the brain.

DISCUSSION

In the past decades, our capability in identifying genes
related to complex disease like AD and MDD has been
greatly improved. However, complex diseases are rarely a
straight-forward dysfunction in a specific gene, but rather
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FIGURE 3 | Pathway-pathway-genes network of disease-specific pathways and their linked genes. Blue triangular nodes represent AD-specific pathways, gray

triangular nodes represent MDD-specific pathways, red circular nodes represent AD-specific genes, green circular nodes represent MDD-specific genes, and orange

circular node represents shared genes. Edges represent connections between pathway-pathway and pathway-genes.

a consequence of the collective interplay of multiple genes
(Menche et al., 2015). While previous studies have reported
the neurobiology and susceptibility gene correlations between
MDD and neurodegenerative diseases like AD, the underlying
mechanisms still need to be explored. The analysis on the

susceptibility gene of AD and MDD from the aspect of systems
biology could provide insight into the comorbidity of these two
diseases beyond studies based on single risk gene. In current
research, we analyzed the functions of genes associated with
AD and MDD and deciphered the interrelationship between
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TABLE 3 | Novel candidate genes potentially related to AD and MDD.

Gene ID Gene

symbol

Node

degree

Gene name

1994 ELAVL1 12 ELAV like RNA binding protein 1

3326 HSP90AB1 10 Heat shock protein 90 alpha family class B member

1

3312 HSPA8 10 Heat shock protein family A

4193 MDM2 10 MDM2 proto-oncogene

6714 SRC 10 SRC proto-oncogene, non-receptor tyrosine kinase

10987 COPS5 9 COP9 signalosome subunit 5

3065 HDAC1 9 Histone deacetylase 1

3725 JUN 8 Jun proto-oncogene, AP-1 transcription factor

subunit

60 ACTB 8 Actin beta

2033 EP300 8 E1A binding protein p300

2534 FYN 8 FYN proto-oncogene, Src family tyrosine kinase

3066 HDAC2 8 Histone deacetylase 2

5578 PRKCA 8 Protein kinase C alpha

5970 RELA 8 RELA proto-oncogene, NF-kB subunit

4088 SMAD3 8 SMAD family member 3

4904 YBX1 8 Y-box binding protein 1

1051 CEBPB 7 CCAAT enhancer binding protein beta

8841 HDAC3 7 Histone deacetylase 3

4609 MYC 7 MYC proto-oncogene, bHLH transcription factor

6774 STAT3 7 Signal transducer and activator of transcription 3

203068 TUBB 7 Tubulin beta class I

1869 E2F1 6 E2F transcription factor 1

2885 GRB2 6 Growth factor receptor bound protein 2

10524 KAT5 6 Lysine acetyltransferase 5

4067 LYN 6 LYN proto-oncogene, Src family tyrosine kinase

4130 MAP1A 6 Microtubule associated protein 1A

5594 MAPK1 6 Mitogen-activated protein kinase 1

4869 NPM1 6 Nucleophosmin 1

5499 PPP1CA 6 Protein phosphatase 1 catalytic subunit alpha

5501 PPP1CC 6 Protein phosphatase 1 catalytic subunit gamma

5566 PRKACA 6 Protein kinase cAMP-activated catalytic subunit

alpha

5925 RB1 6 RB transcriptional corepressor 1

6464 SHC1 6 SHC adaptor protein 1

4087 SMAD2 6 SMAD family member 2

10273 STUB1 6 STIP1 homology and U-box containing protein 1

6613 SUMO2 6 Small ubiquitin like modifier 2

7534 YWHAZ 6 Tyrosine 3-monooxygenase/tryptophan

5-monooxygenase activation protein zeta

these genes. In addition, we predicted the novel candidate genes
potentially related to AD and MDD.

Based on 650 AD-associated genes and 447 MDD-
associated genes, we retrieved 77 shared genes between AD
and MDD. Then, GO biological processes enriched in the
77 shared genes and pathways enriched in AD-associated
genes or MDD-associated genes were detected. Biological
processes such as response to substances (e.g., toxic substances,
hormones, oxidative stress, and alcohol), cognition, regulation

of neurogenesis, aging, and regulation of developmental growth
were enriched in the shared genes, indicating the significance
of these processes in AD and MDD pathology. Among the
102 overlapping pathways, AD was the most significant one,
indicating some AD susceptibility genes are MDD genes.
Other pathways were related to neuroactive ligand-receptor
interaction, synapse (e.g., serotonergic, dopaminergic, and
cholinergic), and substance addictions (e.g., amphetamine
and cocaine). Neuroactive ligand-receptor interaction, as a
neurodevelopment-related pathway, has been implicated in AD
and MDD. Synaptic dysfunction can lead to two important
symptoms of AD and MDD, i.e., cognitive impairment and
memory loss, indicating the importance of synapse-related
pathways in pathophysiology of these two disorders (Boyle
et al., 2010; Sierksma et al., 2010). Consistently, several shared
pathways were related to immune responses (e.g., Th1 and Th2
cell differentiation and Th17 cell differentiation) and immune
diseases (e.g., inflammatory bowel disease and type I diabetes).
For example, Th17 participated in neuroinflammation and
neurodegeneration of AD by regulating inflammatory cytokines
and signaling (Zhang et al., 2013). In addition, a predominant
Th1/Th17 inflammatory response in placental immune cells
plays a crucial role in regulating depressive symptoms during
pregnancy (Leff-Gelman et al., 2016). It has been showed
the involvement of neuroinflammation in AD and MDD
pathological mechanisms, in which the complement molecules
exert indispensable efforts (Lian et al., 2016; Yao and Li, 2020).
Studies have shown that the microbial imbalance of the intestinal
flora may explain the association between inflammatory bowel
disease and cognitive function of AD or MDD (Bonaz and
Bernstein, 2013; Chen et al., 2016; Gareau, 2016; Spielman
et al., 2018). Furthermore, it has been indicated that diabetes
can cause deterioration of cognitive function and increase
the risk of dementia and depression (Szatmári et al., 2017).
Moreover, infection-related pathways were also enriched in our
disease-related genes, such as Epstein-Barr virus (EBV) infection
and herpes simplex virus (HSV) infection. Previous studies
have reported HSV-1 infection may impair the hippocampal
function and is a negative factor of AD (Li Puma et al., 2019).
EBV has also been reported to be related to the cognitive decline
in patients with AD (Shim et al., 2017). In addition, patients
with MDD have altered levels and patterns of EBV antibodies
indicating a therapeutic intervention targeting EBV available for
MDD individuals (Jones-Brando et al., 2020). In our study, virus
infection like HSV and EBV infection included in the shared
pathway list, indicating that virus infection may increase the risk
of AD and MDD. In the future, we should explore the impact
of viral infections on the clinical treatment of AD and MDD.
Moreover, some pathways involved in cancers (e.g., prostate
cancer, glioma, and pancreatic cancer) and their developmental
processes (e.g., apoptosis) were also existed in 102 shared
pathways. Researchers have revealed that multitudinous cancer
survivors had lower AD and MDD risk (Caruso et al., 2017;
Frain et al., 2017). Our shared pathways include some cancer and
related pathways, suggesting that cancer and/or cancer treatment
may affect AD and MDD progression. In the pathway cross-
talk analysis, the pathway-pathway-shared genes interaction
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FIGURE 4 | Seven predicted novel candidate genes and known genes connected with them. Triangular nodes are predicted novel candidate genes, red nodes are

AD-associated genes, green nodes are MDD-associated genes, and orange nodes are shared genes.

network containing 2,767 edges (connections) and 157 nodes
(pathways and shared genes). Pathways are tightly connected
in this network and may collectively influence the occurrence
of AD and MDD. In sharp contrast with the network between
shared pathways, in the network of disease-specific pathways, the
pathways between AD and MDD were only sparsely connected
through a few shared genes.

We further identified 37 new genes highly interconnected
with the 77 shared genes, which were also potentially related
to AD and MDD. Of which, the node degrees of ELAVL1,
HSP90AB1, HSPA8, MDM2, SRC, COPS5, and HDAC1 were the
highest with degrees >8.0. ELAVL1 (also known as HuR/HuA),

an RNA-binding protein, belongs to the ELAV/Hu family
and is ubiquitously expressed in all human tissues (Fan and
Steitz, 1998). ELAVL1 plays a critical role in stress-induced
synaptic dysfunction (He et al., 2019) and contributes to
neuroinflammation in ELAVL1-knockout mouse model (Chen
et al., 2017). It has been showed that neuroinflammation and
stress are involved in AD and MDD pathological mechanisms
(Bolos et al., 2017; Ignácio et al., 2019; Sotiropoulos et al., 2019).
ELAVL1 may promote the progress of AD and MDD through
regulating neuroinflammatory and stress-mediated synaptic
function. Whether it can be used as a potential therapeutic
target for AD, MDD, and their comorbidity in the future
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FIGURE 5 | Spatio-temporal expression of the 37 novel candidate genes. (A) Number of the novel candidate genes with substantial overrepresentation in brain cell

types. (B) Number of the novel candidate genes with substantial overrepresentation in brain regions. (C) Number of the novel candidate genes expressed in specific

developmental period.

remains to be further explored. HSP90AB1 and HSPA8 are heat
shock proteins (HSPs), and disruption of HSPs expression has
been described as a possible mechanism in the etiology and
progression of AD (Gorenberg and Chandra, 2017). HSPA8 is a
member of HSP70 family proteins that may affect the action of
antidepressants and thus their therapeutic efficacy in treatment
of MDD (Pae et al., 2007). Our results suggest that HSPs are
expected to be potential intervention targets for the treatment
of the comorbidity underlying AD and MDD. MDM2 gene is a
proto-oncogene, and its expression mediates important cancer
pathology (Oliner et al., 2016). Our pathway cross-talk analysis
showed the close interlink between the neural and cancer models.
The involvement of MDM2 in comorbidity of AD and MDD
may be related to tumorigenesis. COPS5 is an evolutionarily
conserved and multifunctional protein and its overexpression in
mice brain significantly increased amyloid-β protein levels in the
cortex and hippocampus (Wang et al., 2015). As we all know,
amyloid-β takes part in the pathogenesis of both AD and MDD
(Blennow et al., 2006; Pomara et al., 2012). The activation of
HDAC1, a histone deacetylase 1, has shown therapeutic potential
against functional decline in brain aging and neurodegeneration
(Pao et al., 2020). It has been reported that HDAC1 is involved
in fluoxetine-mediated antidepressant mechanism in the LPS-
induced depression mouse model (Li et al., 2021). Although
there are few reports that indicate its role of HDAC1 in the
comorbidity processes of AD and MDD, histone modifications
are widely involved in the gene expression regulation. Our PPI
results show that HDAC1 is closely interlinked with shared
genes of AD and MDD, implying that HDAC1 has potential
regulatory functions on the shared genes. To verify the results,
we further checked the expression pattern of these 37 novel
candidate genes in brain tissues and cell lines. As expected,
most of the novel candidate genes were significantly expressed
in the brain.

There were several limitations in this study. For instance, our
disease susceptibility genes were mainly collected from currently
available studies and public databases, which should be deemed

as incomplete as our exploration on the molecular features of AD
andMDD is still ongoing. In future, more genes involved in these
disorders may be identified, and some false-positive genes may
be excluded. Similarly, the protein-protein interaction databases
and the human interactome constructed in this work should be
treated in the same way.

CONCLUSION

Based on the available susceptibility genes related to AD
or MDD, we analyzed the biochemical pathways and the
interactions between genes and pathways potentially involved in
the comorbidity of the two disorders. We found that biological
processes related to metabolism, immune response, cancer,
and neural disease were enriched in 77 shared genes. And
there existed four interconnected modules between 102 shared
pathways, namely, immune, neuro, cancer, and endocrine. Of
significance, we identified 37 interesting novel candidate genes
related to AD and MDD based on the PPI analysis. Such
analysis of AD- and MDD-related genes will not only improve
our understanding of the mechanisms or their comorbidity but
also help us to explore new biomarkers for the comorbidity of
these diseases.
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Supplementary Figure 1 | The expression pattern of some novel candidate

genes in specific developmental period. Some genes are specifically manifested in

a downward trend after birth (A–D) and an upward trend after birth (E–H). The

y-axis represents the intensity of gene expression, and x-axis represents age.
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