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Abstract: Zinc oxide (ZnO) nanoparticles are widely used in various products, and the safety 

evaluation of this manufactured material is important. The present study investigated the 

inflammatory and fibrotic effects of pulmonary exposure to ZnO nanoparticles in a mouse 

model of pulmonary fibrosis. Pulmonary fibrosis was induced by constant subcutaneous 

infusion of bleomycin (BLM). Female C57BL/6Jcl mice were divided into BLM-treated and 
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non-treated groups. In each treatment group, 0, 10, 20 or 30 µg of ZnO nanoparticles were 

delivered into the lungs through pharyngeal aspiration. Bronchoalveolar lavage fluid 

(BALF) and the lungs were sampled at Day 10 or 14 after administration. Pulmonary 

exposure by a single bolus of ZnO nanoparticles resulted in severe, but transient 

inflammatory infiltration and thickening of the alveolar septa in the lungs, along with the 

increase of total and differential cell counts in BLAF. The BALF level of interleukin (IL)-1β 

and transforming growth factor (TGF)-β was increased at Day 10 and 14, respectively.  

At Day 10, the synergistic effect of BLM and ZnO exposure was detected on IL-1β and 

monocyte chemotactic protein (MCP)-1 in BALF. The present study demonstrated the 

synergistic effect of pulmonary exposure to ZnO nanoparticles and subcutaneous infusion of 

BLM on the secretion of pro-fibrotic cytokines in the lungs. 

Keywords: zinc oxide nanoparticles; metal fume fever; pulmonary fibrosis; bleomycin; 

animal model 

 

1. Introduction 

Concern about the safety of manufactured nanomaterials is increasing with the remarkable 

development in nanotechnology. This concern is based on the novel physicochemical properties and 

unpredictable health effects of nanoparticles, in association with the probability of occupational and 

environmental exposure throughout the product chain during manufacture, application and waste 

management [1,2]. Zinc oxide (ZnO) nanoparticles are one of the most widely-used manufactured 

nanomaterials in a variety of products, including cosmetics, pigments, food additives, rubber 

manufacturing and electronic materials, based on their UV light absorption property, photocatalysis,  

semi-conduction and antibacterial action [3–5]. 

The respiratory system is considered as one of the main portals of entry for nanomaterials [6,7]. 

Although several in vitro studies showed the high toxicity of ZnO nanoparticles in alveolar macrophages 

and lung epithelial cells [8–12], only a few animal studies reported the toxicity of pulmonary exposure 

to ZnO nanoparticles. In rats, a large number of neutrophils and high levels of lactate dehydrogenase 

and microprotein were found in bronchoalveolar lavage fluid (BALF) after inhalation or intratracheal 

instillation of ZnO nanoparticles [13]. Oxidative stress was identified based on the high levels of  

lipid peroxide, heme oxygenase-1 and α-tocopherol in BALF of rats exposed to ZnO nanoparticles  

by intratracheal instillation [14]. In addition to the above proinflammatory effects, bronchocentric 

interstitial fibrosis was observed at four weeks after a single instillation of ZnO nanoparticles [15,16]. 

Animal models are often used to investigate pulmonary fibrosis, and they play an important role in 

understanding the pathogenesis of this disease. Bleomycin (BLM) is an anticancer agent with direct 

DNA strand breakage and interruption of the cell cycle. However, one of the major side effects of BLM 

therapy is pulmonary fibrosis, which is mediated by damage caused by a low level of hydrolase produced 

to inactivate BLM in lungs [17]. On this account, BLM is often used to generate experimental animal 

models of pulmonary fibrosis [18–20]. Using C57BL/6 mice implanted with an osmotic minipump, 

Harrison and colleagues demonstrated that continuous subcutaneous infusion of BLM over one week 
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resulted in chronic, progressive and extensive pulmonary fibrosis [21]. Focal fibrotic lesions were 

mainly found in the sub-pleural area at Day 14 after BLM treatment, which expanded later to the central 

regions of the lung parenchyma at Day 21 [22,23]. 

On consideration that future studies on the mechanism could be supported by a series of available 

transgenic mice, mice were used in the present study to evaluate the effects of pulmonary exposure to 

ZnO nanoparticle. Mice treated with BLM (the BLM groups) and non-BLM-treated mice (the SALINE 

groups) were exposed to ZnO nanoparticles suspension or vehicle medium by pharyngeal aspiration. 

The tested hypothesis is that BLM-treated mice are susceptible to exogenous stimuli and exposure,  

so that exposure to ZnO nanoparticles accelerates or enhances pulmonary fibrosis induced by BLM 

treatment. In the first experiment, pulmonary effects were examined at 10 days after administration to 

see the possible acceleration of pulmonary fibrosis, which was progressive at Days 14 and 21 in a 

previous study [22]. However, a fibrotic lesion induced by BLM was not found at Day 10 after ZnO 

exposure, although severe inflammation was induced by ZnO nanoparticles, and ZnO exposure and BLM  

treatment were found to increase profibrotic cytokines synergistically. Therefore, the second experiment 

was conducted to evaluate how exposure to ZnO nanoparticles modifies the degree of fibrosis induced 

by BLM at Day 14. 

2. Results 

2.1. Characterization of ZnO Nanoparticles 

The surface area of the primary ZnO nanoparticles was 50.72 m2/g, as measured by the  

Brunauer–Emmett–Teller (BET) gas absorption technique. No endotoxin was detected when the  

particles were suspended in distilled water. Dynamic light scattering (DLS) showed the aggregation of 

the nanoparticles in the dispersion medium (DM) with an average hydrodynamic size of 153.3 ± 1.0 nm. 

The presence of nano-sized particles was confirmed in the medium: the numbers of particles of less than 

91.28 and 105.7 nm were 31.2% ± 0.8% and 71.2% ± 1.7%, respectively; the volume of particles of less 

than 91.28 and 105.7 nm were 19.6% ± 0.8% and 54.6% ± 2.1%, respectively. 

2.2. Effects of BLM and ZnO Nanoparticles on Body and Lung Weights 

Body weight decreased after pharyngeal aspiration in the SALINE group, but started to recover from 

Days 2 to 5 after administration. On the other hand, body weight diminished continuously in the BLM 

groups at both ZnO exposure levels. Moreover, the severity of body weight loss and the decreased 

activity level in mice exposed to ZnO nanoparticles were dose dependent. Four out of seven mice died 

after Day 5 following exposure to 30 µg of ZnO nanoparticles. 

Table 1 shows the body weight and relative lung weight (lung weight (mg) divided by body  

weight (g)). In the SALINE groups, body weight was lower, while relative lung weight was higher in  

the 30 µg of ZnO-exposed mice compared with the vehicle control. A similar trend was observed in the  

BLM groups. 
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Table 1. Comparison of body weight and relative lung weight at Day 10 after administration. 

Data are the mean ± SD; * p < 0.05; ** p < 0.01; compared with the vehicle control.  
a The relative lung weight is the value of the lung weight (mg) divided by the body weight (g). 

BLM, bleomycin; ZnO, zinc oxide. 

Subcutaneous  
Infusion 

SALINE BLM 

Groups No ZnO 10 µg ZnO 30 µg ZnO No ZnO 10 µg ZnO 30 µg ZnO 

Number of mice 6 7 6 6 6 7 

Body weight (g) 22.65 ± 0.53 22.36 ± 0.81 21.03 ± 1.36 * 19.17 ± 0.49 17.99 ± 0.38 * 15.63 ± 0.74 ** 

Relative lung 

weight a 
9.90 ± 1.26 11.52 ± 1.39 18.04 ± 1.73 ** 14.33 ± 1.95 15.90 ± 0.91 18.91 ± 0.64 ** 

2.3. Effects of ZnO Nanoparticles on Lung Histopathology 

Figure 1 shows the representative hematoxylin and eosin (H&E)-stained micrographs of the lungs 

sampled at 10 days after ZnO nanoparticle administration. Moderate to severe inflammatory infiltration 

in the peribronchiolar, peribronchial and perivascular area was observed in mice exposed to 10 µg or  

30 µg of ZnO nanoparticles in the SALINE groups, respectively. Similar changes were found in the 

BLM groups with the corresponding ZnO exposure level. The dose-dependently increased pulmonary 

inflammation induced by ZnO nanoparticles was also demonstrated by the total inflammation score 

showed in Figure 2. However, no distinct collagen deposition was observed in the lungs with Masson’s 

trichrome staining (data not shown). 

 

Figure 1. Representative optical micrographs of H&E-stained lung tissues. Mice were 

exposed to: (A) no ZnO; (B) 10 µg of ZnO; (C) 30 µg of ZnO nanoparticles without BLM 

treatment; (D) no ZnO; (E) 10 µg of ZnO; and (F) 30 µg of ZnO nanoparticles with BLM 

treatment. Samples were collected at Day 10 after administration. 
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Figure 2. The results of histological scoring for total lung inflammation. Mice were exposed 

to ZnO nanoparticles with or without BLM treatment. Total lung inflammation at Day 10 

after administration was defined using H&E staining of lung tissue. The number of mice was 

six in the SALINE-no ZnO, seven in the SALINE-10 µg of ZnO, six in the SALINE-30 µg 

of ZnO, six in the BLM-no ZnO, six in the BLM-10 µg of ZnO and seven in the  

BLM-30 µg of ZnO group. Data are the mean ± SD; * p < 0.05; ** p < 0.01; compared to 

the vehicle control. 

2.4. Effects of ZnO Nanoparticles on BALF Cytology and Cytokine Concentrations 

BALF total cell, neutrophil and lymphocyte counts increased in a dose-dependent manner after 

administration of ZnO nanoparticles, in both the SALINE and BLM groups, compared with the vehicle 

control (Figure 3). The results of quantitative analysis were consistent with the pathological findings. 

At Day 10, the level of interleukin (IL)-1β in BALF increased following exposure to 10 or 30 µg of 

ZnO nanoparticles, in the SALINE groups, and also following 30 µg of ZnO nanoparticles, in both the 

SALINE and BLM groups (Figure 4A). No significant change of the levels of monocyte chemotactic 

protein (MCP)-1 was detected, but an increasing trend induced by the exposure to ZnO nanoparticles 

was observed in BLM groups (Figure 4B). On the other hand, no ZnO-induced change of transforming 

growth factor (TGF)-β levels was found in the SALINE or BLM groups (data not shown). 

2.5. Interaction between the BLM Treatment and ZnO Exposure 

The interaction between the treatment with BLM and exposure to ZnO nanoparticles was tested by 

the analysis of covariance (ANCOVA). When such an interaction was significant, regression analysis 

for ZnO exposure level was applied separately using data of both the SALINE or BLM groups.  

At Day 10, the interaction between BLM treatment and ZnO exposure was significant for body weight 

and IL-1β and MCP-1 levels in BALF. Furthermore, the absolute values of the coefficients of body 

weight (two-fold) and the levels of IL-1β (seven-fold) and MCP-1 (14-fold) in BALF were higher in the 

BLM group than the SALINE group, suggesting the synergistic effects of BLM and ZnO nanoparticles 

on these parameters (Table 2). 
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Figure 3. Total and differential cell counts in bronchoalveolar lavage fluid (BALF). Mice 

were exposed to ZnO nanoparticles with or without BLM treatment. The number of (A) total 

cells; (B) macrophages; (C) neutrophils and (D) lymphocytes in BALF were counted at  

Day 10 after administration. The number of mice was six in the SALINE-no ZnO, seven in the 

SALINE-10 µg of ZnO, six in the SALINE-30 µg of ZnO, six in of BLM-no ZnO, six in the 

BLM-10 µg of ZnO and seven in the BLM-30 µg of ZnO group. Data are the mean ± SD;  

* p < 0.05; ** p < 0.01; compared to the vehicle control. 

 

Figure 4. Cytokine levels in BALF. Mice were exposed to ZnO nanoparticles with or 

without BLM treatment. (A) IL-1β and (B) MCP-1 levels in BALF were determined at  

Day 10 after administration. The number of mice was six in the SALINE-no ZnO, seven in 

the SALINE-10 µg of ZnO, six in the SALINE-30 µg of ZnO, six in the BLM-no ZnO, six in 

the BLM-10 µg of ZnO and seven in the BLM-30 µg of ZnO group. Data are mean ± SD;  

** p < 0.01; compared to vehicle control. 
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Table 2. The coefficient of the regression line analysis for the SALINE and BLM groups  

at Day 10 after administration. SEM, standard error of the mean; IL-1β, interleukin-1β;  

MCP-1, monocyte chemotactic protein-1. 

Parameters 
SALINE BLM 

Coefficient ± SEM p-Value Coefficient ± SEM p-Value 

Body weight (g)     
ZnO exposure level (×10−1/µg) −0.56 ± 0.18 0.007 −1.18 ± 0.11 <0.001 

IL-1β (µg/mL)     
ZnO exposure level (per µg) 0.44 ± 0.11 0.725 2.90 ± 0.85 0.005 

MCP-1 (µg/mL)     
ZnO exposure level (per µg) 1.11 ± 1.44 0.453 15.76 ± 7.02 0.043 

2.6. Status at Day 14 after Administration 

The dose of 30 µg for each mouse weighing 19–22 g in the 10-day experiment corresponded with the 

dose of 310 µg for rats weighing 200–250 g in a previous study [16]. No mortality was mentioned in the 

rat experiment, but exposure to ZnO at 30 µg resulted in high mortality in BLM-treated mice. Based on 

this finding, the high dose of ZnO nanoparticles was adjusted to 20 µg for the 14-day experiment. 

The recovery of pulmonary inflammation was observed at 14 days after administration. In the 

SALINE group, inflammatory infiltration in the alveolar septum recovered to normal lung architecture 

in mice exposed to 10 µg of ZnO nanoparticles, while a slight accumulation of inflammatory cells  

was noted in mice exposed to 20 µg of ZnO nanoparticles. In contrast, mild inflammation was  

evident in all mice of the BLM groups after exposure to ZnO nanoparticles (Figures 5 and S1A).  

To check pulmonary fibrosis, Masson’s trichrome staining and alpha smooth muscle actin (α-SMA) 

immunohistochemistry were conducted using samples harvested on Day 14. It turns out that exposure to 

ZnO nanoparticles up to 20 µg had no obvious effects on collagen deposition or fibroblast proliferation, 

both in the SALINE and BLM groups (data not shown). 

With regard to the biochemical changes, the level of transforming growth factor (TGF)-β in BALF 

and the relative mRNA expression level of matrix metalloproteinase (MMP)-2 in lung tissue were  

found to increase in the SALINE group after exposure to 20 µg of ZnO nanoparticles (Figure 6). 

However, there were no ZnO-induced changes in collagen I, collagen III, MMP-2, MMP-9, tissue 

inhibitor of MMPs (TIMP)-1, TIMP-2 and fibroblast specific protein (FSP)-1 mRNA levels in either the 

SALINE or BLM groups (Figure S2). Moreover, hydroxyproline content was analyzed in the lung 

samples of the BLM groups of the 14-day experiment, but no significant change was found after 

exposure to ZnO nanoparticles (Figure S1B). 
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Figure 5. Representative optical micrographs of H&E-stained lung tissues. Mice were 

exposed to: (A) no ZnO; (B) 10 µg of ZnO; (C) 20 µg of ZnO nanoparticles without BLM 

treatment; (D) no ZnO; (E) 10 µg of ZnO and (F) 20 µg of ZnO nanoparticles with BLM 

treatment. Samples were collected at Day 14 after administration. 

 

Figure 6. (A) TGF-β level in BALF and (B) MMP-2 relative mRNA expression level in  

lung tissue were determined at Day 14 after administration. Mice were exposed to ZnO 

nanoparticles with or without BLM treatment. The number of mice was six in the  

SALINE-no ZnO, seven in the SALINE-10 µg of ZnO, six in the SALINE-20 µg of ZnO, 

six in the BLM-no ZnO, six in the BLM-10 µg of ZnO and seven in the BLM-20 µg of ZnO 

group. Data are the means ± SD; * p < 0.05; compared to the vehicle control. 

3. Discussion 

The present study demonstrated that pharyngeal aspiration of ZnO nanoparticles induced severe, but 

transient, pulmonary inflammation. No distinct fibrotic changes in the lungs were observed in the  
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sub-acute phase after a bolus of ZnO nanoparticles in mice, but subcutaneous infusion of BLM and 

pulmonary exposure to ZnO nanoparticles synergistically increased the concentrations of pro-fibrotic 

cytokines in BALF from the lungs. 

At 10 days after administration, marked inflammatory cell infiltration and thickening of alveolar septa 

was observed histopathologically, in association with high total cell, neutrophil and lymphocyte counts 

and upregulation of IL-1β in BALF after exposure to ZnO nanoparticles. Notably, IL-1β and MCP-1 

levels were higher in BLM-treated mice than non-treated control mice at each ZnO exposure level,  

and a synergistic effect of BLM treatment and ZnO exposure was detected. IL-1β and MCP-1 are 

considered to promote pulmonary fibrosis by triggering the activation and proliferation of fibroblasts 

and to stimulate collagen production [24–26]. Although the pathological findings in BLM-treated and  

non-treated mice were similar and there was no fibrotic change at Day 10 after exposure, the effects of 

treatment with BLM and exposure to ZnO were synergistic. Based on this result, we conducted another 

set of animal experiments in which we examined the effects at 14 days after exposure to ZnO, in order 

to examine whether exposure to ZnO nanoparticles enhances the fibrotic effects of pulmonary fibrosis 

induced by treatment with BLM. The observation at Day 14 was considered to be appropriate for the 

examination, as fibrotic change was progressive at Days 14 and 21 in the previous study when mice 

received BLM with a lower dose of 62.5 mg/kg of body weight [22]. Unexpectedly, however, the 

pathological changes illustrated marked recovery of inflammatory infiltration at Day 14 in both BLM 

non-treated and BLM-treated mice. This transient inflammation induced by pharyngeal aspiration of 

ZnO nanoparticles is compatible with the well-known metal fume fever: the most frequently-described 

systemic illness in welders. Influenza-like symptoms typically appear within 4–12 h after inhalation of 

fumes and resolve within 24–48 h [27,28]. 

In mice without BLM treatment, exposure to 20 µg of ZnO nanoparticles increased the BALF  

TGF-β level and the mRNA expression levels of MMP-2 in the lung tissue at Day 14. TGF-β and  

MMP-2 play crucial roles in the development of pulmonary fibrosis [29], but exposure to ZnO 

nanoparticles showed no effects on mRNA expression levels of collagen I and III in the lung tissue. Such 

a minimal fibrotic effect of ZnO nanoparticles found in the present study is consistent with previous 

studies: Chang et al. described normal lung histology without fibrosis at Day 28 after intratracheal 

instillation of 80 µg of ZnO nanoparticles [30], and Adamcakova-Dodd et al. found only small changes 

in inflammatory parameters and rare pathological changes with exposure to ZnO nanoparticles of up to  

13 weeks of inhalation [31]. However, a previous study on rats exposed to 310 µg of ZnO nanoparticles 

reported detection of high TGF-β levels in BALF at 24 h, 1 week and 4 weeks after intratracheal 

instillation and collagen deposition in lung sections at 4 weeks after administration [16]. The discrepancy 

in the fibrotic changes between mice and rats could represent species differences in the pulmonary 

responses to ZnO nanoparticles. A similar outcome was described in rodents exposed to ultrafine 

titanium dioxide particles: Rats developed severer inflammatory response compared to mice [32]. A case 

report showed that welders exposed to condensation aerosol with high ZnO concentrations developed 

pneumoconiosis with exogenous fibrosing alveolitis [33], indicating the risk for individuals to develop 

pulmonary fibrosis after long-term exposure to ZnO nanoparticles, but there are very few animal studies 

that have evaluated the profibrotic effect of pulmonary exposure to ZnO nanoparticles. On account of 

the species difference mentioned above, the fibrotic effect of pulmonary exposure to ZnO nanoparticles 

remains unclear. 
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In BLM-treated mice, all parameters related to inflammation and fibrosis were not different between 

ZnO-exposed and non-exposed mice at Day 14, suggesting the attenuation of the effects of pharyngeal 

aspiration of ZnO nanoparticles over time. Moreover, the fibrotic changes did not seem to be promoted 

by a single exposure to ZnO nanoparticles at this time point. As a limitation of this study, pharyngeal 

aspiration or intratracheal instillation, a method of delivery routinely used for the exposure of animals 

to particles, is a less physiologic method of exposure compared with inhalation and may alter the study 

results or sensitivity early after administration [34]. Additionally, the first experiment showed high 

mortality in BLM-treated group when mice were exposed to 30 μg of ZnO nanoparticles, which might 

indicate the problem of the present mouse model combining BLM treatment with bolus administration 

of ZnO nanoparticles. It is worth trying a continuous inhalation experiment, as it better mimics the 

exposure situation in humans and might result in persistent irritation or inflammation in animals, leading 

to a continuous interaction between BLM treatment and ZnO exposure. 

The dissolved proportion of ZnO nanoparticles in the suspensions was not examined in our 

experiments, which is another limitation of the present study. Solubility is considered one of the most 

important properties affecting the biological effects in the safety evaluation of ZnO nanoparticles [2,8]. 

Nonetheless, the dissolved Zn2+ content did not seem to completely explain the toxicity of ZnO 

nanoparticles. In a previous study, another research group prepared a ZnCl2 solution, which contained 

the same concentration of Zn2+ as the ZnO nanoparticles suspension, and both were intratracheally 

instilled to rats [14]. As a result, the oxidative stress induced by the particle suspension was stronger 

than that of the ZnCl2 solution. This is supported by the result that the released Zn2+ in the cell culture 

medium was estimated to contribute 10% of the effects to the cells [35]. Besides, different inflammatory 

effects were identified in cultured cells and rat lungs exposed to ZnO nanoparticles or their aqueous 

extracts [36]. The results obtained in the present study should be considered based on the understanding 

that the toxicity of ZnO nanoparticles derived from both the nanoparticle itself and the ionized 

proportion. Further study of the mechanism of the ionized proportion of ZnO nanoparticles should be 

conducted in the future. 

4. Experimental Section 

4.1. ZnO Nanoparticles 

ZnO nanoparticles (MKN-ZnO-020; mkNano, Mississauga, ON, Canada) with a primary diameter  

of 20 nm were used in the present study. BET was used to measure the surface area (Macsorb  

HM model-1201, MOUNTECH, Tokyo, Japan). Endotoxin analysis was conducted using the Pierce 

LAL Chromogenic Endotoxin Quantitation Kit (Thermo Scientific, Waltham, MA, USA). For the animal 

experiments, suspensions of ZnO nanoparticles were prepared in a biocompatible dispersion medium 

(DM) containing albumin, surfactant and phosphate-buffered saline [37]. A cup-type sonicator was used 

to disperse the nanoparticles, as described previously by our laboratory [38]. Briefly, ZnO nanoparticles 

were dispersed at 100 W, 80% pulse mode for 10 min. After sonication, size characterization was 

conducted using DLS (Zetasizer Nano-S; Malvern Instruments, Worcestershire, UK). The sonicated 

suspension of ZnO nanoparticles was used for animal treatment at 1 to 3 days after sonication.  

The stability of the suspension after sonication was confirmed: hydrodynamic sizes only increased 1.9%  
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and 3.4% at 1 and 7 days after sonication, when compared with the sizes measured at the same day  

of sonication. 

4.2. Animals 

Nine-week-old female C57BL/6J mice weighing 19–22 g were purchased from CLEA Japan Inc. 

(Tokyo, Japan). All mice were housed and acclimatized to the new environment for 1 week in a 

pathogen-free animal room at temperature (23–25 °C)- and humidity (55%–60%)-controlled conditions. 

Light was set with a 12-h light-dark cycle (on at 09:00 and off at 21:00), and food and water were 

provided ad libitum. All experimental procedures were performed in accordance with institutional 

guidelines for animal research, and the study was approved by the animal ethics committee of  

Mie University. 

Mice were anesthetized with pentobarbital and then exposed to 40-µL aliquot of samples of ZnO 

nanoparticles by pharyngeal aspiration [39]. The technique of pharyngeal aspiration involved placement 

of the nanoparticle suspension on the back of the tongue followed by pulling of the tongue to induce a 

reflex gasp with resultant aspiration of the droplets. In both BLM and SALINE groups, mice received 

either DM (vehicle control), 10 or 30 µg of ZnO nanoparticles in the 10-day experiment; while in the  

14-day experiment, mice received either DM, 10 or 20 µg of ZnO nanoparticles. 

According to the American Conference of Governmental Industrial Hygienists, the threshold limit 

value (TLV) for ZnO particles is 2 mg/m3 (time-weighted average). The amount of ZnO inhaled in one 

week by an adult will then be calculated as 0.48 mg/kg of body weight (500 mL air/breath, 12 breath/min, 

8 h/day, 40 h/week) [40]. In the present study, mice were exposed to 0.5, 1.0 or 1.5 mg/kg of body weight 

ZnO nanoparticles, so that the lowest dose was comparable to the deposition from the inhalation to ZnO 

at the TLV level for one week. 

After pharyngeal aspiration, mice were treated with BLM. Mice were divided at random into the  

BLM and SALINE groups. In the BLM groups, lung injury was induced by 7-day constant subcutaneous 

infusion of bleomycin sulfate (Nihon Kayaku, Tokyo, Japan) at 100 mg/kg of body weight, dissolved  

in sterile saline using osmotic minipumps (Model 2001; Alzet Corporation, Palo Alto, CA, USA). 

Minipumps only loaded with saline were placed in the SALINE groups [41]. The number of mice was  

6 in the SALINE-no ZnO, 7 in the SALINE-10 µg of ZnO, 6 in the SALINE-30 µg of ZnO, 6 in the 

BLM-no ZnO, 6 in the BLM-10 µg of ZnO and 7 in the BLM-30 µg of ZnO group in the 10-day 

experiment, while 6 in the SALINE-no ZnO, 6 in the SALINE-10 µg of ZnO, 7 in the SALINE-30 µg 

of ZnO, 6 in the BLM-no ZnO, 6 in the BLM-10 µg of ZnO and 6 in the BLM-30 µg of ZnO group in 

the 14-day experiment. 

At 10 and 14 days after administration, mice were sacrificed by i.p. injection of pentobarbital. 

Bronchoalveolar lavage (BAL) was performed by cannulating the trachea with an 18-gauge needle, and 

infusion of 2 mL of saline three times followed. The perfused lungs were then dissected out, and the left 

lung was fixed in 4% phosphate-buffered paraformaldehyde (PFA), while the right lungs were frozen on 

dry ice and subsequently stored at −80 °C for later analysis. 
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4.3. Histopathological Examination 

The left lung was fixed in 4% PFA for 24–30 h and then treated with 70% ethanol for several days 

within 1 week. After routine dehydration and paraffin embedding, 3 µm-thick sections were cut and 

stained with: (1) H&E staining to evaluate inflammation and general pathological change; (2) Masson’s 

trichrome staining to detect collagen deposition; and (3) α-SMA immunohistochemistry to assess 

fibroblast proliferation, which was performed with an ImmPACT™ BAD Peroxidase Substrate Kit 

(Vector, Burlingame, CA, USA) using anti-α-SMA rabbit polyclonal antibodies (Abcam, Cambridge, 

UK). Tissue slices were examined under an optical microscope (Model DM750, Leica Microsystems,  

Wetzlar, Germany), and images were captured with the Leica Application Suite V3 software. Lung 

inflammation was scored in a blinded fashion using a reproducible scoring system described  

elsewhere [42]. The degree of peribronchial and perivascular inflammation was evaluated on a subjective 

scale of 0 to 3 (0: no detectable inflammation; 1: occasional cuffing with inflammatory cells; 2: most 

bronchi or vessels surrounded by a thin layer of inflammatory cells; 3: most bronchi or vessels 

surrounded by a thick layer of inflammatory cells). Total lung inflammation was defined as the average 

of the peribronchial and perivascular inflammation scores based on 3 lung sections per mouse. 

4.4. Total and Differential Cell Count in BALF 

The recovered BALF was centrifuged (1000× g, 10 min, 4 °C), and the supernatant was stored 

immediately at −80 °C until analysis. The cell pellet was resuspended for total and differential cell  

count. The total cell count was measured using ChemoMetec nucleocounter (ChemoMetec A/S, Allerød, 

Denmark) [43], and the cell smear was stained with May-Grunwald-Giemsa (Merck, Darmstadt, 

Germany) for differential cell count: the number of cells was counted in 10 fields (20× magnification) 

of each slide. 

4.5. BALF Biochemical Analysis 

The levels of IL-1β, MCP-1 and TGF-β in BALF were analyzed by enzyme-linked immunosorbent 

assay (ELISA) using commercially available ELISA kits (eBioscience, Inc., San Diego, CA, USA). 

Assays were performed in duplicate wells, and the absorbance at 450 nm was measured with a microtiter 

plate reader. 

4.6. Real-Time Quantitative Reverse Transcription-Polymerase Chain Reaction (RT-PCR) 

The mRNA expression levels of collagen I, collagen III, MMP-2, 9, TIMP-1, 2 and FSP-1 in lung 

tissues were determined by RT-PCR. About 15 mg of frozen lung tissues were homogenized, and total 

RNA was isolated using the ReliaPrep™ RNA Tissue Miniprep System (Promega, WI, USA) and stored 

at −80 °C until reverse transcription. The purity and concentration of the obtained RNA were determined 

with a Nanodrop-1000 3.5.1 (Nanodrop, Inc., Wilmington, DE, USA). The SuperScript III Reverse 

transcriptase kit (Life Technologies, Carlsbad, CA, USA) was used to convert the RNA to 

complementary DNA (cDNA), which was stored at −30 °C until quantification by real-time PCR 

(M×3005P QPCR System, Agilent Technologies, Waldbronn, Germany). The relative levels of mRNA 
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expression were normalized to β-actin for each gene. The primers and probes were designed by the 

Universal ProbeLibrary Assay Design Center (Roche Diagnostics, Basel, Switzerland). 

4.7. Hydroxyproline Content 

To assess the amount of collagen, about 10 mg of homogenized tissue sample was hydrolyzed in  

100 µL 10 N hydrochloric acid at 120 °C for 24 h. Hydroxyproline content was measured using a 

hydroxyproline assay kit (Chondrex, Inc., Redmond, WA, USA) according to the instructions provided 

by the manufacturer. 

4.8. Statistical Analysis 

Data were expressed as the means ± standard deviation. Multiple comparisons between the ZnO 

exposure groups and the vehicle control groups were performed using Dunnett’s multiple comparison 

method following one-way ANOVA. Kruskal–Wallis tests were used when the variances were still 

regarded as heterogeneous by Levene’s test after a logarithm or square root transformation. ANCOVA 

was performed to examine the effects of BLM treatment (factor) and the trend with ZnO exposure levels 

(covariate). When the interaction was significant, regression analysis on ZnO exposure level was  

applied in either SALINE or BLM groups, separately. Statistical analyses were performed with SPSS 20 

software (IBM Corporation, New York, NY, USA). A p-value less than 0.05 was considered as 

statistically significant. 

5. Conclusions 

Pharyngeal aspiration of ZnO nanoparticles in mice resulted in transient infiltration of inflammatory 

cells and upregulation of inflammatory cytokines in the lungs. The synergistic effect of pulmonary 

exposure to ZnO nanoparticles and subcutaneous infusion of BLM on the secretion of pro-fibrotic 

cytokines in the lungs was demonstrated, although a single bolus of ZnO nanoparticles did not induce 

distinct pulmonary fibrotic changes in mice. 
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Acknowledgments 

This work was supported by the Japan Society for the Promotion of Science (JSPS) Funding Program 

for Next Generation World-Leading Researchers (NEXT Program #LS056), a grant-in aid for Scientific 

Research (#26293149) from the JSPS and the Japan Science and Technology Agency (JST) Strategic  

Japanese-EU Cooperative Program: “Study on managing the potential health and environmental risks of 

engineered nanomaterials”. We thank Dr. Dale Porter and Dr. Vincent Castranova, U.S. National 

Institute for Occupational Safety and Health, for generous instruction on pharyngeal aspiration. 
  



Int. J. Mol. Sci. 2015, 16 673 

 

 

Author Contributions 

Wenting Wu designed the study, performed the experiments, analyzed the data and wrote the 

manuscript. Sahoko Ichihara and Gaku Ichihara designed the study, conceived of and supervised  

the project and contributed to the data interpretation and manuscript revision. Esteban C. Gabazza  

offered the bleomycin model and contributed to the study design and manuscript revision.  

Corina N. D’Alessandro-Gabazza was involved in cell count analysis. Naozumi Hashimoto and 

Yoshinori Hasegawa contributed to the conduction of pharyngeal aspiration and manuscript revision. 

Yasuhiko Hayashi analyzed the surface area of particles. Sahoko Ichihara, Saeko Tada-Oikawa,  

Yuka Suzuki and Jie Chang were involved in animal experiments and sample preparation. Masashi Kato 

reviewed the manuscript and provided comments. All authors read and approved the final manuscript. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Donaldson, K.; Stone, V.; Tran, C.L.; Kreyling, W.; Borm, P.J. Nanotoxicology. Occup. Environ. Med. 

2004, 61, 727–728. 

2. Nel, A.; Xia, T.; Mädler, L.; Li, N. Toxic potential of materials at the nanolevel. Science 2006, 311, 

622–627. 

3. Becheri, A.; Dürr, M.; Nostro, P.L.; Baglioni, P. Synthesis and characterization of zinc oxide 

nanoparticles: Application to textiles as UV-absorbers. J. Nanopart. Res. 2008, 10, 679–689. 

4. Rekha, K.; Nirmala, M.; Nair, M.G.; Anukaliani, A. Structural, optical, photocatalytic and 

antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles. Phys. B 2010, 

405, 3180–3185. 

5. Raghupathi, K.R.; Koodali, R.T.; Manna, A.C. Size-dependent bacterial growth inhibition and 

mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 2011, 27, 4020–4028. 

6. Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Nanotoxicology: An emerging discipline evolving 

from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823–839. 

7. Kim, Y.H.; Fazlollahi, F.; Kennedy, I.M.; Yacobi, N.R.; Hamm-Alvarez, S.F.; Borok, Z.; Kim, K.J.; 

Crandall, E.D. Alveolar epithelial cell injury due to zinc oxide nanoparticle exposure. Am. J. Respir. 

Crit. Care Med. 2010, 182, 1398–1409. 

8. Krug, H.F.; Wick, P. Nanotoxicology: An interdisciplinary challenge. Angew. Chem. Int. Ed. Engl. 

2011, 50, 1260–1278. 

9. Akhtar, M.J.; Ahamed, M.; Kumar, S.; Khan, M.M.; Ahmad, J.; Alrokayan, S.A. Zinc oxide 

nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. 

Int. J. Nanomed. 2012, 7, 845–857. 

10. Kang, T.; Guan, R.; Chen, X.; Song, Y.; Jiang, H.; Zhao, J. In vitro toxicity of different-sized ZnO 

nanoparticles in Caco-2 cells. Nanoscale Res. Lett. 2013, 8, 496. 

11. Sahu, D.; Kannan, G.M.; Vijayaraghavan, R.; Anand, T.; Khanum, F. Nanosized zinc oxide induces 

toxicity in human lung cells. ISRN Toxicol. 2013, 2013, 316075. 



Int. J. Mol. Sci. 2015, 16 674 

 

 

12. Wilhelmi, V.; Fischer, U.; Weighardt, H.; Schulze-Osthoff, K.; Nickel, C.; Stahlmecke, B.; 

Kuhlbusch, T.A.; Scherbart, A.M.; Esser, C.; Schins, R.P.; et al. Zinc oxide nanoparticles induce 

necrosis and apoptosis in macrophages in a p47phox- and Nrf2-independent manner. PLoS One 

2013, 8, e65704. 

13. Warheit, D.B.; Sayes, C.M.; Reed, K.L. Nanoscale and fine zinc oxide particles: Can in vitro assays 

accurately forecast lung hazards following inhalation exposures? Environ. Sci. Technol. 2009, 43, 

7939–7945. 

14. Fukui, H.; Horie, M.; Endoh, S.; Kato, H.; Fujita, K.; Nishio, K.; Komaba, L.K.; Maru, J.;  

Miyauhi, A.; Nakamura. A.; et al. Association of zinc ion release and oxidative stress induced by 

intratracheal instillation of ZnO nanoparticles to rat lung. Chem. Biol. Interact. 2012, 198, 29–37. 

15. Cho, W.S.; Duffin, R.; Poland, C.A.; Howie, S.E.; MacNee, W.; Bradley, M.; Megson, I.L.; 

Donaldson, K. Metal oxide nanoparticles induce unique inflammatory footprints in the lung: 

Important implications for nanoparticle testing. Environ. Health Perspect. 2010, 118, 1699–706. 

16. Cho, W.S.; Duffin, R.; Howie, S.E.; Scotton, C.J.; Wallace, W.A.; Macnee, W.; Bradley, M.; 

Megson, I.L.; Donaldson, K. Progressive severe lung injury by zinc oxide nanoparticles; the role of 

Zn2+ dissolution inside lysosomes. Part. Fibre Toxicol. 2011, 8, 27. 

17. Moeller, A.; Ask, K.; Warburton, D.; Gauldie, J.; Kolb, M. The bleomycin animal model: A useful 

tool to investigate treatment options for idiopathic pulmonary fibrosis? Int. J. Biochem. Cell Biol. 

2008, 40, 362–382. 

18. Manali, E.D.; Moschos, C.; Triantafillidou, C.; Kotanidou, A.; Psallidas, I.; Karabela., S.P.; 

Roussos, C.; Papiris, S.; Armaganidis, A.; Stathopoulos, GT.; et al. Static and dynamic mechanics 

of the murine lung after intratracheal bleomycin. BMC Pulm. Med. 2011, 11, 33. 

19. Tsai, K.D.; Yang, S.M.; Lee, J.C.; Wong, H.Y.; Shih, C.M.; Lin, T.H.; Tseng, M.J.; Chen, W. Panax 

notoginseng attenuates bleomycin-induced pulmonary fibrosis in mice. Evid. Based Complement. 

Alternat. Med. 2011, 2011, 04761. 

20. Bogatkevich, G.S.; Ludwicka-Bradley, A.; Nietert, P.J.; Akter, T.; van Ryn, J.; Silver, R.M. 

Antiinflammatory and antifibrotic effects of the oral direct thrombin inhibitor dabigatran etexilate 

in a murine model of interstitial lung disease. Arthritis Rheumatol. 2011, 63, 1416–1425. 

21. Harrison, J.H., Jr.; Lazo, J.S. High dose continuous infusion of bleomycin in mice: A new model 

for drug-induced pulmonary fibrosis. J. Pharmacol. Exp. Ther. 1987, 243, 1185–1194. 

22. Yasui, H.; Gabazza, E.C.; Tamaki, S.; Kobayashi, T.; Hataji, O.; Yuda, H.; Shimizu, S.; Suzuki, K.; 

Adachi, Y.; Taguchi, O. Intratracheal administration of activated protein C inhibits bleomycin-induced 

lung fibrosis in the mouse. Am. J. Respir. Crit. Care Med. 2001, 163, 1660–1168. 

23. Aono, Y.; Nishioka, Y.; Inayama, M.; Ugai, M.; Kishi, J.; Uehara, H.; Izumi, K.; Sone, S. Imatinib 

as a novel antifibrotic agent in bleomycin-induced pulmonary fibrosis in mice. Am. J. Respir. Crit. 

Care Med. 2005, 171, 1279–1285. 

24. Gharaee-Kermani, M.; McCullumsmith, R.E.; Charo, I.F.; Kunkel, S.L.; Phan, S.H. CC-chemokine 

receptor 2 required for bleomycin-induced pulmonary fibrosis. Cytokine 2003, 24, 266–276. 

25. Olman, M.A.; White, K.E.; Ware, L.B.; Simmons, W.L.; Benveniste, E.N.; Zhu, S.; Pugin, J.; 

Matthay, M.A. Pulmonary edema fluid from patients with early lung injury stimulates fibroblast 

proliferation through IL-1 beta-induced IL-6 expression. J. Immunol. 2004, 172, 2668–2677. 



Int. J. Mol. Sci. 2015, 16 675 

 

 

26. Dos Santos, G.; Kutuzov, M.A.; Ridge, K.M. The inflammasome in lung diseases. Am. J. Physiol. 

Lung Cell Mol. Physiol. 2012, 303, L627–L633. 

27. El-Zein, M.; Malo, J.L.; Infante-Rivard, C.; Gautrin, D. Prevalence and association of welding 

related systemic and respiratory symptoms in welders. Occup. Environ. Med. 2003, 60 (Suppl. 4), 

655–661. 

28. Kelleher, P.; Pacheco, K.; Newman, L.S. Inorganic dust pneumonias: The metal-related 

parenchymal disorders. Environ. Health Perspect. 2000, 108, 685–696. 

29. Lagente, V.; Manoury, B.; Nénan, S.; Le Quément, C.; Martin-Chouly, C.; Boichot, E. Role of 

matrix metalloproteinases in the development of airway inflammation and remodeling. Braz. J. 

Med. Biol. Res. 2005, 38, 1521–1530. 

30. Chang, H.; Ho, C.C.; Yang, C.S.; Chang, W.H.; Tsai, M.H.; Tsai, H.T.; Lin, P. Involvement of 

MyD88 in zinc oxide nanoparticle-induced lung inflammation. Exp. Toxicol. Pathol. 2013, 65,  

887–896. 

31. Adamcakova-Dodd, A.; Stebounova, L.V.; Kim, J.S.; Vorrink, S.U.; Ault, A.P.; O’Shaughnessy, P.T.; 

Grassian, V.H.; Thorne, P.S. Toxicity assessment of zinc oxide nanoparticles using sub-acute and 

sub-chronic murine inhalation models. Part. Fibre Toxicol. 2014, 11, 15. 

32. Bermudez, E.; Mangum, J.B.; Wong, B.A.; Asgharian, B.; Hext, P.M.; Warheit, D.B.; Everitt, J.I. 

Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium 

dioxide particles. Toxicol. Sci. 2004, 77, 347–357. 

33. Voznesenskiĭ, N.K. Exogenous fibrosing alveolitis due to the condensation aerosol (smoke) of zinc 

oxide (abstract). Vestn. Ross. Akad. Med. Nauk 2004, 3, 18–25. 

34. Osier, M.; Baggs, R.B.; Oberdörster, G. Intratracheal instillation versus intratracheal inhalation: 

Influence of cytokines on inflammatory response. Environ. Health Perspect. 1997, 105 (Suppl. 5), 

1265–1271. 

35. Xu, M.; Li, J.; Hanagata, N.; Su, H.; Chen, H.; Fujita, D. Challenge to assess the toxic contribution 

of metal cation released from nanomaterials for nanotoxicology—The case of ZnO nanoparticles. 

Nanoscale 2013, 5, 4763–4769. 

36. Cho, W.S.; Duffin, R.; Poland, C.A.; Duschl, A.; Oostingh, G.J.; Macnee, W.; Bradley, M.;  

Megson, I.L.; Donaldson, K. Differential pro-inflammatory effects of metal oxide nanoparticles and 

their soluble ions in vitro and in vivo; zinc and copper nanoparticles, but not their ions, recruit 

eosinophils to the lungs. Nanotoxicology 2012, 6, 22–35. 

37. Porter, D.; Sriram, K.; Wolfarth, M.; Jefferson, A.; Schwegler-Berry, D.; Andrew, M.; Castranova, V. 

A biocompatible medium for nanoparticle dispersion. Nanotoxicology 2008, 2, 144–154. 

38. Wu, W.; Ichihara, G.; Suzuki, Y.; Izuoka, K.; Oikawa-Tada, S.; Chang, J.; Sakai, K.; Miyazawa, K.; 

Porter, D.; Castranova, V.; et al. Dispersion method for safety research on manufactured 

nanomaterials. Ind. Health 2014, 52, 54–65. 

39. Gabazza, E.C.; Kasper, M.; Ohta, K.; Keane, M.; D’Alessandro-Gabazza, C.; Fujimoto, H.;  

Nishii, Y.; Nakahara, H.; Takagi, T.; Menon, A.G.; et al. Decreased expression of aquaporin-5 in 

bleomycin-induced lung fibrosis in the mouse. Pathol. Int. 2004, 54, 774–780. 

40. Scanlan, C.L.; Wilkins, R.; Stoller, J.K. Egan’s Fundamentals of Respiratory Care, 7th ed.; Mosby: 

St. Louis, MO, USA, 1998. 



Int. J. Mol. Sci. 2015, 16 676 

 

 

41. Porter, D.W.; Hubbs, A.F.; Mercer, R.R.; Wu, N.; Wolfarth, M.G.; Sriram, K.; Leonard, S.; Battelli, L.; 

Schwegler-Berry, D.; Friend, S.; et al. Mouse pulmonary dose- and time course-responses induced 

by exposure to multi-walled carbon nanotubes. Toxicology 2010, 269, 136–147. 

42. Braber, S.; Henricks, P.A.; Nijkamp, F.P.; Kraneveld, A.D.; Folkerts, G. Inflammatory changes in 

the airways of mice caused by cigarette smoke exposure are only partially reversed after smoking 

cessation. Respir. Res. 2010, 11, 99. 

43. Boveda-Ruiz, D.; D’Alessandro-Gabazza, C.N.; Toda, M.; Takagi, T.; Naito, M.; Matsushima, Y.; 

Matsumoto, T.; Kobayashi, T.; Gil-Bernabe, P.; Chelakkot-Govindalayathil, A.L.; et al. Differential 

role of regulatory T cells in early and late stages of pulmonary fibrosis. Immunobiology 2013, 218, 

245–254. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


