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Echinacea purpurea (L.) Moench
treatment of monocytes promotes tonic
interferon signaling, increased innate
immunity gene expression and DNA repeat
hypermethylated silencing of endogenous
retroviral sequences
Ken Declerck1, Claudina Perez Novo1, Lisa Grielens1, Guy Van Camp2, Andreas Suter3 and Wim Vanden Berghe1*

Abstract

Background: Herbal remedies of Echinacea purpurea tinctures are widely used today to reduce common cold
respiratory tract infections.

Methods: Transcriptome, epigenome and kinome profiling allowed a systems biology level characterisation of
genomewide immunomodulatory effects of a standardized Echinacea purpurea (L.) Moench extract in THP1
monocytes.

Results: Gene expression and DNA methylation analysis revealed that Echinaforce® treatment triggers antiviral
innate immunity pathways, involving tonic IFN signaling, activation of pattern recognition receptors, chemotaxis
and immunometabolism. Furthermore, phosphopeptide based kinome activity profiling and pharmacological
inhibitor experiments with filgotinib confirm a key role for Janus Kinase (JAK)-1 dependent gene expression
changes in innate immune signaling. Finally, Echinaforce® treatment induces DNA hypermethylation at intergenic
CpG, long/short interspersed nuclear DNA repeat elements (LINE, SINE) or long termininal DNA repeats (LTR). This
changes transcription of flanking endogenous retroviral sequences (HERVs), involved in an evolutionary conserved
(epi) genomic protective response against viral infections.

Conclusions: Altogether, our results suggest that Echinaforce® phytochemicals strengthen antiviral innate immunity
through tonic IFN regulation of pattern recognition and chemokine gene expression and DNA repeat
hypermethylated silencing of HERVs in monocytes. These results suggest that immunomodulation by Echinaforce®
treatment holds promise to reduce symptoms and duration of infection episodes of common cold corona viruses
(CoV), Severe Acute Respiratory Syndrome (SARS)-CoV, and new occurring strains such as SARS-CoV-2, with strongly
impaired interferon (IFN) response and weak innate antiviral defense.
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Background
Distinct species of the plant genus Echinacea have trad-
itionally been used in North America against infectious
diseases and wounds [1, 2]. Currently, a wide variety of
Echinacea preparations are used world-wide as comple-
mentary herbal remedy to improve the immune re-
sponse to protect against common cold symptoms and
influenza infections. Of all Echinacea species, Echinacea
purpurea (purple coneflower) is the most popular variety
used in Western countries. Different Echinacea pur-
purea extracts (different species, plant parts, manufac-
turing) or derived compounds showed antioxidant,
antibacterial, antifungal, antiviral and mosquitocidal ac-
tivities in cell culture experiments [3], although absolute
comparisons between studies with different preparations
remain difficult [4, 5]. Complex immunomodulatory ac-
tions of Echinacea have been described including both
pro- and anti-inflammatory effects [2, 3, 6]. The com-
pounds that contribute to these activities are alkyla-
mides, glycoproteins, polysaccharides and caffeic acid
derivates that may act independently or in synergy [1, 3,
7–9].
In this study, we evaluated Echinaforce®, a commer-

cially registered herbal medicinal tincture of Echinacea
purpurea (L.) Moench (A.Vogel Bioforce, Switzerland)
in several European countries including Switzerland,
Austria, UK, Spain, Netherland, Denmark, Finland,
Sweden, Slovenia, as well as Canada. The tincture con-
tains 5% root extract and 95% herb extract following
extraction with 65% ethanol V/V. Echinaforce® phyto-
chemicals reveal immune modulatory, anti-
inflammatory, anti-bacterial, anti-viral and anti-
parasitic activity [9–21]. Clinical efficacy could be
shown with different batches in acute treatment [22] or
for prevention [23] of respiratory tract infections. A 4-
month randomized, double blind, placebo-controlled
study (n = 755 subjects, of which 376 received placebo)
on the safety and efficacy of Echinaforce® to prevent
common cold symptoms, showed significantly less cold
episodes and of shorter duration as well as lower infec-
tion recurrence rate in the Echinaforce® treated versus
placebo treated group [23]. Moreover, no differences
between placebo and Echinaforce® group were reported
in relation to health risk and safety [23]. Despite the
promising immune potentiating properties of Echina-
force®, the responsible molecular targets have only par-
tially been identified, such as the cannabinoid receptor
2 (CB2) [7, 19, 24], the cAMP, p38/MAPK and JNK sig-
naling pathways, as well as NF-κB and ATF2/CREB1
transcription factors. To further clarify its mode of ac-
tion, we applied a system biology approach by integrat-
ing genomewide transcriptome, epigenome and kinome
signaling profiles of THP1 monocytes treated with
Echinaforce®.

Methods
Cell lines and treatments
Echinaforce® (batch nr. 040070, A. Vogel Bioforce AG,
Roggwil, Switzerland) is a standardized preparation ob-
tained by ethanol extraction of freshly harvested Echin-
acea purpurea herb and roots (95:5). The extract
Echinaforce® itself is strictly produced under GMP con-
ditions and tested therefore on different levels (seed,
plant, extract, tablet, etc.) thoroughly in the same man-
ner as an allopathic remedy since it is a registered prod-
uct in Europe. The plant has been identified
taxiconomically and also with a DNA test. The same
seeds of this plant have been used for more than 50
years (since 1955) in the company A. Vogel to produce
the standardized test item Echinaforce®. This means that
end of year a part of the Echinacea plant is used to take
the seeds in late autumn to use them for plantation next
spring then. Since the majority of the Echinacea cultiva-
tion is in the vicinity of A. Vogel AG in Roggwil
(Switzerland) no adulteration with other plants takes
place. According to Good Agricultural Practice, for every
batch used for for production of the standardized ex-
tract, the plant species is visually verified by an expert
before it is released for production of the registered me-
dicinal herbal extracts. The main basis for releases of
any batch of Echinaforce® is the HPLC fingerprint, TLCs
and a minimum amount of the alklymide tetraen as a
marker substance. The composition of marker com-
pounds like alkylamides (i.e. those compounds known to
characterize this species of Echinacea) was described
previously [3, 6, 25]. With this strategy, A. Vogel can
guarantee that every batch is similar in its constitu-
ents and its activity profile. Extended research on
pharmacological activity with different batches have
been carried out by the company showing consistent
activity in in vitro settings (antiviral, immunemodula-
tory activity). In contrast to pressed juice extracts,
Echinaforce® extract does not contain polysaccharides
which are known to stimulate the immune system
nonspecifically [26–29]. The alcohol concentration of
Echinaforce® tincture extract was 65% v/v and solvent
controls have been included in all experimental
in vitro experiments to rule out nonspecific effects. In
addition, the preparation was free of detectable endo-
toxin as determined by means of a commercial assay
kit with a lower limit of detection 0.1 unit/ml (Lonza
Walkersville Inc., MD).
THP1 cells were grown in RPMI-1640 medium sup-

plemented with glutamine, 10% heat inactivated Fetal
Bovine Serum, 50 IU/mL Penicillin, 50 μg/mL Strepto-
mycin, 10 mM HEPES and 0.05 mM β-mercaptoethanol.
Cells were treated with 1% Echinaforce® tincture versus
ethanol solvent control. Each treatment condition con-
sisted of six biological replicates.
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Genome-wide gene expression analysis
Sample preparation and microarray processing
THP1 cells were treated for 48 h with 1% Echinaforce®
or ethanol solvent control. RNA was isolated using the
RNeasy mini kit (Qiagen) according to manufacturer’s
instructions. RNA concentration and purity was mea-
sured using the Nanodrop 1000 spectrophotometer
(ThermoFischer, CA, USA). RNA integrity of each sam-
ple was checked using using the Experion Automated
Electrophoresis System (Bio-Rad, MO, USA). Total RNA
(500 ng) was amplified using the Illumina TotalPrep
RNA Amplification kit (Life Technologies, Carlsbad, CA,
USA). Briefly, RNA was reverse transcribed using T7
oligo (dT) primers, after which biotinylated complemen-
tary or anti-sense RNA (cRNA) was synthesized through
an in vitro transcription reaction. Then, 750 ng of ampli-
fied cRNA was hybridized to a HumanHT12 beadchip
array (Illumina, San Diego, CA, USA) and further incu-
bated for 18 h at 58 °C in a hybridization oven under
continuous rocking. After several consecutive washing
steps, bead intensities were read on an Illumina iScan.
Microarray data and raw gene expression intensities
were preprocessed and analyzed using the beadarray R
package [30]. Intensities were quantile normalized and
log2 transformed. Raw and normalized array data were
uploaded to the Gene Expression Omnibus (GEO) data-
base and have accession number: GSE117904. Probes
with a P-detection value higher than 0.05 in at least six
samples were removed. Also, probes annotated as “bad”
and “no match” as described before [31] were not kept
for further analysis. Differentially gene expression was
performed using the limma R package [32]. P-values
were corrected for multiple testing using the method of
Benjamini and Hochberg. Probes with a log2 fold change
higher than 0.4 and an adjusted p-value less than 0.05
were defined as significant and kept for further analysis
[33]. The probes were annotated with gene information
using the illuminaHumanv4.db annotation dataset [34].
The gene IDs of the significant Illumina expression
probes were uploaded into the IPA software (Ingenuity®
Systems, www.ingenuity.com, Redwood City, CA, USA)
to find enriched biological pathways, diseases and net-
works [35]. Fischer ‘s exact test was used to calculate a
p-value determining the probability that each biological
function and/or disease assigned to that data set is due
to chance alone. Metascape systems biology freeware
(https://metascape.org/) was used for correlating the
transcriptomic profile data [36]. For each given gene list,
pathway and process enrichment analysis has been car-
ried out with the following ontology sources: KEGG
Pathway, GO Biological Processes, Reactome Gene Sets,
Canonical Pathways, CORUM, TRRUST, DisGeNET,
PaGenBase, Transcription Factor Targets, WikiPathways,
PANTHER Pathway and COVID. All genes in the

genome have been used as the enrichment background.
Terms with a p-value < 0.01, a minimum count of 3, and
an enrichment factor > 1.5 (the enrichment factor is the
ratio between the observed counts and the counts ex-
pected by chance) are collected and grouped into clus-
ters based on their membership similarities. More
specifically, p-values are calculated based on the accu-
mulative hypergeometric distribution, and q-values are
calculated using the Banjamini-Hochberg procedure to
account for multiple testings. Kappa scores are used as
the similarity metric when performing hierachical clus-
tering on the enriched terms, and sub-trees with a simi-
larity of > 0.3 are considered a cluster. The most
statistically significant term within a cluster is chosen to
represent the cluster. Heatmaps show Metascape enrich-
ment analysis of all statistically enriched ontology terms
(GO/KEGG terms, canonical pathways, hall mark gene
sets). Accumulative hypergeometric p-values and enrich-
ment factors are calculated and used for filtering.
Remaining significant terms are then hierarchically clus-
tered into a tree dendrogram based on Kappa-statistical
similarities among their gene memberships. The term
with the best p-value are selected within each cluster as
a representative term to be displayed in a hierarchical
tree dendrogram. The heatmap cells are colored by their
p-values (see color legend). Along the same line, Metas-
cape enrichment analysis of all statistically enriched TF-
target interaction networks is dermined by the TRRUST
database [37]. Protein-protein interactions (PPI) among
all input gene lists are extracted from PPI data source to
form a PPI network (interactome). GO enrichment ana-
lysis is applied to the network to assign biological
“meanings” of sub-protein networks. GO enrichment
analysis is applied to each MCODE network to assign
“meanings” to the network component, where top three
best p-value terms were retained. MCODE components
were identified from the merged network. Each MCODE
network is assigned a unique color. For each given gene
list, protein-protein interaction enrichment analysis has
been carried out with the following databases: STRING,
BioGrid, OmniPath, InWeb_IM. Only physical interac-
tions in STRING (physical score > 0.132) and BioGrid
are used. The resultant network contains the subset of
proteins that form physical interactions with at least one
other member in the list. If the network contains be-
tween 3 and 500 proteins, the Molecular Complex De-
tection (MCODE) algorithm [38] has been applied to
identify densely connected network components. The
MCODE networks identified for individual gene lists
have been gathered and are summarized in the MCODE
subnetwork figure. Pathway and process enrichment
analysis has been applied to each MCODE component
independently, and the three best-scoring terms by p-
value have been retained as the functional description of
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the corresponding MCODE components. Coronascape is
a Metascape data hub including public available
COVID-19 research related omics data sets. It includes
more than 200 processed gene lists for SARS-CoV-2 re-
trieved from more than 20 published studies. These gene
lists were generated using several omics technologies, in-
cluding transcriptome (RNA-Seq and scRNASeq), prote-
ome, phosphoproteome, ubiquitome, and interactome,
providing a comprehensive picture of SARS-CoV-2 in-
fection in various host cell and tissue types.

Quantitative realtime PCR
To validate microarray data, THP1 cells were treated
with 1% Echinaforce® or Solvent for the indicated time-
points (3, 6, 12, 24 and 48 h) in three independent ex-
periments. The effect of JAK1 inhibition was determined
by treating the cells with 1 μM JAK1 inhibitor Filgotinib
(GLPG0634, Selleckchem) for 30 min before adding
Echinaforce®. Total RNA was isolated using the RNeasy
mini kit (Qiagen, Hilden, Germany) including a DNAse
treatment step as suggested by the manufacturer. Then
750 ng RNA was reverse transcribed into cDNA using
oligo dT (Invitrogen), M-MLV reverse transcriptase
(Promega, Wisconsin USA), 2.5 mM dNTPs and RNase-
OUT (Invitrogen). Samples were incubated on 42 °C for
60 min and 75 °C for 15 min. For the HERV genes,
cDNA synthesis was performed using random primers
(Invitrogen) and incubation of the samples at 37 °C for
60 min and 75 °C for 15 min. qPCR was performed using
the GoTaq qPCR Master Mix (Promega, Wisconsin
USA) on a StepOnePlus Real-Time PCR machine (Ap-
plied Biosystems). Following primers were used: MX1
forward primer 5′-GTTTCCGAAGTGGACATCGCA-
3′, MX1 reverse primer 5′-CTGCACAGGTTGTTCT
CAGC-3′ (NM_001144925), IFITM1 forward primer 5′-
CCAAGGTCCACCGTGATTAAC-3′, IFITM1 reverse
primer 5′-ACCAGTTCAAGAAGAGGGTGTT-3′
(NM_003641), STAT1 forward primer 5′- CCATCCTT
TGGTACAACATGC-3′, STAT1 reverse primer 5′-
TGCACATGGTGGAGTCAGG-3′ (NM_007315), IL8
forward primer 5′-GCTCTCTTGGCAGCCTTCCTGA-
3′, IL8 reverse primer 5′-ACAATAATTTCTGTGTTG
GCGC-3′ (NM_000584), CXCL10 forward primer 5′-
GAAAGCAGTTAGCAAGGAAAGGT-3′, CXLC10 re-
verse primer 5′-GACATATACTCCATGTAGGGAA
GTGA-3′ (NM_001565), ACTB forward primer 5′-
CTGGAACGGTGAAGGTGACA-3′, and ACTB reverse
primer 5′- AAGGGACTTCCTGTAACAATGCA-3′
(NM_001101). Primer sequences for HERVs were de-
rived from [39]. Each sample was ran in triplicate and
the median Ct-values between each replicate group was
selected. Ct-values were normalized using ACTB house-
keeping gene. The ddCt-values or log fold changes
(logFC) were calculated using the solvent control as

reference sample. A paired t-test t-test was used to de-
termine the significance of the differences between Echi-
naforce® and solvent expression levels.

Kinase activity profiling
Sample preparation
THP1 cells were treated with 1% Echinaforce® or ethanol
solvent control for 15 min. Cell lysates were prepared ac-
cording to manufacturer’s instructions. In short, cells
were washed twice with cold 1X PBS and lysed with lysis
buffer (1:100 dilution of Halt Phosphatase Inhibitor
Cocktail and Halt Protease Inhibitor Cocktail EDTA free
in M-PER Mammalian Extraction Buffer (ThermoFisher
Scientific™, Rockford, USA) at a ratio of 100 μl buffer per
1 × 106 cells. Lysates were then incubated on ice for 15
min and centrifuged for 15 min at 16000 x g at 4 °C. Pro-
tein concentration was quantified using the Pierce BCA
Protein Assay Kit (ThermoFisher Scientific™, Rockford,
USA).

Serine/threonine kinases (STK) and tyrosine kinase (PTK)
pamgene assay and data analysis
Kinase activity profiling was performed PamChip® pre-
processing and kinase activity profiling was performed
according to manufacturer’s instructions (PamGene
International BV, ‘s-Hertogenbosch, The Netherlands).
The first part of the protocol consisted in the blocking
of the arrays with 2% BSA followed by several washing
steps. Then 0.5 μg for STK and 5 μg for PTK assays to-
gether with the correspondent reaction mixes (pur-
chased from the Pamgene) were loaded onto the arrays
and incubated in the microarray system PamStation® 12
instrument (PamGene International, Den Bosch, The
Netherlands). In this step, the ATP contained in the mix
leads to the activation of the kinases in the lysate which
will result in the phosphorylation of the peptides on the
array. Peptide phosphorylation intensities are then de-
tected with the primary STK antibody mix and FITC-
labeled antibody for STK assay and with the FITC-
labelled PTK antibody (PTK assay). Images are then
taken by the CCD camera in the PamStation®12 and
processed by the Bionavigator software. Peptide inten-
sities data were log2 transformed and differences in
phosphorylation between Echinaforce® treated and con-
trol cultures were determined by using an univariate stu-
dent t-test analysis corrected for multiple testing using
the Benjamini and Hochberg method [33].
To identify potentially activated or inhibited kinases

we used the STK or PTK Upstream Kinase analysis
PamApp from the Bionavigator Software. The analysis is
based on “in silico predictions” for the upstream kinases
of phosphorylation sites in the human proteome that are
retrieved from the phosphoNET database [40]. In short,
a prediction algorithm is derived from known
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interactions between kinases and phosphorylation sites.
The prediction algorithm is then used to predict the
strength of undocumented interactions. The Bionaviga-
tor application uses PhosphoNet database to map puta-
tive kinases upstream of the phospho-peptides (a kinase
can have multiple possible phosphosites, and a single site
can be phosphorylated by different kinases). For each set
of peptides mapped to a specific kinase, a “difference sta-
tistics” is calculated (=normalized kinase statistics) using

following formula: τ ¼ 1
n

Pn
i¼1

pi1−pi2ffiffiffiffiffiffiffiffiffiffi
s2i1þs2i2

p with pij and sij as

the sample mean and variance of the intensity of peptide
i in group j, respectively, whereas n is the number of
peptides linked with a specific kinase. A positive kinase
statistic means that the kinase is activated, while a nega-
tive statistic means the kinase is inactivated compared to
the control group. The kinases are subsequently ranked
based on a specificity and significance score which are
calculated using permutation of the peptides and sam-
ples, respectively. Following formula is used: Q ¼ − log10
ð maxðmM ; 1

MÞÞ, where m is the number of times out of M
permutations that |τp| > |τ|, where τp is the value of the
difference statistic obtained after permutation of the
samples or peptides. The significance score represents
the magnitude of the change represented by the normal-
ized kinase statistic. The specificity score represents the
specificity of the of normalized kinase statistic in terms
of the set of peptides used for the corresponding kinase.
The higher the score the less likely it is that the observed
normalized kinase statistics could have been obtained
using a random set of peptides from the data set. The
sum of the significance and specificity score is used to
rank the kinases [41].

Genome-wide DNA methylation analysis
Sample preparation
THP1 cells were cultured for 48 h with 1% Echinaforce®
or ethanol solvent control. Corresponding cellular gen-
omic DNA was isolated using the DNeasy Blood & Tis-
sue kit (Qiagen, Hilden, Germany) according to
manufacturer’s instructions. DNA concentration and
purity was measured using the Nanodrop 100 spectro-
photomer and 1 μg of DNA was used for bisulfite con-
version using the EZ DNA methylation Kit of Zymo
Research according to manufacturer’s instructions. Suc-
cessful bisulfite conversion was checked using a
methylation-specific PCR in a region of the SALL3 gene
(see [42] for primer sequences).

EPIC DNA methylation array
The Infinium HumanMethylationEPIC BeadChip
array (Illumina, San Diego, CA, USA) was used to
measure genome-wide DNA methylation. Four μL of

bisulfite-converted DNA from each sample was amp-
lified, fragmented, precipitated, resuspended and sub-
sequently hybridized onto the BeadChips. After
overnight incubation of the BeadChips, unhybridized
fragments were washed away, while hybridized frag-
ments were extended using fluorescent nucleotide
bases. Finally, the BeadChips were scanned using the
Illumina iScan system to obtain raw methylation in-
tensities of each probe.

EPIC DNA methylation data preprocessing and analysis
The R package RnBeads was used to preprocess the
Illumina 450 K methylation data [43]. CpG-probes
were filtered before normalization based on following
criteria: probes containing a SNP within 3 bp of the
analyzed CpG site, bad quality probes based on an it-
erative greedycut algorithm with a detection p-value
threshold of 0.01, and probes with missing values in
at least one sample. After filtering these CpG-probes,
methylation values were within-array normalized
using the beta mixture quantile dilation (BMIQ)
method [44]. Another filtering step was performed
after normalization based on following criteria: probes
measuring methylation not at CpG sites (CC, CAG,
CAH, …) and probes on sex chromosomes.
The methylation beta-values were transformed to

M-values (M = log2(β/(1-β))) prior to further ana-
lyses. The moderated t-test incorporated in the
limma R package [32] was used to calculate the sta-
tistics and p-values of the methylation differences
between Echinaforce®- and solvent-treated samples.
Significant differentially methylated probes (DMPs)
were selected based on a false discovery rate (FDR) <
0.1 and a difference in beta-value of at least 0.05.
The DMPs were annotated with gene information
using the IlluminaHumanMethylationEPICmanifest R
package [45]. Further gene information was retrieved
from the UCSC genome browser (human hg19). En-
richment of genomic regions was calculated using
the Fisher’s exact test. Pathway analysis of the genes
harboring a DMP was performed using the Ingenuity
Pathway Analysis (IPA) software. Raw and normal-
ized array data were uploaded to the Gene Expres-
sion Omnibus (GEO) database and have accession
number: GSE117904.

Protein expression of MX1, STAT1 and IFITM1 proteins
using western blotting
Protein expression levels of MX1, STAT1 and IFTI
M1 were determined in THP1 cells treated with 1%
Echinaforce® or ethanol solvent control for 48 h, as
explained before. Then, cells were washed and incu-
bated 15 min on ice in lysis buffer containing: 150
mM NaCl, 1 mM EGTA, 1 mM EDTA, 1 mM ß-
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glycerolphosphate, 1% Triton X-100 (w/v), 20 mM
Tris HCl, pH = 7.5 and proteinase inhibitor
(Complete™, EDTA-free Protease Inhibitor Cocktail,
Sigma-Aldrich, USA) plus PhosphataseArrest™ Phos-
phatase Inhibitor Cocktail (phosphataseArrest™, G-
Biosciences, USA). Cells were subsequently centri-
fuged for 15 min at 200 g at 4 °C and supernatant
containing the soluble proteins were stored at − 20 °C
until use. Protein lysates (20 μg) were mixed with 5X
sample buffer (5% SDS, 20% glycerol, 0.2%
bromophenol-blue, 250 mM DTT, 65 mM Tris HCl)
all purchased from Sigma Aldrich (Missouri, USA),
heated for 5 min at 95 °C and loaded in a 12% SDS-
PAGE gel. Proteins contained in the homogenates
were separated during 30 min at 60-70 V and 1 h at a
constant voltage of 130 V. Further, 10 μl of Bench-
Mark™ Pre-Stained Protein Standard (Life Technolo-
gies, CA, USA) was also loaded next to the samples.
After separation proteins ttransferred onto a Nitrocel-
lulose Membrane (BioRad, CA, USA) during 2 h at
45 V. Non-specific binding sites were blocked by incu-
bating the membranes with blocking buffer (0.05%
Tween 20, 1x TBS, 5% BSA) for 1 h at room
temperature. The membrane was then incubated with
the primary antibodies: MX1 (D3W7I) Rabbit mAb
#37849, IFITM1 Antibody Rabbit pAb #13126 and
the STAT1 (42H3) Rabbit mAb #9175 (all purchased
from Cell Signaling Technology, Massachusetts, USA)
or rabbit polyclonal Anti-GAPDH antibody (ab9485,
Abcam, Cambridge, UK) overnight at 4 °C. After
membranes were washed, they were incubated with
(1:10000) Donkey anti-Rabbit IgG (H + L) Secondary
Antibody-HRP (Thermo Fisher Scientific, Massachu-
setts, USA) for 1 h at room temperature. Chemilumi-
niscence detection was performed using the ECL
detection kit (Pierce™ ECL Western Blotting Substrate
(Thermo Fisher Scientific, Massachusetts, USA) in a
ChemiDoc MP system (BioRad, CA, USA).

Assessment of IFNα2, IFNβ IFNγ, CXCL8 (IL8) and CXCL10
levels
Cell culture supernatants were collected after 3, 6, 12, 24
and 48 h and assayed for chemokines CXCL10 and IL8
by means of an enzyme-linked immunosorbent assay
(ELISA) purchased from Invitrogen (CA, USA) following
manufacturer’s instructions. The assays have a detection
limit of 2 pg/ml for CXCL10 and 5 pg/mL for IL-8. Simi-
larly, protein concentrations of IFNα2, IFNβ and IFNγ
were measured in the same culture supernatants using
the highly sensitive U-PLEX Biomarker Group 1 (hu)
Assay (Meso Scale Diagnostics, Maryland, USA) follow-
ing manufacturer’s instructions. The U-PLEX assays
have a detection limit of 4.0 pg/ml, 3.1 pg/mL and 1.7
pg/mL respectively for IFNα2, IFNβ and IFNγ.

Results
Echinaforce® treatment triggers tonic IFN regulation of
innate immunity signaling pathways
Widespread gene expression changes in monocyte THP1
cells were detected upon 48 h 1% Echinaforce® treat-
ment. Based on significance criteria of FDR < 0.05 and
absolute log2 fold change > 0.4, Echinaforce® induced
modest upregulation of 205 expression probes (173
genes) while 124 probes (99 genes) were downregulated
compared with the ethanol treated solvent controls
(Fig. 1a and Supplementary Table 1). In contrast to
pharmacological drugs (for example glucocorticoids
(GC)) which can trigger drastic expression changes of
GC-responsive genes (typically, log2 fold > 1), many bio-
active phytochemicals rather induce moderate transcrip-
tional changes (typically log2 fold > 0,4) of multiple
genes converging on the same pathway [46–48]. Genes
differentially expressed (DEG) by Echinaforce® treatment
were enriched for IPA canonical pathways related to in-
nate immune responses including interferon signaling,
interferon regulatory factor (IRF) activation and the role
of pattern recognition receptors, among others (Fig. 1b-
c and Supplementary Table 2). Interestingly, most of
these pathways were predicted to be activated, as can be
seen from the highly positive activation z-scores. Inter-
feron (IFN)α/β and IFNγ both induce IFN-stimulated
gene (ISG) expression through Janus kinase (JAK)-
dependent phosphorylation of signal transducer and ac-
tivator of transcription factors (STAT)1 and STAT2
[49–54]. In line with the latter reports, we could observe
transcriptional activation of various antiviral gatekeepers
and interferon inducible proteins (i.e. MX1, IFI6/27/35/
44, IFITM1/2/3, IFIT1/2/3, ISG15/20, IRF7/9), including
various STAT1 target genes (Fig. 1c, Supplementary
Table 1, 2). Logically, pathways related to viral infection
and replication were predicted to be inhibited (activation
z-score < − 2). Also pathways involving cellular move-
ment, migration, recruitment and chemotaxis were pre-
dicted to be activated (activation z-scores > 2) (Fig. 1d).
Aside from ISGs, transcription of various chemokines
and receptors (CXCL10, CXCL8, CCL2, CCL5, and
CXCR4) were also increased. In full accordance, recruit-
ment and adhesion of immune cells, infection and im-
mune related processes were found top ranked enriched
diseases and biological functions in IPA analysis (Sup-
plementary Table 3).
Complementary to IPA analysis, protein-protein-

interaction enrichment analysis of DEGs by STRING
[55] and Metascape [56] algorithms was performed. This
revealed strong enrichment of protein-protein interac-
tions responding to a chemical stimulus, which triggers
a defensive antiviral innate immune response involving
IFN, TLR, NOD, RIG, cytokine, chemokine and NFκB
signaling pathways (Fig. 2, Supplementary Table 4).
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Fig. 1 (See legend on next page.)
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More particularly, Metascape MCODE analysis identi-
fied 3 interconnected subnetworks in the antiviral cyto-
kine response: cellular response to interferon, regulation
of leukocyte chemotaxis and (mitochondrial) metabolism
(Supplementary Table 4).
Next, different gene members of the IFN and chemo-

taxis innate immune signaling pathway, responsive to
Echinaforce® treatment in THP1 cells (Fig. 3a) were

selected for further evaluation of time dependent expres-
sion changes: STAT1, MX1, IFITM1, IFNα2, IFNβ,
IFNγ, CXCL8 and CXCL10 mRNA and/or protein levels
were measured in THP1 monocytes after 3 to 48 h Echi-
naforce® treatment by means of qPCR, ELISA, multiplex
MSD U-PLEX® immunoassay and/or Western immuno-
blotting assays. Induction of STAT1 and the interferon-
stimulated genes MX1 and IFITM1 expression could

(See figure on previous page.)
Fig. 1 Echinaforce® induced gene expression activates innate immunity pathways a Volcano plot showing the upregulated genes (orange color,
number of probes: 205), and downregulated genes (blue color, number of probes: 124) upon treatment of THP1 cells for 48 h with Echinaforce®
tincture (1%). b Top enriched IPA canonical pathways. Bars are colored by activation z-score. c IPA interferon signaling pathway with
Echinaforce®-induced upregulated genes colored in red and green, respectively. d Top enriched IPA infectious diseases and IPA immune
trafficking disease and biological function. Bar charts are colored by activation z-score

Fig. 2 Protein-protein-interaction network analysis of Echinaforce® treatment responsive genes. STRING based protein-protein-interaction network
analysis of differentially expressed genes of THP1 cells treated for 48 h with Echinaforce® tincture (1%) shows a strong network overlap of the
cellular response to a chemical stimulus (FDR 2,91 E-18) (blue colored dots-pies), cellular defense to virus (FDR 5,54 E-19) (red colored dots-pies)
and innate immune cytokine response (FDR 2,23 E-18) (yellow colored dots-pies) (see also, supplementary Table 4)
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clearly be confirmed, with maximal mRNA transcription
levels observed after 48 h treatment (Fig. 3b). Corre-
sponding changes in STAT1 protein expression levels
could also be verified by Western analysis (Fig. 3c),
whereas antibodies failed to detect significant amounts
of MX1 and IFITM1 protein (data not shown). Whether
MX1 and IFITM1 protein expression has high turnover
rates resulting in low protein expression levels needs fur-
ther investigation [57, 58]. For the chemokines IL8 and
CXCL10, persistent gene induction could be observed
upon Echinaforce® treatment until 48 h, with peak tran-
scription levels after 3 h (Fig. 3b). Accordingly, time
dependent accumulation of both chemokines in the cell
culture supernatants could be detected in ELISA (Fig.
3d). Finally, in line with background mRNA transcrip-
tion levels, multiplex immunoassay detection of super-
natant levels of IFNα2, IFNβ, IFNγ protein only showed
low expression levels, which weakly increase after 48 h
Echinaforce® treatment Fig. 3e). However, in contrast to
high expression levels of IFN upon acute viral infection,

very weak expression levels of IFN in absence of infec-
tion also exert profound immunological effects, in part
through “tonic” homeostatic modulation of various sig-
naling intermediates which regulate diverse cytokines to
train immunity [59–61].

Echinaforce® treatment activates IFN and antiviral innate
immune response which is suppressed in severe SARS-
CoV-2 patients
Coupled to Metascape analysis [36], the Coronascape
database (https://metascape.org/COVID) provides quick
access to numerous published COVID-19 omics data
sets, and a comprehensive system level data analysis
toolkit for data mining. Remarkably, upon comparison
of our Echinaforce® responsive gene signature in THP1
monocytes with public available datasets of gene expres-
sion profiles of SARS-CoV2 patients, we observed a very
strong overlap in enriched pathways (P-value 10− 48–
10− 61) related to IFN, cytokine and innate immune sig-
naling in patients with mild to severe symptoms [62–69]

Fig. 3 Induction of innate immune response by Echinaforce®. A) transcriptome gene expression changes IFN, innate immunity, chemokine,
cytokine genes (logFC) B) transcription levels of MX1, IFITM1, STAT1, CXCL8(IL8) and CXCL10 genes at different time points, the bars represent the
mean logFC values + − SD compared to the solvent control. *: P≤ 0.05, ** P: ≤ 0.01, *** P: ≤ 0.001 and **** P: ≤ 0.0001. C) Blots showing protein
levels of STAT1 and GAPDH (as reference protein) in 20 μg protein of cell lysates after 48 h stimulation with solvent (Ethanol) or Echinaforce®; Bars
graph represents the density of each blot band for STAT-1 relative to the band density of GAPDH (reference protein). Band intensities were
calculated using imageJ software. Statistical differences between solvent and Echinacea treated samples were assayed using a paired t-test where
p value < 0.05 was considered statistically significant. (***) means p value < 0.01, (*): P ≤ 0.05, (**): P ≤ 0.01, (***): P ≤ 0.001 and (****): P ≤ 0.0001. D)
Expression levels of IL8, CXCL10, IFNα2, IFNβ, IFNγ chemokines assayed by ELISA and MSD-U-Plex immunoassays in supernatants collected after
Echinaforce® and solvent (Ethanol) stimulation. (***) means p value < 0.01, (*): P ≤ 0.05, (**): P ≤ 0.01, (***): P ≤ 0.001 and (****): P ≤ 0.0001, p-values
after a paired t-test where p value < 0.05 was considered statistically significant
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(Fig. 4a). Of special note, whereas Echinaforce® treatment
was found to promote innate immunity via multiple IFN
stimulated genes (ISG), i.e. pattern recognition receptor
genes and chemokines (our results), severe SARS-Cov2 pa-
tients typically suffer from a strongly impaired interferon
(IFN) type I response and weak innate antiviral defense
(ISGs), associated with a persistent blood viral load and an
exacerbated inflammatory response [64–72]. Furthermore,
Metascape TRRUST analysis [37] of all statistically enriched
TF binding motifs in differentially expressed genes in severe
covid patients, which can be modulated by Echinaforce treat-
ment identified key roles for NFκB, STAT and IRF family
transcription factors (Fig. 4b). Finally, Metascape Protein-
protein interaction analysis of Echinaforce regulated protein
networks identified multiple antiviral IFN and immune sig-
naling networks disturbed in severe SARS-CoV2 patients
(Fig. 4c, Supplementary Table 4), including an EBV specific
virus infection protein network. Remarkably, EBV reactiva-
tion and increased EBV DNA load have recently been re-
ported in severe SARS-CoV2 patients with impaired
lymphocyte subpopulation counts [73].

Echinaforce® treatment activates JAK1, NFκB and MAPK
kinases
To identify most important upstream kinase pathways
responsible for gene expression changes in THP1

monocytes following Echinaforce® treatment, we per-
formed a Pamchip kinome activity profiling assay [41].
This peptide array approach allows characterization of
cellular serine/threonine or tyrosine kinome activity pro-
files following on chip in vitro kinase reaction of 144
conserved kinase consensus peptide motifs in presence
of THP1 monocyte lysates left untreated or following
Echinaforce® treatment [74–77]. Using the upstream kin-
ase prediction tool of the Bionavigator PamGene soft-
ware, the qualitative and quantitative changes in
phosphopeptide chip intensities upon Echinaforce® treat-
ment were translated into a pattern of activated or
inhibited upstream kinases (Fig. 5a and Supplementary
Table 5). In agreement with the transcriptional activa-
tion of the IFN signaling pathway described above (Fig.
1c), Pamchip kinome profiling [41] revealed activation of
the JAK1 kinase which is important in the phosphoryl-
ation of STAT kinases and subsequently downstream
regulation of IFN-stimulated genes. Furthermore, in line
with pathway analysis of transcriptome data, we also
identified activation of the tyrosine kinase TEC (Fig. 5b)
(Supplementary Table 2, 3, 4). Surprisingly, our ana-
lysis did not detect significant activity changes of early
IFN kinases TBK1 and IKK [78].
Besides, we also identified various Echinaforce® acti-

vated kinases belonging to the MAPK superfamily of

Fig. 4 Systems level metascape analysis of transcriptome profiles of Echinaforce treated THP1 monocytes and blood PBMC samples of SARS-CoV2
patients. a Metascape enrichment analysis of statistically enriched ontology terms (GO/KEGG terms, canonical pathways, hall mark gene sets). b
Metascape enrichment analysis of all statistically enriched TF-target interaction networks c GO enrichment analysis of all protein-protein
interaction networks to assign biological function to each MCODE sub-protein-networks
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Fig. 5 (See legend on next page.)

Declerck et al. BMC Complementary Medicine and Therapies          (2021) 21:141 Page 11 of 20



kinases: p38 MAPK (MAPK11, − 12, − 13, and − 14),
JNK (MAPK8, − 9 and − 10) and ERK1 (Fig. 5c). This
upstream regulators are also predicted by IPA to control
various canonical pathways, including pattern recogni-
tion receptors in recognition of bacteria and viruses, ac-
tivation of IRF by cytosolic pattern recognition receptors
and role of MAPK signaling in the pathogenesis of influ-
enza among others.
To further verify crucial involvement of JAK kinase acti-

vation in downstream gene expression effects upon Echi-
naforce® treatment, we compared THP1 gene expression
changes following Echinaforce® treatment in presence or
absence of the pharmacological JAK1 inhibitor filgotinib.
We found that filgotinib significantly suppresses the Echi-
naforce® responsive genes MX1 and IFITM1, whereas
STAT1, CXCL10 and IL8 gene expression were less sig-
nificantly suppressed (Fig. 5d). Altogether, experiments
with the JAK1 inhibitor filgotinib strenghten our tran-
scriptome and kinome data analysis, pointing to JAK1-
specific regulation of downstream gene expression
changes in response to Echinaforce® treatment.

Echinaforce® treatment elicits epigenetic changes in
innate immunity gene pathways
Epigenetics seems to be important in training immunity
[60, 79] during monocyte differentiation and in the im-
munological memory of macrophages [80, 81]. Today,
various bioactive phytochemicals have been identified
which modulate inflammation through epigenetic repro-
gramming [82, 83]. Different phytochemicals and nutri-
ents are known to change DNA methylation and histone
modifications by directly influencing epigenetic enzymes
or by interfering with the availability of the substrates/
cofactors of these enzymes [84–86]. To assess whether
the Echinaforce® induced changes in transcriptome pro-
files in THP1 cells are associated with DNA methylation
changes, we measured complementary changes in DNA
methylation profiles using the Illumina EPIC methyla-
tion array. Significant DNA methylation changes were
observed following 48 h exposure to Echinaforce® (Fig. 6a
and Supplementary Table 6).

A total of 1875 CpG sites was found differentially
methylated (FDR < 0.1) with a methylation difference of
at least 5%. Typically, DNA methylation changes after
short (24-72 h) exposure to phytochemicals and nutri-
ents are much smaller than cancer associated DNA
methylation changes in oncogenes or tumor suppressor
genes which accumulate for many years in response to
the microenvironment [48, 87, 88]. However, similar
DMR effects sizes and cutoff (< 5%) were found to be
biologically meaningful in various disease etiologies [42,
89, 90].
From the 1875 CpG sites identified, only 40 differen-

tially methylated positions (DMPs) were hypomethylated
whereas 1835 DMPs were hypermethylated. DMPs were
mainly enriched in gene bodies, intergenic, and CpG-
poor regions, while depleted in CpG islands, promoter,
and enhancer regions (Fig. 6b). Only 1259 of the 1875
CpG-probes (67%) were located in a gene or 1500 bp up-
stream of a gene. Similarly, DNA methylation variation
in the immune system was predominantly found at at
CpG islands (CGI) within gene bodies, which have the
properties of cell type-restricted promoters, but infre-
quently at annotated gene promoters or CGI flanking se-
quences (CGI “shores”) [91]. Subsequent IPA pathway
enrichment analysis of the genes containing DMPs re-
vealed inflammation or immunological diseases among
others (Supplementary Table 6). Of particular interest,
one of the top enriched pathways (‘Superpathway of In-
ositol Phosphate Compounds’) controls various epigen-
etic processes related to the interferon response [92–94].
Since both gene expression and kinase profiling both

revealed the involvement of interferon signaling path-
ways, we also checked whether methylation of IFN path-
way genes was affected by Echinaforce® treatment. Eight
probes located in BCL2, JAK1, STAT1, PIAS1 and TAP1
did show an FDR < 0.1, with small methylation differ-
ences (between 1 and 3%) (Fig. 6c). Whether these small
methylation changes are sufficient to “train” the innate
immune gene response needs further investigation [60,
61, 79].
Since most of the DMPs were located in intergenic re-

gions and gene bodies, only a small subset of genes

(See figure on previous page.)
Fig. 5 Activation of JAK1 and MAPK kinases by Echinaforce®. a Kinome activity profiling on THP1 cell lysates, following 15min treatment with
Echinaforce® tincture (1%). Showing predicted upstream kinases. Bars are colored by specificity score with red meaning the highest score. The
direction of the bars represents the normalized kinase statistics. A positive kinase statistic means a higher activity in Echinaforce® treated samples. b
TEC signaling pathway as predicted by IPA software showing the up- and down-regulated genes (colored in red and green, respectively), after
Echinaforce® treatment. Numbers under genes names represent (from up to down): the log fold changes, p-values and adjusted p-values after a paired
t-test comparing gene expression in cells stimulated with Echinaforce® and solvent (control). c) IPA-enriched P38 MAPK and JNK pathways upstream
regulators. Genes colored in orange are predicted to be activated, while genes colored in blue are predicted to be inhibited. Numbers under gene
names represent (from up to down): the log fold changes, p-values and adjusted p-values after a paired t-test comparing gene expression in cells
stimulated with Echinaforce® and solvent (control). d Effect of JAK1 inhibition on transcript expression of interferon pathway related genes. THP1 cells
were either treated during 48 h with the JAK1 inhibitor Filgotinib alone or in combination with Echinaforce® (n = 7). Mean expression LogFC change
relative to solvent control is represented together with 95% confidence interval. *: P≤ 0.05, ** P: ≤ 0.01, *** P: ≤ 0.001
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containing a DMP also resulted in a significant change
in gene expression (Fig. 6d). Only seven genes were both
differentially methylated and expressed, based on the
significance criteria described above: i.e. Calsyntenin 2
(CLSTN2), Enhancer Of Zeste 2 Polycomb Repressive
Complex 2 Subunit (EZH2), Growth arrest-specific pro-
tein (GAS)-7, neuron navigator (NAV)-3, Thioredoxin

Reductase (TXNRD)-1, Tryptophanyl-tRNA synthetase
(WARS) and Zinc Finger Transcription Factor (ZNF)-
644. When using less stringent significance criteria, leav-
ing out the effect size cutoff (logFC), 574 CpG site –
gene pairs were found to be differentially expressed and
methylated. Upon further comparing canonical pathways
which are significantly enriched for both lists of

Fig. 6 Echinaforce® treatment leads to global hypermethylation of CpG-poor gene bodies. a Heatmap showing the methylation values of
differentially methylated probes upon treatment of THP1 cells for 48 h with Echinaforce® tincture (1%). Solvent (EtOH) controls are colored in blue
and Echinaforce®-treated cells in orange. b Genomic enrichment of DMPs in different genomic regions. c CpG probes located in genes of the
interferon signaling pathway which were differentially methylated (FDR < 0.1). * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001. d Starburst plot
showing the genes both differentially expressed and differentially methylated. Each CpG-probe was mapped to its corresponding gene and the
-log10(FDR) from the gene expression and DNA methylation analysis is displayed. The –log10(FDR) values of genes or CpG-probes with a
negative LogFC or delta beta was multiplied by − 1 leading to positive values when logFC or delta beta was positive and negative values when
logFC or delta beta was negative. CpG-probe – gene pairs which were differentially expressed (FDR < 0.05) and differentially methylated (FDR <
0.1) were colored in blue. The CpG-probe – gene pairs of which the absolute delta beta was higher than 0.05 and the absolute logFC higher
than 0.4 were colored in red. e The IPA canonical pathways which were both significantly enriched in the gene expression and DNA
methylation analysis
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differentially expressed genes and the list of differentially
methylated genes, we identified 10 common biological
processes (Fig. 6e). Remarkably, common pathways in-
clude NF-κB signaling (NF-κB activation by viruses, NF-
κB signaling), MAPK signaling (LPS-stimulated MAPK
signaling, UVA-induced MAPK signaling), and immune
responses (i.e. Role of pattern recognition receptors in
recognition of bacteria and viruses, Role of NFAT in
regulation of the immune response, phagosome forma-
tion, CD40 signaling, leukocyte extravasation signaling).

Echinaforce® treatment changes DNA repeat methylation
and HERV transcription levels
DNA repeats and transposons require hypermethylation
to maintain genomic instability and prevent transpos-
ition [95–99]. Interestingly, differentially methylated
probes (DMPs) demonstrated a considerable enrichment
in LINE, SINE and LTR transposon repeats, flanking en-
dogenous retroviral sequences (HERVs) (Fig. 7a-b). This
DMPs decreased transcription of MER4D, MER57B1,
MLT1C627, MLT2B4 HERVs after 12 and 48 h Echina-
force® treatment, whereas MLT1B and MLT1C49
HERVs were only transiently repressed at 12 h (Fig. 7c).
However, it remains unclear whether innate immune
signaling (IFN response, chemotaxis, and

immunometabolism) is driving HERV regulation or vice
versa to mediate viral protection.

Discussion
In this study, we applied for the first time a systems biol-
ogy approach to characterize a possible mode of action
of a standardized medicinal Echinacea purpurea (L.)
Moench tincture Echinaforce®, which is widely used as a
herbal remedy against respiratory tract infections.
Microarray, QPCR, Western and multiplex immunoas-
says demonstrate that treatment of THP1 monocyte cells
with Echinaforce® phytochemicals elicit time dependent
gene expression changes in antiviral innate immunity
signaling networks, involving tonic IFN (MX1, IFNβ,
IFNγ, IFITM1, STAT1, STAT2) chemotaxis (IL8,
CXCL10) and immunometabolic (ISG15, PKM2, SQST
M1) signaling pathways.
Most cells express a set of membrane and cytoplasmic

receptors to detect viral RNA and DNA molecules: Pat-
tern Recognition Receptors (PRRs). These receptors con-
trol innate immune signaling to activate the synthesis of
interferons during a viral infection. In addition to patho-
gens, autophagy, metabolic and chemical stress, DNA
damage, unfolded protein response, can also regulate in-
nate immunity through cell-autonomous responses. Ei-
ther IFN-inducible or constitutive, these processes aim

Fig. 7 Echinaforce® treatment leads to global hypermethylation of intergenic repeat elements. a Genomic enrichment of DMPs in different repeat
elements. b Global DNA methylation changes in different repeat elements. c HERV qPCR gene expression. THP1 cells were with Echinaforce® at
12 and 48 h (n = 3). Mean LogFC change relative to solvent control is represented together with 95% confidence interval. *: P ≤ 0.05, ** P: ≤ 0.01,
*** P: ≤ 0.001 and **** P: ≤ 0.0001
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to guarantee cell homeostasis or a biodefense mechan-
ism against (non-self) hazardous molecules [100]. Of im-
portance, these distinct constitutive cell-autonomous
responses appear to be interconnected and can also be
modulated by microbes, viruses and PRRs [101]. Our re-
sults suggest that Echinaforce® phytochemicals train in-
nate immunity pathways via activation of interferon and
chemokine gene expression. As such, secondary metab-
olite phytochemicals involved in plant immunity may
prime evolutionary conserved innate immune responses
across species [102–104].
For example, Echinaforce® treatment increases expres-

sion IFI27 and IFITM1, which both play critical roles in
antiviral immunity and disease severity in respiratory
disease [105–107]. Along the same line, transcriptional
upregulation of the protein kinase receptor (PKR,
EIF2AK2), a cytoplasmatic pattern-recognition receptor
could be observed. PKR is known to transduce RNA
helicase (MDA5) dependent virus signals for type I IFN
induction [108]. Interferon regulatory factor 7 (IRF7) is
another key protein found strongly upregulated. Tran-
scription factors IRF7 together with IRF3 regulate ex-
pression of early type I IFN and other proteins involved
in the innate antiviral immune response (activation of
IRF by cytosolic pattern recognition receptors) [109] (Sup-
plementary Tables 1, 2, 3, 4). Signal transduction via
PKR occurs mainly via NFκB and MAPK pathways (Role
of PKR in Interferon induction and antiviral response)
[110]. Another important intracellular pattern-
recognition receptor for viral RNA which was found to
be upregulated by Echinaforce® was the RNA helicase
MDA5 (IFIH1) [78]. Furthermore, upregulation of the
NF-κB subunits RelB and NFKB2/p52 was observed,
which can promote downstream production of innate
immunity chemokines (NF-κB activation by viruses, NF-
κB signaling) [111].
In line with our results showing activation of tonic

IFN regulation of innate immunity gene responses, anti-
viral effects against influenza infection and activation of
IFN pathways have also been demonstrated in vivo fol-
lowing Echinaforce® tincture treatment [10, 14, 20].
Along the same line, Echinaforce® treatment holds
promise to reduce disease severity symptoms in SARS-
CoV2 patients by strengthening impaired IFN specific
innate immune signaling [64, 70, 71]. Our in vitro results
are also in line with observations in human studies
ex vivo/in vivo showing increased immunomodulating as
well as chemotactic neutrophil effects following Echina-
force® treatment [10, 22, 23, 112]. For example, the anti-
viral ability of CXCL10 has been attributed to its
chemoattractant effects which promote recruitment of
natural killer cells [113–116] and neutrophils [113–116].
The latter illustrates that both neutrophils and inflam-
matory monocytes are intertwined in the immune

system’s anti-viral response [113–116]. Similar results
were previously obtained in murine dendritic cells, illus-
trating that Echinaforce® stimulates cell mobility and
chemotaxis and alters expression of cell adhesion and
motility genes [117]. Other studies showed that Echina-
force® may reverse the chemokine induction of virus-
infected cells [11, 118–120]. Paradoxically, Echinaforce®
may induce cytokine and chemokine expression in unin-
fected cells, but suppress their expression upon virus in-
fection or LPS stimulation [29, 118–120]. Similarly,
Echinaforce® increased the transcription of TNFα in hu-
man monocytes, but reduced the LPS-stimulated TNF-α
protein production [19]. Although studies suggest that
this stimulatory effect may be the result of bacterial-
derived LPS and lipoproteins [26–29], our Echinaforce®
tincture contains no polysaccharides, neither endotoxins.
Altogether, the latter suggests that its immunomodula-
tory effects are due to the active compounds present in
the formulation [12, 19]. Similar activation of IFN innate
immunity and viral protection has been observed in
presence of avocado and apple extract [121, 122]. Inter-
estingly, in the latter case, effects were attributed to olig-
omeric proanthocyanidins and lost with their
monomeric form [122].
With respect to immunometabolism, mitochondrial

metabolism shows a remarkable sensitivity to chemokine
and IFN signaling [123, 124]. For example, ISG15 is an
interferon-stimulated, ubiquitin-like protein which regu-
lates mitochondrial homeostasis and targets various pro-
teins involved in catabolic autophagy metabolism in the
mitochondria (mitophagy) during infection [125, 126].
Moreover, mitochondrial changes in immunometabolism
(glycolysis, the tricarboxylic acid (TCA) cycle, the pen-
tose phosphate pathway, fatty acid oxidation, fatty acid
synthesis and amino acid metabolism) strongly contrib-
ute in (re) shaping immunity and production of neutro-
phil extracellular traps (NETs) [127–130].
Next, phosphopeptide based kinome activity analysis

revealed Echinaforce® specific activation of innate im-
munity and IFN signaling via multiple kinases, including
JAK1, TEC, p38 MAPK (MAPK11, − 12, − 13, and − 14),
JNK (MAPK8, − 9 and − 10) and ERK1 kinases [131,
132]. JNK-STAT1 signaling induces various IFN respon-
sive genes [133]. Moreover, JAK1 dependent regulation
of downstream IFN and chemokine related gene expres-
sion after Echinaforce® treatment, could be reversed with
the specific pharmacological JAK1 inhibitor filgotinib.
TEC activation has important roles during innate im-
munity, i.e. IFN signaling via phosphorylation of JAK1
and JAK2 [131, 132], TLR signaling [134], assembly and
activation of the caspase-8 inflammasome [135], macro-
phage survival [136], IL8 production [137], phagocytosis
[138], and NFκB signaling [139]. p38 MAPK activation is
involved in RIG-I dependent IFN signaling [140].
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Various studies confirm involvement of these kinases in
Echinacea biological action [19, 117, 141–144]. Alkyla-
mides in the Echinaforce® tincture were found to be re-
sponsible for MAPK effects upon binding to CB2
receptors leading to increased cAMP, P38/MAPK and
JNK signaling, NFκB and ATF-2/CREB-1 activation [19].
Similarly, lipophilic extracts of Echinacea promoted
murine dendritic cell maturation and mobility via the
modulation of JNK, P38 MAPK and NFκB pathways
[117, 141, 142]. Another study demonstrated a JAK-
STAT1 dependent antiviral response of Tripterygium
wilfordii (Thunder of God Vine) via the quinone
methide triterpene celastrol [145].
Finally, genomewide epigenetic analysis of DNA

methylation changes following Echinaforce® treatment
revealed almost 2000 DMP, enriched for immune disease
and immunological pathways. Although the observed
methylation changes are relatively small after 72 h treat-
ment, cumulative effects can contribute in building an
immune memory response by priming chromatin to
mount faster and higher innate immune transcription
upon re-stimulation of immune cells [103]. Besides the
regulation of gene expression, DNA methylation is also
involved in regulating alternative splicing, intron reten-
tion or promote cryptic transcription of non-annotated
TSSs (TINATs) encoding immunogenic peptides which
might prime an antiviral innate immune response [146–
149]. As such, it appears that Echinaforce® treatment
predominantly promotes epigenetic changes in innate
immunity gene pathways and to a less extent of adaptive
immunity responsive genes.
Besides, the higher global DNA hypermethylation ob-

served after Echinaforce® treatment in LINE, SINE and
LTR transposon repeats flanking endogenous retroviral
sequences (HERVs), may be part evolutionary conserved
(epi) genomic protective response against retrotransposi-
tion and viral infection [150, 151]. Similarly, IFN was
shown to promote DNA methylation silencing of repeats
and noncoding RNAs [39, 150, 152, 153]. Specific
HERVs have been proposed to establish a protective ef-
fect against exogenous viral infections [154]. HERVs can
act as IFN-inducible enhancers and have shaped the evo-
lution of a transcriptional network underlying the IFN
response [154–157]. Of particular interest, the MER41B
family of ERV sequences contains a STAT1 binding site
and regulates expression of IFN-γ–responsive genes,
such as absent in melanoma 2 (AIM2), and IFI6 [158,
159]. CRISPR-Cas9 deletion of a subset of these HERV
elements in the human genome impaired expression of
adjacent IFN-induced genes and revealed their involve-
ment in the regulation of essential immune functions,
including activation of the AIM2 inflammasome. Along
the same line, DNA methylation inhibitors trigger an
IFN response through viral mimicry via transcription of

dsRNAs of repetitive elements from HERVs which can
activate RIG-I and MDA5 PRRs [150, 151]. RNA tran-
scripts of HERVs can be reverse transcribed to generate
ssDNA or expressed to generate proteins with viral sig-
natures, much like the pathogen-associated molecular
patterns of exogenous viruses, which allows them to be
detected by the innate immune system [160, 161]. In an-
other example, silencing of the MLT1C49 HERV de-
creased expression of CXCL10 and CCL2 chemokines
[162]. Finally, transcriptional changes of MLT1B and
MER4D HERV transcription and innate immune signal-
ing have also been described upon immunometabolic
mitochondrial changes in protein kinase (PK)-M2 activ-
ity, which were counteracted by NFκB RelB [163]. From
these examples, it appears that HERV regulatory se-
quences now constitute a dynamic reservoir of IFN-
inducible enhancers fueling genetic innovation in mam-
malian immune defenses [158, 164, 165].
Previous studies showed that Echinaforce®, besides its

immunomodulating activities is also very active as a viru-
cidal agent against viruses with membranes, i.e. HSV-1,
respiratory syncytial virus, all tested human and avian
strains of influenza A virus, as well as influenza B virus
[166]. Along the same line, Echinacea polyphenol quer-
cetin was found to inhibit the entry of HIV-luc/SARS
pseudotyped virus into Vero E6 cells [167]. Similar pro-
tective effects could recently also be observed in a recon-
stituted nasal epithelium cell culture system by exposing
Echinaforce®-treated respiratory epithelium to droplets of
HCoV-229E, SARS- or MERS-CoVs, imitating a natural
infection [168]. In contrast Echinaforce® was found to be
less effective against intracellular virus replication [168].
Consequently, virus already present within a cell could be
refractory to the inhibitory effect of Echinaforce®, but virus
particles shed into the extracellular fluids would be vul-
nerable. Therefore, the antiviral actions of the Echina-
force® may especially manifest during initial contact with
the virus, i.e. at the inception of infection, and also during
transmission of virus from infected cells.

Conclusion
In conclusion, our systems biology approach revealed
that Echinaforce® phytochemicals trigger multiple anti-
viral innate immunity pathways, involving tonic IFN sig-
naling, activation of pattern recognition receptors,
chemotaxis, immunometabolism and DNA hypermethy-
lation of endogenous retroviral sequences. Further stud-
ies in preclinical respiratory infection models and double
blind placebo-controlled intervention studies are needed
to proof its prophylactic efficacy against common cold
corona viruses (CoV), Severe Acute Respiratory Syn-
drome (SARS)-CoV, and new occurring strains such as
SARS-CoV-2, with strongly impaired interferon (IFN)
type I response and weak innate antiviral defense.
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