
MEDICINE

Noninvasive blood tests for fetal
development predict gestational age
and preterm delivery
Thuy T. M. Ngo1*†, Mira N. Moufarrej1*, Marie-Louise H. Rasmussen2,
Joan Camunas-Soler1, Wenying Pan1, Jennifer Okamoto1, Norma F. Neff 1, Keli Liu3,
Ronald J. Wong4, Katheryne Downes5, Robert Tibshirani3,6, Gary M. Shaw4,
Line Skotte2, David K. Stevenson4, Joseph R. Biggio7, Michal A. Elovitz5,
Mads Melbye2,8‡§, Stephen R. Quake1‡§

Noninvasive blood tests that provide information about fetal development and gestational
age could potentially improve prenatal care. Ultrasound, the current gold standard, is not
always affordable in low-resource settings and does not predict spontaneous preterm
birth, a leading cause of infant death. In a pilot study of 31 healthy pregnant women, we
found that measurement of nine cell-free RNA (cfRNA) transcripts in maternal blood
predicted gestational age with comparable accuracy to ultrasound but at substantially
lower cost. In a related study of 38 women (25 full-term and 13 preterm deliveries), all at
elevated risk of delivering preterm, we identified seven cfRNA transcripts that accurately
classified women who delivered preterm up to 2 months in advance of labor. These
tests hold promise for prenatal care in both the developed and developing worlds, although
they require validation in larger, blinded clinical trials.

U
nderstanding the timing and programming
of pregnancy has been a topic of interest
for thousands of years. The ancient Greeks
had surprisingly detailed knowledge of the
different stages of fetal development; they

proposed mathematical theories to account for
the timing of important landmarks of pregnancy,
including delivery of the baby (1–3). Although
biologists now have detailed cellular and molec-
ular portraits of both fetal and placental devel-
opment, this knowledge has not yet translated
into molecular tests that reliably predict gesta-
tional age for individual pregnancies. Blood
levels of human chorionic gonadotropin (HCG)
and a-fetoprotein are used to detect conception
and fetal complications, respectively; however,
neither molecule (either individually or in con-
junction) establishes gestational age (4, 5).

Ultrasound imaging and/or the patient’s
estimate of her last menstrual period are typically
used to estimate gestational age, but the former
can be expensive and the latter can be imprecise.
Inaccurate dating sometimes leads to unnecessary
induction of labor and Cesarean sections, ex-
tended postnatal care, and/or increased medical
expenses (6–9). Current methods to estimate de-
livery date generally assume normal development
and do not account for premature birth, which
affects approximately 15 million neonates every
year worldwide (10). In the United States (11),
premature birth is the leading cause of neonatal
death and complications later in life. Two-thirds
of these occur spontaneously, and it would be
beneficial to be able to identify which pregnan-
cies are at risk (12, 13). Efforts to identify genetic
causes and risk factors have had limited success
(11, 14–17), and clinically, transvaginal sonograph-
ic cervical length (CL) and cervicovaginal fetal
fibronectin (fFN) measurements have low posi-
tive predictive value (21% for CL and 17% for
fFN) and specificity (52% for CL) (18).
In previous work, we showed that longitudinal

phenotypic changes in both the mother and the
fetus could be monitored by noninvasively mea-
suring cell-free RNA (cfRNA) transcripts from
fetal tissues in maternal blood (19). Here, we
investigated whether this methodology can be
developed into blood tests that establish ges-
tational age and estimate the risk of preterm
birth. In our initial study, we recruited 31 preg-
nant women from Denmark who agreed to do-
nate a blood sample during each week of their
pregnancy, resulting in a total of 521 samples
(Fig. 1). All women delivered at full term, defined
as gestational age at delivery of ≥37 weeks, and
their medical records showed no unusual health

changes during pregnancy (table S1). Each sam-
ple was analyzed by highly multiplexed real-time
polymerase chain reaction (PCR) using a panel
of genes with expression specific to the placenta
or to the immune system, or highly enriched in
the fetal liver (table S2).
We observed that cfRNA measurements over

the course of pregnancy demonstrated differing
time courses according to tissue of origin (Fig. 2A
and fig. S1). As expected, the levels of cfRNA cor-
responding to genes specific to the placenta and
enriched in the fetal liver increased throughout
the course of pregnancy, with the exception of
cfRNA corresponding to chorionic gonadotropin
b subunit (CGB), which decreased from a peak
found in the first trimester. Placental cfRNAs
and several fetal liver cfRNAs were not detected
above the noise floor after delivery, which sup-
ports their pregnancy-derived origin; some fetal
liver transcripts were also expressed in the adult
liver, and we observed a small maternal baseline
for this subset. cfRNAmeasurements correspond-
ing to immune system–related genes increased
during gestation and showed a return to mea-
surable baselines after delivery, which supports
their predominantly maternal origin. The body
mass index of the mother did not significantly af-
fect cfRNA levels (see supplementary text). Using
estimates of cfRNAconcentrations in blood across
all genes and all pregnancies (Fig. 2B and fig. S2),
we discovered that genes within each set (i.e.,
placental, immune, and fetal) were highly corre-
lated with each other [Median Pearson correla-
tion r = 0.79 (placental), 0.79 (immune), 0.74
(fetal), P < 10−14] and that placental and fetal
cfRNA were weakly cross-correlated (r = 0.47,
P < 10−15). These findings suggested that cfRNA
corresponding to placental genes might provide
an accurate estimate of fetal development and
gestational age throughout pregnancy.
We then built a random forest model to pre-

dict time from sample collection until delivery,
using cfRNA measurements as the primary fea-
tures. We trained and validated this model using
data from the Danish cohort from 21women (n =
306 blood samples) for training, and from 10
women (n = 215 blood samples) for validation.
During training, we applied best-subset selection
with 10-fold cross-validation repeated 10 times
(see supplementary materials) to identify nine
cfRNAs that are specific to the placenta (CGA,
CAPN6, CGB,ALPP, CSHL1, PLAC4, PSG7, PAPPA,
and LGALS14) and together provided equivalent
predictive power to the full panel of 51 measured
cfRNAs (fig. S3). Our model’s predictions agreed
with observed values for both training (Pearson
correlation r = 0.91, P < 10−15) (Fig. 2C) and
validation sets (r = 0.89, P < 10−15) (Fig. 2D).We
also found that model performance improved
significantly over the course of pregnancy, as
measured by root mean squared error (RMSE)
for both training [RMSE = 6.0 (first trimester,
T1), 3.9 (second trimester, T2), 3.3 (third trimester,
T3), 3.7 (postpartum, PP) weeks] (Fig. 2C) and
validation sets [RMSE = 5.4 (T1), 4.2 (T2), 3.8
(T3), 2.6 (PP) weeks] (Fig. 2D). Although dis-
tinct subsets of the nine cfRNAs listed above
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were sufficient to predict time until delivery for
subpopulations of women (i.e., nulliparous or
multiparouswomen), we found that all nine genes
identified were necessary for accurate prediction
across subgroups (see supplementary text).
The model’s two most important features,

CGA and CGB, encoding chorionic gonadotropin
a and b3 subunits of HCG, are known contrib-
utors to pregnancy initiation (20) and behaved
consistently with what is known from HCG levels
during pregnancy (21). Other genes included in
the model, such as PAPPA (pregnancy-associated
plasma protein A), are associated with pregnancy
risks such as preterm birth (22).
We next compared our model to other es-

tablished tools used to predict gestational age
(Fig. 2E). In previous studies, ultrasound and last
menstrual period estimates of gestational age,
which assume delivery at 40 weeks gestation,
fell within 14 days of the observed gestational

age at delivery with 57.8% and 48.1% accuracy,
respectively (7). In this study, for all 31 Danish
women, cfRNA estimates of gestational age aver-
aged over a given trimester fell within 14 days of
the observed gestational age at deliverywith 32%
(T2), 23% (T3), and 45% (T2 and T3) accuracy, as
compared to 48% (T1) for ultrasound (Table 1).
Our results are thus generally comparable to
ultrasound measurements, can be performed
throughout pregnancy, and do not require a
priori physiological knowledge such as the
woman’s last menstrual period.
Although the first-generation random forest

model predicted time until delivery for full-term
pregnancies, we were also interested in testing
its performance to predict spontaneous preterm
delivery (defined as spontaneous delivery earlier
than 37 weeks; see supplementary materials).
To explore this question, we studied two sep-
arate cohorts, one recruited by the University

of Pennsylvania (n = 15) and the other by the
University of Alabama at Birmingham (n = 23).
All of the women in both of these cohorts were
already known to be at elevated risk of preterm
delivery because they had premature contrac-
tions (Pennsylvania) or had a prior spontane-
ous preterm delivery (Alabama) (Fig. 1, table
S1, and supplementary materials). All women
in the Alabama cohort and three women in
the Pennsylvania cohort received progester-
one injections because of a prior spontaneous
preterm delivery. All women went into labor
spontaneously.
We discovered that although the model vali-

dated performance for full-term pregnancies
(n = 23, RMSE = 4.3 weeks) in these cohorts, it
generally failed to predict time until delivery
for pretermdeliveries (n= 13, RMSE= 11.4weeks)
(fig. S4). This suggests that the model’s content
may not account for the various outlier physio-
logical events thatmay lead to pretermbirth. This
conclusion is supported by the observation that
pharmacological agents designed to stop or slow
uterine contractions prevent only a small num-
ber of preterm deliveries (23, 24).
To identify cfRNA transcripts that might be

able to discriminate a spontaneous preterm de-
livery from a full-term delivery, we performed
unblinded RNA sequencing (RNA-seq) on plasma-
derived cfRNA collected from women who de-
livered at full term (n = 7) and preterm (n = 8)
in a preterm-enriched cohort (Pennsylvania)
(Fig. 1 and table S1). Analysis of RNA-seq data
indicated that 38 genes could separate full-term
from preterm births with statistical significance
(P< 0.001; see supplementarymaterials) (Fig. 3A).
We then created a PCR panel to measure the 38
cfRNAs identified by RNA-seq and other immune
and placental genes (table S2). We confirmed that
the differential expression observed using RNA-
seq was also observed with quantitative reverse
transcription PCR (qRT-PCR) (r = 0.72, P < 10−15)
(fig. S5).
We then developed a classifier to identify

women who are at risk of preterm delivery and
found that using the top seven cfRNAs from
the panel (CLCN3, DAPP1, PPBP, MAP3K7CL,
MOB1B, RAB27B, and RGS18) [false discovery
rate (FDR) ≤ 5%, Hedges’ g ≥ 0.8] (Fig. 3B) in
unique combinations of three (table S3 and sup-
plementary materials) accurately classified 6 of 8
preterm samples (75%) andmisclassified only 1 of
26 full-term samples (4%) from the Pennsylvania
and Denmark cohorts, with a mean area under
the curve (AUC) of 0.86 (Fig. 3C). In validation
using a preterm-enriched independent cohort
(the Alabama cohort), the test accurately clas-
sified 4 of 5 preterm samples (80%) and mis-
classified 3 of 18 full-term samples (17%) (Fig. 1),
with a mean AUC of 0.81 (Fig. 3C), using samples
collected up to 2 months in advance of labor.
Several of the cfRNAs used to predict sponta-
neous preterm delivery were also individually
elevated inwomenwhodelivered preterm (FDR≤
5%, Hedges’ g ≥ 0.8), demonstrating the robust-
ness of their effect (Fig. 3B). Note that the dif-
ferences in cfRNA levels cannot be accounted
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Fig. 1. Sample collection timelines from the Denmark, University of Pennsylvania, and Univer-
sity of Alabama cohorts. Squares, inverted triangles, and lines indicate sample collection times,
delivery dates, and individual women, respectively.

Table 1. Comparison of gestational age estimates using cfRNA and ultrasound. Distribution of

difference between estimates of gestational age, which assume delivery at 40 weeks gestation, and

observed gestational age at delivery listed for four distinct methods, where n indicates the number of

women included. Gestational age was estimated using cfRNA measurements from the second (T2),
third (T3), or both (T2 and T3) trimesters and ultrasound measurements from the first trimester (T1).

Method D [observed – expected delivery date (weeks)] (%)

< –2 –1 to –2 ± 1 +1 to +2 > +2

cfRNA (T2, n = 28) 50 18 32 0 0
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

cfRNA (T3, n = 31) 0 6 23 29 42
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

cfRNA (T2 and T3, n = 31) 19 6 45 10 20
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Ultrasound (T1, n = 31) 0 26 48 23 3
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .
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for entirely by progesterone injections, because
every woman in the Alabama cohort received
injections and the same differences between
groups were observed.
Further investigation of the seven genes cor-

responding to the transcripts identified above
revealed that most are ubiquitously expressed,
with the exception of a member of the RAS on-
cogene family (RAB27B), which encodes a protein
that regulates placental development (25) and the
gene encoding pro-platelet basic protein (PPBP).
Other protein products encoded by DAPP1 (dual
adaptor of phosphotyrosine 3-phosphoinositides 1)
(26), RGS18 (regulator of G protein signaling 18)

(27), CLCN3 (chloride voltage-gated channel 3)
(28, 29), andMOB1B (MOB kinase activator 1B)
(30) are indirectly implicated inpregnancy through
inflammation (DAPP1, RGS18), labor (CLCN3),
and development (MOB1B).
The cfRNA results can be compared to efforts

to estimate preterm risk using mass spectro-
scopic measurements of the ratio of two proteins
in blood [SHBG (sex hormone binding globulin)
and IBP4 (insulin-like growth factor binding pro-
tein 4)] (31) or CL and fFN measurements (18).
In this pilot study, our blood test yielded higher
mean accuracy than the mass spectroscopic ap-
proach for comparable sample sizes in the val-

idation cohorts [AUC = 0.81 (cfRNA), AUC = 0.67
(IBP4/SHBG)]. When compared to CL and fFN
measurements for symptomatic high-risk women
experiencing preterm labor, the PCR-based test
had a higher positive predictive value [17% (CL),
21% (fFN), 75% (cfRNA, discovery), 80% (cfRNA,
validation)] (18).
Our study has important limitations. Before a

diagnostic or screening test based on this work
can be used in the clinic, a blinded clinical trial
with a larger sample size and diverse ethnicities
is essential. Our pilot studies included one
Caucasian cohort and two African-American
cohorts; data from other ethnic groups would
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Fig. 2. Application of cfRNA measurements to predict gestational
age. (A) For each gene, cfRNA transcript count measurements are
shown over the course of gestation. Each point represents the mean
cfRNA value ± SEM for either 31 women or 21 women (the latter denoted
by †). The antepartum period is highlighted in gray. Placental, immune, and
fetal liver–specific genes are highlighted in blue, green, and orange,
respectively. (B) Heat map of the Pearson correlation coefficient for each
gene pair shows that placental, immune, and fetal liver–specific cfRNA
[same group colors as (A)] measurements are highly correlated with each
other [median Pearson correlation r = 0.79 (placenta), 0.79 (immune),
0.74 (fetal liver); P < 10−14]. Placental and fetal liver–specific genes also

show a weak degree of cross-correlation (r = 0.47, P < 10−15). Gene
order matches order shown in (A), omitting genes denoted by † in (A).
(C) Cross-validated random forest (RF) model predicts time to delivery
from sampling time point (R = 0.91, P < 10−15, n = 21) for training cohort.
(D) Cross-validated random forest model predicts time to delivery from
sampling time point (R = 0.89, P < 10−15, n = 10) for validation cohort.
(E) Distribution of difference in weeks between observed and predicted
gestational age at delivery using cfRNA measurements from the second
(T2), third (T3), or both (T2 & T3) trimesters (left to right) versus
using ultrasound measurements from the first trimester (T1). AU,
arbitrary units.
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be valuable. Another limitation is that the pre-
term risk cohorts were all recruited on the basis
of elevated risk for preterm birth; it will be im-
portant to investigate the performance of the
blood test in a broader, unselected population.

Our pilot studies have shown that non-
invasive blood tests were able to predict gesta-
tional age and identify women at risk of preterm
delivery from the same blood sample. These
cfRNA PCR-based tests have two advantages
over alternatives: broader applicability and lower
cost. They can be applied across the globe as a
complement to or substitute for ultrasound, which
canbe expensive and inaccurate during the second
and third trimesters (32). Conceivably, similar ap-
proacheswill prove to be useful for identifying and
monitoring fetuses with congenital defects that
can be treated in utero—a rapidly growing area of
fetal medicine.
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Fig. 3. Application of cfRNA measurements to predict risk of sponta-
neous preterm delivery. (A) Heat map of the z-scores for 38 differentially
expressed genes identified using cfRNA-seq (P < 0.001, exact test,
likelihood ratio test, and quasi-likelihood F test) shows that genes
distinguish women who delivered spontaneously preterm from women
who delivered at full term. The two groups of women were separated using
hierarchical clustering. (B) Means ± SD for differentially expressed genes

validated using qRT-PCR in the discovery [University of Pennsylvania (I)
and Denmark (II)] and validation [University of Alabama (III)] cohorts.
*P<0.05, **P<0.01, ***P<0.0005 (Fisher exact test). (C) Receiver operating
characteristic curves for classifier designed to separate women who deliver
spontaneously preterm from women who deliver at full term for both the
discovery cohort (University of Pennsylvania and Denmark, AUC = 0.86) and
the validation cohort (University of Alabama, AUC = 0.81).
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Noninvasive blood tests for fetal development predict gestational age and preterm delivery
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delivered at full term. The next step will be to assess the reliability of the tests in large, blinded clinical trials.
second blood test, also examined in a small pilot study, discriminated women at risk of preterm delivery from those who 
study, the first blood test predicted fetal age and delivery date with an accuracy comparable to that of ultrasound. The
noninvasive blood tests that provide a window into the progression of individual pregnancies. In a small proof-of-concept 

 developed twoet al.settings. By measuring the levels of certain placental RNA transcripts in maternal blood, Ngo 
Low-cost methods for monitoring fetal development could improve prenatal care, especially in low-resource

Toward more predictable birthdays
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