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Abstract

Background: The Gene Ontology (GO) is one of the most widely used resources in molecular and cellular biology, largely
through the use of “enrichment analysis.” To facilitate informed use of GO, we present GOtrack (https://gotrack.msl.ubc.ca),
which provides access to historical records and trends in the GO and GO annotations. Findings: GOtrack gives users access
to gene- and term-level information on annotations for nine model organisms as well as an interactive tool that measures
the stability of enrichment results over time for user-provided “hit lists” of genes. To document the effects of GO evolution
on enrichment, we analyzed more than 2,500 published hit lists of human genes (most older than 9 years ); 53% of hit lists
were considered to yield significantly stable enrichment results. Conclusions: Because stability is far from assured for any
individual hit list, GOtrack can lead to more informed and cautious application of GO to genomics research.
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Background

The Gene Ontology (GO) has been widely adopted by computa-
tional and experimental biologists, and Gene Ontology annota-
tion (GOA) of genes is one of the most prominent descriptive fea-
tures of major genome databases. The original paper describing
GO [1] is among the most cited papers in the biomedical litera-
ture (more than 14,000 citations, Clarviate Analytics Web of Sci-
ence, accessed January 2018). The popularity of GO is in large
part due to the challenge of interpreting data generated from
high-throughput technologies such as gene expression profiling.

In a typical simple setting, researchers contrast a genome-
wide feature (e.g., gene expression levels or genetic association)
in two experimental conditions and generate a list of genes, ei-
ther ranked across the whole genome or in the form of a “hit
list” of selected candidates. Another way such lists can be gen-
erated is by clustering, such as using protein interaction net-

works or coexpression, or by selecting genes harboring poten-
tially pathogenic variants in cohort-based genome sequencing.
To help extract biological meaning from those rankings and hit
lists, it is now standard practice to use GO annotations in an “en-
richment” framework.

The widespread use of these methods suggests it is impor-
tant that users understand their underpinnings. However, de-
spite the importance of GO, many users likely have little under-
standing of how it is developed, despite some effort on the part
of the GO Consortium (GOC) to disseminate such information [2–
4]. An important feature of GO is that it changes over time, as cu-
ration is performed. This has potentially major implications for
the utility and interpretation of GO/GOA, but there is currently
no means for users of GO to easily see this for themselves. Our
goal is to help fill this gap and provide some insight into the ac-
tual impact of changes on data analysis.
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2 Analyzing GO history

The structure, content, and curation of GO/GOA are the es-
sential backdrop for the work we present, so we review it briefly.
It is important to distinguish the GO itself (the ontology) from
the annotations (GOA), which connect genes to terms in GO. GO
is organized into three sub-ontologies, representing biological
processes, molecular functions, and cellular components. Col-
lectively these currently encompass more than 40,000 concepts,
arranged in a directed acyclic graph (like a tree, but with the po-
tential for multiple paths from any leaf to the root).

Curation is managed through the GOC, in which member or-
ganizations, such as model organism database curation teams,
provide annotations to a central repository. Genes may be asso-
ciated with terms in the ontology using either manual curation
(associated with a specific reference to the literature or based
on a computational analysis reviewed by a curator) or “auto-
matic” annotations that are not reviewed by curators. The dif-
ferent types of associations are represented by evidence codes,
e.g., the automatic annotations receive the code “IEA” (“inferred
from electronic annotation”).

Annotations created by the curation process are referred to
as “direct annotations” because they explicitly associate a GO
term with a gene. Genes are also associated with terms indi-
rectly via the graph structure of GO, referred to as inference.
Thus, a gene that is directly annotated with the term “protein
tyrosine kinase” is also implicitly annotated with the term “pro-
tein kinase” because that term is a parent term of “protein ty-
rosine kinase.” When the operation of propagating direct an-
notations through the GO hierarchies is completed (“transitive
closure” in graph theory terminology), the number of annota-
tions available greatly increases, albeit at a range of granulari-
ties. These “indirect annotations” (also referred to as “inferred”
or “propagated”) are as valid as direct annotations because GO
enforces a “true path” rule [5]. In most analyses, it is important
to use propagated annotations (the combination of direct and
inferred annotations) [6].

Assessments of GO/GOA have recently turned to considera-
tions of changes over time. For example, we quantified the ef-
fect that annotations have on the apparent (annotated) function
of genes, showing that, on average, changes over short periods
(months) are minor, but changes over longer periods are much
more substantial [7]. This and other work has shown that GO
enrichment results may not be stable over time. However, the
effects of changes are not likely to be uniform across datasets
nor easily predictable. Indeed, previous studies have been ei-
ther anecdotal (considering a single or just a few examples [8–
11]), with the largest study analyzing around 100 [12], or yielded
mixed findings. Groß et al. (2012) found that enrichment results
were stable based on analysis of two hit lists. Alam-Faruqe et
al. considered changes in results to be improvements due to fo-
cused curation, based on analysis of two datasets. Others have
emphasized instability [11,12] or reported mixed impacts [9].
Given this variety of results and interpretations, there is clearly
a need for researchers to assess the stability of their own specific
enrichment results.

Here, we report the development and application of a
database (GOtrack) that contains historical information on GO
going back to the early 2000s for human and major model or-
ganisms. The GOtrack web site enables quick exploration of GO
and GOAs over time and evaluation of how changes impact in-
terpretation of analyses derived from GOA. Using the data in
GOtrack, we present several analyses of trends in GOAs, com-
plementing earlier work. We performed a large-scale analysis
of enrichment analysis results over time, using a large corpus
of more than 2,500 “hit lists.” We confirm that GO enrichment
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Figure 1: Overview of approach in constructing GOtrack. GO terms and GOAs
were obtained and matched by date, and gene identifiers were harmonized. Pre-
computed summary and aggregate statistics supplement the fine-grained infor-
mation stored in the databases.

analysis results can change over time. However, many were sta-
ble by objective measures even over time spans of greater than
10 years. It is our hope that GOtrack will enable more critical use
of GO by biologists and computational researchers.

Findings
Construction and overview of GOtrack

We used data representing ontologies and annotations for nine
organisms, dating as far back as 2001. Annotation data were
not available for all organisms for all dates, with complete data
for all nine organisms from 15 November 2011 onward. In to-
tal, the data encompasses 206 monthly versions of GO and 1,545
species-specific monthly editions of GOA, yielding 206,894,446
GO annotations (as of January 2018). Our overall procedures are
outlined in Fig. 1 (see Methods; additional information is avail-
able on the GOtrack web site). The resulting database is complex
and rich, with extensive information available at the gene or GO
term level. While the web interface is the most complete and de-
tailed way to interact with the data, we also offer a RESTful API to
enable programmatic access to the data. Via this API, users can
download GOAs for a taxon, as well as GO, for any selected point
in time. GOtrack does not contain all information on GO/GOA
and thus complements other resources such as QuickGO [13]
and AmiGO [14].

The GOtrack web interface offers views of history at the gene
level and at the GO term level. A third view provides a “global
overview” of trends according to a variety of statistics. Finally,
we offer a web tool to track changes in GO enrichment results
over time. Here, we provide only a high-level overview of basic
functionality. Readers are invited to explore the web interface
for more information.
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Figure 2: Examples of information provided by GOtrack for genes and terms. (A) Number of terms directly annotated to the human gene GRIN1. Large drops and rises
are observed superimposed over a general gradual increase in annotation since 2002 (black). In this example, the large shifts are not accompanied by corresponding

shifts in the species average (gray). (B) Number of human genes directly annotated with the term “synaptic vesicle” (GO:0 008021) over time, again showing transient
drops and rises. Data from GOtrack were replotted for presentation. For corresponding screenshots, see Supplementary Fig. S1.

Figure 2A shows an example of one type of data offered in the
gene view, for the human gene GRIN1 (glutamate ionotropic re-
ceptor NMDA type subunit 1; [15] and Supplementary Fig. S1A).
The plot shows the number of GO terms directly annotated to
the gene, with the mean of all genes from the same organism
plotted for comparison. GRIN1 is consistently more highly an-
notated than the average, and its trajectory is typical in that
annotations rise over time, interrupted by drops and recover-
ies. In general, such changes can be due to either annotation
curation—addition or removal of terms annotated to the genes—
or changes in the structure or content of the GO itself, such as
addition of terms or relations. The GOtrack interface also allows
users to inspect changes in the use of evidence codes used to
support an annotation and to directly compare annotations for
a gene at up to four time points.

To help users interpret the changes in number of terms over
time, we provide additional plots of statistics derived from the
annotations. The first of these is of multifunctionality [16,17],
which is related to the number of terms annotated to a gene,
with a weighting to account for term specificity (where speci-
ficity is defined by how many genes are annotated with the term;
see [17] for details). This more precisely captures how heavily an-
notated the gene is relative to other genes. The second derived
statistic is semantic similarity. As time passes, changes in anno-
tations can cause a gene to change “functional identity” [7]. To
quantify this effect, we plot the Jaccard index between the an-
notations in the current edition to each previous edition. These
and other plots and tables are presented on the web page for
each gene.

The term-level view provides information on how a GO term
has changed over time. This includes how many genes were an-
notated to it either in total (Fig. 2B) or broken down by evidence
type (e.g., [18] and Supplementary Fig. S1B) as well as changes
in the GO structure that impact the term’s relationships. Finally,
the Global Trends page [19] shows species-level summaries of
the numbers of annotated genes, genes annotated per term, an-
notations per gene, and the size of GO itself.

Long-term trends in GOA

In this section we present some analysis of the data in GOtrack,
focusing on annotations (rather than GO itself). As noted, genes
vary strongly in how highly annotated they are, due to varying
degrees of experimental and curation attention paid to the gene
as well as potentially true biological differences in multifunc-
tionality [17]. Previously we reported that this bias tends to per-
sist, i.e., genes that are relatively highly annotated tend to stay
that way [7]. We confirmed this is still the case five years later.
For example, if we rank genes by how many direct annotations
they have, the ranking at the earliest time point is correlated
with the ranking at the latest time point (human: Spearman rank
correlation 0.52; mouse: 0.43; Arabidopsis: 0.53). Thus, we con-
firm that genes are not just unequal in their annotation; we con-
firm that this inequality is stable over long periods.

The jumps seen in individual genes (e.g., Fig. 2A) are not
all independent events, as the course of the species-wide av-
erages also has discontinuities (Fig. 2A, gray). This is also ap-
parent in a principal components analysis of the direct count
matrix (Supplementary Results, Supplementary Fig. S2). We in-
vestigated this more completely in all nine GOtrack organisms
at the level of total gene coverage (Fig. 3A), genes annotated per
term (Fig. 3B), direct annotations per gene (Fig. 3C), and inferred
annotations per gene (Fig. 3D). This reveals that large jumps and
drops are sometimes simultaneously observed in multiple, or
even all, species. One such notable event was a rapid increase
in the number of annotated genes starting March 2011 for Ara-
bidopsis, mouse, and zebrafish (Fig. 3A). Another dramatic event
was a large drop in the mean number of direct annotations per
gene in March 2012 for all species (Fig. 3C). The jump is not vis-
ible in the plots for indirect annotations (Fig. 3D). This would be
consistent with a large-scale purging of redundant annotations
(rejecting higher-level terms that are inferable from more spe-
cific terms). Other jumps are species specific, such as the large
increase in Arabidopsis genes annotated per term in early 2012,
followed by a large drop in late 2015 (Fig. 3B).

At the gene level, large shifts in the numbers of annotations
can be due to removal and replacement of annotations for the
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Figure 3: Trends in taxon-wide annotation statistics. (A) Number of annotated genes. (B) Mean annotations per term (inferred + direct). (C) Mean number of direct
annotations per gene. (D) Mean number of inferred (including direct) annotations per gene. Times of prominent discontinuities affecting multiple species in A and C
are marked by dashed gray lines in all four panels.

same term—a phenomenon we call “annotation churn.” For ex-
ample, for the human gene ACTC1 (Actin, Alpha, Cardiac Muscle
1) [20], there is a pronounced rise in annotations in mid-2007,
with a one-month dip in May 2008 (see screenshots in Supple-
mentary Fig. S3). GOtrack makes it easy to drill down into de-
tails. By examining the tabular results (Supplementary Fig. S3A),
it is found that one of the terms that was deleted during the dip
was “apoptosis” (GO:0 006915). Viewing the annotation history
for that term on the gene, we see that the term was repeatedly
added and removed (in 2007-2008), with the evidence code “IEA.”
In June 2008 the term was annotated to the gene with a higher-
grade curator-reviewed evidence code (ISS), where it remained
(the term was also renamed to “apoptotic process”) until it was
removed again in December 2017 (Supplementary Fig. S3B).

Tracking enrichment results

In addition to the exploratory aspects described so far, the other
major component of the GOtrack system is an analysis tool that
performs enrichment analysis at multiple time points ([21]; Sup-
plementary Fig. S4). The key idea is to observe whether an en-
richment result is stable relative to a given point in time. The
main input provided by the user is a “hit list” of genes. The out-
put includes plots and detailed tables to help interpret the re-
sults and judge whether the results change over time. This in-
cludes direct comparisons of “before and after” sets of enriched
terms. The measures we use for this comparison are discussed
in the next section and in the Methods section. In addition to
these statistics that summarize the overall stability of the re-
sults, the web interface provides term-level stability measures.

This makes it easy to see whether a term has been consistently
“significant” over past editions.

The enrichment tool has some limitations. We use a sim-
ple overrepresentation method (as do many tools, including the
popular DAVID [22]). Also, the “background” set of genes is not
settable by the user; it is the set of all genes annotated at the par-
ticular time point. Because GOtrack provides downloads of GO
and GOA for any date, users can confirm findings with the soft-
ware of their choice, provided it allows user-provided GO and
GOA as inputs (such as ErmineJ, [16], whose annotation input
format is directly supported).

Evaluating the stability of enrichment results

We hypothesized that changes in GO/GOA over time could cause
changes in enrichment results to such an extent that they would
be effectively unrecognizable and lead to a different interpre-
tation of the results. As described in the introduction, previ-
ous studies of this question yielded somewhat mixed results on
small numbers of test hit lists. In our approach to this question,
we used a corpus of gene lists from the Molecular Signatures
Database (MSigDB) [23]. These are divided into two groups (af-
ter filtering, see the Methods section): 1,327 curated “canonical
pathways” (CPs) and 2,573 “chemical and genetic perturbations”
(CGPs). The latter correspond to published hit lists of the type
usually investigated with enrichment analysis. We took advan-
tage of the fact that each CGP hit list is associated with a publi-
cation, allowing the opportunity to see if the enrichment results
obtained around the time of publication would have changed in
the interim. We predicted the CP lists of established pathways
would be more stable compared to the experimental CGP hit
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lists. The limitation of the MSigDB corpus is that most of the
publications are not very recent (median 11 years; range, 0.4–16,
90% are >9.2 years old) and we have done little investigation of
short-term stability.

For each hit list or pathway, we compute results of an enrich-
ment analysis as it would have appeared at the GO/GOA edition
nearest to the source publication date (see Methods section for
details). We then repeated the enrichment analysis using the
most current GO/GOA edition (January 2018). This results in a
range of timespans to have passed following publication. For the
CP set, which do not all have an associated date, we computed
results for the most recent GO/GOA edition and the earliest date
available (January 2001). We used this extreme date for compar-
ison because we expected the CP set to have greater stability, so
comparing to the earliest date is the “worst-case scenario” for
comparing to the experimentally derived CGP sets.

Our first key observation is that on average for the CGP hit
lists, the number of significant terms goes up dramatically (from
21 ± 32 terms to 110 ± 136 terms, mean ± standard deviation;
P < 10−15, Wilcoxon rank sum test). The values are highly corre-
lated (Fig. 4A); hit lists that had few significant terms at the time
of publication (henceforth t0) had relatively few at the most re-
cent time point (tnow) (rank correlation 0.54). These results also
held for the CPs (growing from 37 ± 59 to 246 ± 216 terms, cor-
relation 0.57). It is likely that these increases are not just due to
increased annotation but also to the growth of GO to more than
47,000 terms of increasing granularity.

The explosion in the number of significant terms is an obvi-
ous form of instability. Of course, what matters more is whether
the enriched terms resemble each other at tnow compared to
t0. To evaluate this, we did direct comparisons of the enriched
terms associated with each hit list (at t0 and tnow), using the Jac-
card index (see Methods section and Supplement). The Jaccard
index was calibrated using a null distribution created by compar-
ing pairs of unrelated hit lists (see Methods section). To simplify
the analysis, we binned the CGP hit lists by age into three groups
of similar numbers of hit lists: up to 10 years, 10–12 years, and
12–16 years.

The results are shown in Fig. 4B. Overall, 53% of the CGP hit
lists had results that were more similar than 95% of the null tri-
als. This fraction is much higher for relatively recent lists (71%,
N = 640) and lower for the older lists (55% for the middle tranche,
N = 960, and 38% for the oldest, N = 973; Fig. 4B). In comparison,
75% of the CPs remained above this threshold, despite most of
the comparisons being done to the earliest possible time point.
The overall rank correlation (unbinned) between stability and
age is −0.34 (CGP; −0.39 for CPs). This demonstrates that it is
possible for results to maintain a substantial degree of similarity
over periods of greater than 15 years and that, in general, drift in
the semantic content of enrichment results is very substantial
after 12–16 years and is substantial but less striking at shorter
time spans (<10 years). In the Supplement we present exam-
ples of hit lists yielding high and low stability (Supplementary
Results and Supplementary Files).

A notable feature of the data shown in Fig. 4B is that very low
values of the complete Jaccard index were statistically signifi-
cant. This shows the importance of using a null distribution to
calibrate the scores but clearly leaves something to be desired
as a Jaccard index of 0.01 seems negligible. However, this effect
is due, in large part, to the increase in the number of terms over
time (Fig. 4A), guaranteeing that the Jaccard index will drop. In
attempts to explore this further, we tested six variants on the
Jaccard index (see Supplement). While some of the alternatives
have scales that are more intuitively matching expectations of

what “stable” would represent on a scale of 0–1 (e.g., with 95%ile
of the null equal to 0.41), the findings are qualitatively similar
to the complete Jaccard index (data for two additional measures
are shown in Supplementary Fig. S5). Several of these alterna-
tive measures are implemented on the GOtrack web site. These
measures are discussed further in the Supplement in the con-
text of examples, along with discussion of the subjective nature
of comparing enrichment results in an exploratory analysis.

We looked for factors that might contribute to stability. For
the CGP hit lists, the number of genes in a hit list was not
strongly predictive of Jaccard stability (rank correlation 0.18). It
was only modestly correlated with the mean number of directly
annotated terms (−0.12) or mean multifunctionality of the genes
in the hit list (−0.09). There were more obvious trends for the CP
lists, which have higher stability than the CGP lists on average,
despite the (artificially) long time passed between t0 and tnow

(more than 12 years; Fig. 4B). The number of direct annotations
per CP is higher (36 vs. 25.4 for CGP). However, this does not ap-
pear to explain the overall higher stability of the CP lists, because
we get the same result for the subset of CP that has <35 mean di-
rect annotations (mean of 22.9; correlation is −0.48; overall cor-
relation is −0.46). Thus, hit lists that have more highly annotated
genes have a tendency to be less stable. However, given these low
correlations (−0.12 for the CGP set) and without further insight,
it appears to be difficult to predict (even in hindsight) which hit
lists will yield stable results.

Discussion

In this work we present GOtrack, which to our knowledge is the
only resource available that allows easy access to historical data
on GO/GOA and the only one that allows inspection of the effects
of changes over time on enrichment result stability. Our analy-
ses further highlight the necessity for users of GO/GOA to be cau-
tious in their interpretation of any GOA and to temper whatever
trust they have in GO enrichment results.

Our evaluation of the stability of enrichment results differs
in several important ways from earlier efforts. First, we matched
GO and GOA for each time point (rather than fixing either GO
or GOA while varying the other), which we feel is more realis-
tic. We also analyzed a much larger number of hit lists (>2,500
vs. a maximum of ∼100 [12]) and considered time of publication
to ensure comparisons were also realistic. Perhaps most impor-
tantly, we used a null distribution to calibrate the similarity mea-
sures, providing improved objective measures of what qualifies
as stability. Overall, our results are more optimistic about sta-
bility than those of Tomczak et al. (2018). Regardless, we concur
with previous reports that changes in GO/GOA can make a sub-
stantial difference in results. However, because of the high de-
gree of variability and difficulty in finding fully satisfying quanti-
tative measures that are often interpreted subjectively (see Sup-
plement for discussion), our recommendation is that users of
GO should judge for themselves by using GOtrack. Researchers
who are reporting enrichment analyses can check which terms
have been stable (e.g., over the last five years). This provides a
principled way to help narrow down complex enrichment re-
sults, which is a problem that many users of enrichment analy-
ses struggle with.

An obvious limitation is that GOtrack cannot see into the fu-
ture. While the stability of any particular GO enrichment result
might be high or low when looking back in time, it is gener-
ally impossible to know whether it will remain stable because
knowledge of biology as represented in GO/GOA is a work in
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progress. Indeed, we found it is difficult to predict which hit list
would give stable results. The strongest clue we could identify
is how well annotated the genes in the hit list are. Hit lists with
highly annotated genes (mean direct annotation count) tend to
be less stable. We speculate that this is because highly anno-
tated genes have more changes to their annotations, which can
drive shifts in enrichment results. However, we have yet to ex-
plore this further, and, in any case, the relationship is not strong
enough to be usefully predictive. In addition, we did not as-
sess other possible factors influencing stability such as evidence
codes [24], which is a topic we leave for future research.

GOtrack currently has some limitations. The enrichment tool
uses a simple method and does not implement algorithms to
asses multifunctionality biases [16]. Our data on GO/GOA are not
complete. We did not import all of the fields from GOA files, the
most useful of which for analysis purposes might be the anno-
tation source. Finally, the recently added concept of annotation
extensions [25], which provide context for an annotation (e.g., a
cell type), are not handled by GOtrack.

Conclusions

The evolving and incomplete nature of GO/GOA has always been
inherent and is well understood by the GO community, but it is
seemingly less appreciated more broadly. For example, the ex-
tremely popular enrichment tool DAVID ( more than 32,000 ci-
tations as of May 2018 [26]) did not update its GOAs for nearly
seven years, an eon in GO history (and, at the time of this writing,
DAVID had not been updated for nearly two years [27]). We find it
interesting that there was no massive outcry in response to the
use of such out-of-date GOAs, suggesting either ignorance or ap-
athy. While it might seem obvious that one would always want to
use the latest GOAs, this can be questioned. GO/GOA can change
dramatically in a seesaw fashion over a period of months, sug-
gesting that not all changes are improvements. Furthermore, we
report a strong tendency for hit lists to yield ever more signifi-
cant terms over time (Fig. 4A), and it is not clear that this comes
with any increase in useful information. It could be that using
GO/GOA from an earlier, simpler era might be beneficial for en-
richment analyses (using a GO slim [28] may approximate this
concept). While we may not be able to settle that question here,
it is clear that whatever version of GO/GOA is used, it cannot
be treated as a gold standard. Enrichment analysis should be

considered exploratory and never be used as a primary finding
[29]. Computational researchers should also be cautious in using
GO/GOA as an optimization target when developing and evalu-
ating algorithms, especially since changes over time are not the
only concern [7,17].

GOtrack should be a valuable resource for biologists to gain a
greater understanding of where GOAs come from and how they
change over time, as well as their impact on the major use case
for GO/GOA enrichment analysis. Our analysis of the data in GO-
track also revealed a number of interesting features, and it is
likely that deeper analyses can be used to gain more insight into
patterns of curation that might influence future efforts.

Methods
Gene Ontology

Historical GO files were retrieved from [30], specifically, dates
between 1/1/2001 and 1/3/2004 were obtained from separate
process.ontology.<date>.gz, function.ontology.<date>.gz, and
component.ontology.<date>.gz files and subsequently com-
bined. Dates between 1/4/2004 and 1/10/2006 were obtained
from gene ontology.obo.<date>.gz. Dates after 2006-10-01 were
obtained from gene ontology edit.obo.<date>.gz. These files ex-
clude relationships that cross the three GO aspects, and we re-
strict our analysis to IS A and PART OF relationships only.

GOAs

Historical species-specific annotation files were retrieved from
[31], specifically, dates between 2/11/2001 and 9/5/2016 and were
obtained from gene association.goa <species>.<edition>.gz.
Dates after 9/5/2016 were obtained from a com-
bination of goa <species>.gpi.<edition>.gz and
goa <species>.gpa.<edition>.gz files. Mapping of histori-
cal annotations to a release of the GO was done by selecting
the ontology with the closest release date before that of the
annotation file. Annotations were propagated up the GO graph
as per the “true path rule” [5]. To convert release editions to
dates prior to edition 135 (July 2014,) the release number of the
file is compared to the dates given on the GOA news site [32].
For edition 135 onward, we use the date provided in the files. We
note that there are some gaps in the available data, especially
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at early time points. For example, we lack data for human for
September 2002 and October 2002. In addition, the spacing of
dates is not uniform; while the median inter-edition gap is 28
days, there are a few gaps that are smaller (minimum 13 days)
or correspondingly larger (e.g., 40 days).

Mapping of gene identifiers over time

Gene product annotations are tracked historically using their as-
sociated UniProt accession number(s) [33]. Each gene product
in UniProt has a unique primary accession, called the “primary
(citable) accession number.” In addition to this, a gene product
may also have secondary accession numbers that could have
been created historically from merges and/or splits. During a
merge, the first accession is retained as the primary while all
others become secondary. During a split, a new primary acces-
sion is created for all products involved while their original ac-
cessions are retained as secondary. An accession is only deleted
when its corresponding entry has been removed from UniProt.
The mapping of primary to secondary accessions is retrieved
from [34]. This mapping allows us to find the current primary
accession of a historical annotation.

Enrichment analysis

GOtrack implements overrepresentation analysis using the hy-
pergeometric distribution [16]. The background is the set of all
annotated genes (for the time point being analyzed). For analy-
ses presented here, terms with between 20 and 200 genes were
included, and only Biological Process terms were considered.
The false discovery rate was controlled at 5% using the method
of Benjamini and Hochberg [35]. The GOtrack enrichment tool
allows these parameters to be varied by the user.

Data analysis

Many of the analyses described are based on files available via
the GOtrack web site [36], including the “summary” files by edi-
tion, terms, and genes. Analyses were conducted with custom
scripts written in R [37,38] and Python. Correlations are Spear-
man rank correlations except where indicated otherwise.

Analysis of MSigDB hit lists

The MSigDB C2 collection [23] was downloaded from [39]. This
corpus is divided into a set of CPs and CGPs. For the CGP hit
lists, the publication associated with each hit list was extracted,
and the date of publication (t0) was used to identify the nearest
matching version of GO/GOA in GOtrack. Each hit list was an-
alyzed for enrichment as described above, for t0, and a recent
comparison time point (January 2018, tnow). We analyzed 2,573
CGP hit lists that yielded at least five significant terms at either
(or both) t0 or the comparison time point. CP lists (n = 1,327 af-
ter filtering) were treated the same way, except t0 was fixed at 21
November 2005 (the mean date for the CGP lists).

To compare two sets of enrichment results, we explored sev-
eral measures (see Supplement) but focus on a standard Jaccard
index: |E0 ∩ E1|/|E0 ∪ E1|, where E0 and E1 are the sets of all sig-
nificantly enriched GO terms for the same input hit list at two
time points (“complete Jaccard”). The primary alternative mea-
sure we examined was a modified Jaccard that examines only
the top five terms plus their inferred parent terms (“top-term-
parents Jaccard”), similar to the measure proposed by [40]. See
the Supplement for details and discussion.

To generate a null distribution, we compare enrichment re-
sults from pairs of randomly selected hit lists (i.e., coming from
different publications). Instead of comparing a hit list’s results
for t0 to tnow, the data are permuted so t0 of one hit list is com-
pared to tnow for a randomly selected hit list (with the same con-
straint that at least one of them must have five or more signif-
icant GO terms). We analyzed 1,000 such permutations of the
data and pooled them to generate the null distribution. This is
an appropriate null because if two enrichment results from the
same experiment (at two different time points) are less similar
than what would be expected for two randomly picked indepen-
dent experiments, we can say that the enrichment results are
no longer similar according to the measure. This null also inher-
ently addresses the tendency of some GO terms to recur more
frequently than others in independent enrichment analyses [16].

Implementation

GOtrack is implemented in Java and JavaScript and uses the
PrimeFaces framework, with a MySQL database. The open
source Highcharts (highcharts.com) visualization library is used
for plotting. The data in GOtrack are automatically updated
monthly. Because of the lag in when data are available from GOC,
data for a given date appear in GOtrack up to 2 months after the
stamped date.

Availability of source code and requirements
� Project name: GOtrack
� Project home page: https://gotrack.msl.ubc.ca/ [41]; source

code at https://github.com/PavlidisLab/gotrack [42]. Code
and all data files needed to reproduce the analyses presented
are provided at [43]. An executable workspace is also avail-
able [44].

� Operating system(s): The web application runs under Linux.
The web application works with major desktop operating
systems (MacOSX, Windows, Linux).

� Programming languages: Java 8, JavaScript, Python.
� Other requirements: The web application works with major

web browsers.
� License: The contents (images, text, data) of the GOtrack web

site are released under the Creative Commons BY-SA 2.0 li-
cense. The GOtrack source code is open under the Apache 2.0
license.

� RRID:SCR 016399 An archival copy of the code and supporting
data are also available via the GigaScience GigaDB repository
[45].

Additional files
� Supplementary results and discussion
� Supplementary Figure 1: Screen shots of the gene and term

views in GOtrack
� Supplementary Figure 2: Principal components analysis of

the direct annotation count matrix
� Supplementary Figure 3: Screen shots showing annotation

history tracking for a gene (annotation churn)
� Supplementary Figure 4: Enrichment web interface
� Supplementary Figure 5: Analysis of MSigDB lists using alter-

native similarity measures
� Supplementary Figure 6: Correlations of stability measures
� Additional Files 1–3: Microsoft Excel spreadsheets providing

examples of CGP enrichment results discussed in the sup-
plement. (APPEL IMATINIB RESPONSE.enrichment.xlsx,

https://gotrack.msl.ubc.ca/
https://github.com/PavlidisLab/gotrack
https://scicrunch.org/resolver/RRID:SCR_016399
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BENPORATH ES 2.enrichment.xlsx, ON-
DER CDH1 SIGNALING VIA CTNNB1.enrichment.xlsx):
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