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Abstract
Therapeutic medications for the treatment of depression have serious
limitations, particularly delayed onset and low rates of efficacy. However, the
discovery that a single subanesthetic dose of ketamine, a glutamate NMDA
receptor channel blocker, can produce a rapid (within hours) antidepressant
response that is sustained (about 1 week), even in patients considered
treatment-resistant, has invigorated the field. In addition to these remarkable
actions, ketamine has proven effective for the treatment of suicidal ideation.
Efforts are under way to develop ketamine-like drugs with fewer side effects as
well as agents that act at other sites within the glutamate neurotransmitter
system. This includes ketamine metabolites and stereoisomers, drugs that act
as NMDA allosteric modulators or that block mGluR2/3 autoreceptors. In
addition, targets that enhance glutamate neurotransmission or synaptic
function (or both), which are essential for the rapid and sustained
antidepressant actions of ketamine in rodent models, are being investigated;
examples are the muscarinic cholinergic antagonist scopolamine and activators
of mechanistic target of rapamycin complex 1 (mTORC1) signaling, which is
required for the actions of ketamine. The discovery of ketamine and its unique
mechanisms heralds a new era with tremendous promise for the development
of novel, rapid, and efficacious antidepressant medications.

Keywords
Ketamine, mTOR, antidepressants, depression, suicide

     Referee Status:

  Invited Referees

 version 1
published
24 May 2018

   1 2 3

, Chiba University CenterKenji Hashimoto

for Forensic Mental Health, Japan
1

, Nathan Kline InstituteDan V. Iosifescu

and New York University School of
Medicine, USA

2

, Baylor College ofSanjay J Mathew

Medicine, USA
Michael E. Debakey VA Medical Center,
USA

3

 24 May 2018,  (F1000 Faculty Rev):659 (doi: First published: 7
)10.12688/f1000research.14344.1

 24 May 2018,  (F1000 Faculty Rev):659 (doi: Latest published: 7
)10.12688/f1000research.14344.1

v1

Page 1 of 10

F1000Research 2018, 7(F1000 Faculty Rev):659 Last updated: 24 MAY 2018

http://f1000research.com/collections/f1000-faculty-reviews/about-this-collection
http://f1000.com/prime/thefaculty
http://f1000.com/prime/thefaculty
https://f1000research.com/articles/7-659/v1
https://f1000research.com/articles/7-659/v1
https://orcid.org/0000-0001-8690-8439
https://f1000research.com/articles/7-659/v1
http://dx.doi.org/10.12688/f1000research.14344.1
http://dx.doi.org/10.12688/f1000research.14344.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.14344.1&domain=pdf&date_stamp=2018-05-24


 

 Ronald S. Duman ( )Corresponding author: ronald.duman@yale.edu
  : Formal AnalysisAuthor roles: Duman RS

 The author has received consulting fees from Taisho, Johnson & Johnson, and Naurex and grant support from Taisho,Competing interests:
Johnson & Johnson, Naurex, Allergan, Navitor, Lundbeck, Relmada, and Eli Lilly and Company.

 Duman RS. How to cite this article: Ketamine and rapid-acting antidepressants: a new era in the battle against depression and suicide
   2018,  (F1000 Faculty Rev):659 (doi:  )[version 1; referees: 3 approved] F1000Research 7 10.12688/f1000research.14344.1

 © 2018 Duman RS. This is an open access article distributed under the terms of the  , whichCopyright: Creative Commons Attribution Licence
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article
are available under the terms of the   (CC0 1.0 Public domain dedication).Creative Commons Zero "No rights reserved" data waiver

 This research was supported by National Institute of Mental Health grants MH045481 and MH093897 and the State ofGrant information:
Connecticut. The funders had no role in decision to publish, or preparation of the manuscript. 

 24 May 2018,  (F1000 Faculty Rev):659 (doi:  ) First published: 7 10.12688/f1000research.14344.1

Page 2 of 10

F1000Research 2018, 7(F1000 Faculty Rev):659 Last updated: 24 MAY 2018

http://dx.doi.org/10.12688/f1000research.14344.1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://dx.doi.org/10.12688/f1000research.14344.1


Introduction
Major depressive disorder affects nearly 20% of the popula-
tion at some point during the life span and is estimated to be the  
number one cause of disability by 20201–4. The deleterious effects 
of depression are compounded by the lack of fast and effica-
cious treatment regimens, as currently available medications 
are effective in only about two-thirds of patients and there is a  
significant therapeutic time lag of weeks to months5. The efficacy 
and time lag limitations of current medications are particularly 
problematic for a patient population at elevated risk for suicide, 
which has increased significantly over the past 4 years6,7.

These deficiencies highlight a major unmet need for the treat-
ment of depression and underscore the impact of new rapid-acting 
antidepressant agents, notably the NMDA receptor antagonist 
ketamine. A single subanesthetic dose of ketamine produces 
a therapeutic response within a few hours that lasts for about  
7 days8,9. Equally surprising is that ketamine is effective in  
severely depressed patients who are considered treatment- 
resistant (that is, patients who have failed to respond to two or 
more typical antidepressants). In addition, ketamine has proven  
effective for the rapid reduction of suicide ideation10. The  
discovery of the rapid, efficacious, and sustained effects of 
ketamine is arguably the greatest breakthrough in the field of  
depression in over 60 years since the development of the  
monoaminergic antidepressants in the 1950s.

Here, we will provide a brief history and overview of the  
discovery of ketamine and how it impacts the synaptic pathophysi-
ology of depression and current evidence on the molecular and  
cellular mechanisms underlying the actions of ketamine. Then 
we will discuss how the ketamine discovery has stimulated the  
development of novel agents with fewer side effects, including  
drugs that act at the glutamate-NMDA receptor but also other 
agents that impact synapse number and function via other  
pathways.

Discovery of ketamine and NMDA receptor antagonists 
as rapid-acting agents
Most drug development efforts in the depression field have 
focused on the serotonin and norepinephrine neurotransmitter  
systems since the development of the monoamine reuptake  
blocker tricyclic antidepressants. However, studies of the  
glutamatergic neurotransmitter system and the mechanisms  
underlying synaptic plasticity stimulated drug development  
efforts in these areas. Early studies demonstrated that typical  
antidepressants altered the affinity of the NMDA receptor  
glycine site, suggesting the possibility that decreased NMDA 
receptor function contributes to an antidepressant response. This  
hypothesis was directly tested first by Krystal, Berman,  
Charney, and colleagues at Yale when they investigated a single 
subanesthetic dose (0.5 mg/kg, intravenous [IV] infusion over 
the course of 40 minutes) of ketamine and found that patients 
started reporting improvement of depressive symptoms within a  
matter of a few hours8. These improvements occurred after the 
initial psychotic and dissociative effects of ketamine, which  
occur in the first 60 minutes. The rapid and efficacious  
antidepressant actions of ketamine were confirmed in a larger  
double-blind, placebo-controlled study by Zarate, Charney, 

and colleagues at the National Institute of Mental Health9 and  
subsequently by many other studies from a number of clinical 
research groups, largely erasing any doubts of the incredible  
antidepressant actions of ketamine11–13.

Ketamine reverses the synaptic abnormalities caused by 
stress
Glutamate and NMDA receptors play an important role in  
cellular models of learning and memory, notably long-term  
potentiation (LTP), characterized by sustained synaptic strength-
ening in response to prior high-frequency stimulation. Actions of  
ketamine at NMDA receptors could influence NMDA function  
and synaptic plasticity in brain regions implicated in depression14. 
The possibility that synaptic changes are relevant to depression 
is supported by evidence that chronic stress, often used in rodent 
models of depression, causes significant loss of synapses and 
even retraction of apical dendrites in the prefrontal cortex (PFC)  
and hippocampus15,16 (Figure 1). The relevance of stress-induced 
synaptic deficits in rodent models is in turn supported by  
evidence from brain imaging studies demonstrating decreased 
volume of PFC and hippocampus in depressed patients and  
post-mortem studies showing decreased synapse number17. In  
contrast to the effects of chronic stress, we found that a single  
dose of ketamine rapidly increases the number and function of 
spine synapses in layer V pyramidal neurons in the medial PFC  
(mPFC) and rapidly reverses the synaptic deficits of these 
neurons caused by 3 weeks of chronic stress exposure18,19  
(Figure 1). Increased levels of synaptic proteins, including  
levels of glutamate AMPA receptor GluA1, were observed after  
2 hours, consistent with the onset of the therapeutic actions 
of ketamine. These studies demonstrate that ketamine rapidly  
increases synaptic function in the mPFC and that this reverses  
the synaptic pathophysiology of depression20.

In addition to the effects of ketamine in the mPFC, there is a 
recent high-impact report demonstrating the effects of ketamine 
in the lateral habenula, a region that inhibits the major reward 
centers in the brain21. This study shows that depressive-like  
behavior in rodent models (rat congenital learned helpless-
ness [LH] and mouse chronic restraint stress) is characterized by 
increased burst firing of neurons in the lateral habenula, which 
causes inhibition of the activity of the major reward and emotion 
pathways and the ventral tegmental dopamine system as well as 
the serotonin dorsal raphe neurons. This burst firing is driven by  
NMDA receptor activity as well as low-voltage-sensitive T-type  
calcium channels; ketamine, after either systemic or local intrac-
erebral administration, is sufficient to block the burst firing 
and depressive behavior in the LH rats. It has been postulated 
that blockade of the anti-reward effects exerted by the lateral  
habenula could underlie the rapid antidepressant actions of  
ketamine and that the synaptic effects of ketamine in the mPFC 
could be more related to the sustained actions of ketamine,  
although further studies are needed to test this hypothesis.

Mechanisms underlying the synaptic actions of ketamine: 
disinhibition hypothesis
How might ketamine, an NMDA receptor channel blocker, 
cause a rapid increase in the number and function of spine syn-
apses? There are different theories, but the one that has received 
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Figure 1. Schematic model for the initial cellular target sites of rapid-acting antidepressants and subsequent synaptic changes. 
Stress and depression cause neuronal atrophy and decreased synapse number in the medial prefrontal cortex (PFC) and hippocampus 
that is associated with the depressive symptoms and behaviors in rodent models. Conversely, fast-acting antidepressants like ketamine 
rapidly increase synapse number and function and reverse the synaptic deficits caused by chronic stress. The synaptic actions of ketamine, 
as well as several other agents (that is, esketamine, [2R,6R]-hydroxynorketamine, mGluR2/3 antagonists LY341,495 and MGS0039, and 
scopolamine acting at acetylcholine muscarinic 1 receptors), are activity-dependent and are thought to result from a burst of glutamate via 
blockade of receptors on tonic firing GABA interneurons, resulting in disinhibition of glutamate transmission. This burst of glutamate causes 
activity-dependent release of brain-derived neurotrophic factor (BDNF), stimulation of TrkB-Akt and mechanistic target of rapamycin complex 
1 (mTORC1) signaling, and rapid increases in synaptic protein synthesis that underlie new synapse formation. Negative allosteric modulators, 
including CP-101,606, CERC-301, and Ro 25-6981 agents like rapastinel, may increase synapse formation by enhancing NMDA function and 
thereby increasing BDNF release and downstream mTORC1 signaling. A role for mTORC1 is further supported by evidence that an agent that 
increases mTORC1 activity also produces synaptic and rapid antidepressant responses. In addition to these sites, there is evidence that the 
GABAA-positive allosteric modulating agents brexanolone and SAGE-217 also produce rapid antidepressant responses. The intersection of 
these agents with the mechanisms underlying the rapid response to glutamatergic agents remains to be identified.

the most attention is that ketamine actually increases glutamate 
transmission and causes an LTP-like enhancement of synapse 
formation in the mPFC14. This idea was first formulated when it 
was discovered that ketamine rapidly (30 minutes after systemic 
administration) increases extracellular glutamate in the mPFC 
of rodents22; this effect was observed only at low subanesthetic 
doses of ketamine, whereas high anesthetic doses had no effect. 
Elevation of extracellular glutamate led to the hypothesis that low 
doses of ketamine selectively block NMDA receptors on GABA 
interneurons that inhibit glutamate transmission (Figure 1). 
This selectivity is based on the fact that GABA interneurons  
are tonic firing, which results in removal of the Mg2+ block of the 
NMDA receptor channel, allowing ketamine to enter, bind, and 
block the channel. Direct evidence for the disinhibition hypothesis 
has been reported recently in slice studies of hippocampus, which 
show that low concentrations of ketamine decrease inhibitory input  
onto pyramidal neurons and thereby lead to an increase in the  

synaptic drive of excitatory pyramidal neurons in the hippoc-
ampus23. There is also an opposing “direct” hypothesis that the  
synaptic actions of ketamine are mediated by blockade of NMDA 
receptors on excitatory neurons, which leads to homeostatic  
control of synaptic activity24. This homeostatic direct hypothesis 
is difficult to rationalize in the mPFC where there is a glutamate 
burst but could occur in other brain regions where there is no  
increase in glutamate.

Studies of the cellular signaling mechanisms underlying the  
synaptic actions of ketamine demonstrate a requirement for 
brain-derived neurotrophic factor (BDNF) and activation of  
pathways that increase the synthesis of synaptic proteins  
(Figure 1). The antidepressant actions of ketamine are blocked in 
conditional BDNF-knockout mice24 and in mice with a knockin 
of the BDNF Val66Met allele, which blocks the processing- and  
activity-dependent release of BDNF25. Further evidence that  
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activity-dependent release of BDNF is required comes from studies 
demonstrating that infusion of a function-blocking antibody 
into the mPFC blocks the antidepressant actions of ketamine26. 
Increased synthesis of synaptic proteins occurs via regulation of 
the mechanistic target of rapamycin complex 1 (mTORC1) as 
well as eukaryotic elongation factor 2 kinase (eEF2K). We have 
found that ketamine rapidly increases the phosphorylation of 
mTOR and downstream signaling proteins that stimulate synaptic  
protein synthesis and that the behavioral actions of ketamine 
are blocked by infusion of rapamycin, a selective inhibitor of  
mTORC118 (Figure 1). Further evidence for mTORC1 is pro-
vided by recent studies demonstrating that direct stimulation 
of mTORC1 also produces rapid synaptic and antidepressant  
behavioral responses27. Ketamine stimulation of mTORC1 signal-
ing has been replicated in multiple laboratories18,19,28–42, although 
there is a preliminary report of non-significant effects, raising a  
concern about the suitability of this target for drug screening43. An 
alternative hypothesis is that ketamine blockade of NMDA recep-
tors at rest results in deactivation of eEF2K and de-suppression 
of translation, thereby increasing BDNF expression in pyramidal 
neurons24. There has also been evidence that ketamine influences 
the opioid system and inflammation processes, effects that could 
contribute to the actions of ketamine44,45.

Development of novel glutamate/NMDA receptor 
agents for depression
The widespread use of ketamine for the treatment of depression 
is limited by its psychotomimetic and dissociative side effects 

as well as abuse potential. Nevertheless, for treatment-resistant 
patients, ketamine may be the only choice and is becoming more 
widely available. Another limitation is that ketamine is admin-
istered primarily by an IV route in a clinic or hospital setting.  
To address this issue, Johnson & Johnson is developing a nasal 
application of the (S)-ketamine stereoisomer (esketamine), 
which has received breakthrough therapy classification from the  
US Food and Drug Administration (FDA). Esketamine acts 
similarly to ketamine and has higher affinity as an NMDA  
channel blocker than the (R)-isomer (Figure 2). Early clinical  
trials have been promising, and although esketamine has side 
effects similar to those of ketamine, it could be approved as a 
nasal application as early as the beginning of 2019. Surpris-
ingly, clinical trials with other non-selective NMDA receptor  
antagonists, including memantine and lanicemine, have been 
largely negative46–48. The reason for the lack of efficacy is 
not clear but could be related to the dose used or the efficacy  
(or both) of the channel-blocking activity of these agents.

Stereoisomers and metabolites of ketamine
Efforts have also continued to develop and identify agents with 
the rapid and efficacious actions of ketamine but with fewer or 
no side effects. There is evidence from rodent studies that the  
(R)-stereoisomer of ketamine also produces rapid antidepres-
sant effects in rodent models but without the ketamine-like side 
effects on sensory motor gating or conditioned place preference49. 
The reduced side effects may be related to the decreased affinity 
of the (R)-isomer for the NMDA receptor. In addition, (S)- but 

Figure 2. Model of the NMDA receptor complex and target sites of rapid-acting antidepressants. The NMDA receptor is a complex 
of four subunits comprising four subunits that form a pore that is permeable to Ca2+. At resting state, the pore is blocked by Mg2+, but, 
upon depolarization, Mg2+ is removed, allowing entry of Ca2+. In the open state, the pore is also accessible by ketamine, which enters 
and blocks further Ca2+ influx. The (S)-enantiomer esketamine binds to the same site to block the channel. There are several known sites 
for regulation of the NMDA receptor in addition to the ketamine and glutamate/NMDA binding sites. Glycine binds to the GluN1 subunit 
and enhances NMDA receptor function; AV-101 is an antagonist of the glycine B co-agonist site. Rapastinel has glycine-like enhancing 
properties, although it binds to an allosteric site on the complex. There are several GluN2B-selective allosteric modulators that have potential 
as rapid-acting agents, including CP-101,606, CERC-301, and Ro 25-6981. It is currently unknown what the initial target is for the metabolite  
(2R,6R)-hydroxynorketamine.
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not (R)-ketamine is reported to stimulate mTORC1 signaling42. 
There is also evidence that the ketamine metabolite (2R,6R)-
hydroxynorketamine—(2R,6R)-HNK—produces rapid and sus-
tained antidepressant actions in several rodent models, again 
without influencing sensory motor gating or conditioned place  
preference50. This study found that (2R,6R)-HNK increased 
AMPA-GluA1 receptor expression and activity and increased 
levels of BDNF and phosphorylation of eEF2K; we have also 
found that the behavioral actions of (2R,6R)-HNK are blocked 
in BDNF Val66Met mice or by infusion of a function-blocking  
antibody and by infusion of rapamycin into the mPFC51.  
However, others have reported that the antidepressant actions 
of (2R,6R)-HNK are less potent and stable compared with (R)-
ketamine52 or do not produce antidepressant actions in a rat LH  
model53. Zanos and colleagues50 report that they could find no 
evidence that (2R,6R)-HNK blocks NMDA receptors, including  
binding to known sites on the receptor complex or NMDA activ-
ity in hippocampal slices, so the initial cellular trigger remains 
to be identified. Nevertheless, another study reported that a 
high concentration of (2R,6R)-HNK (50 µM) produces partial  
blockade of synaptic NMDA receptors and downstream signaling 
compared with the same concentration of ketamine54.

Other glutamatergic agents: GluN2B and mGluR2/3 
antagonists and rapastinel
There is also evidence from rodent studies and preliminary  
clinical trials that antagonists that are selective for the GluN2B 
subunit of the NMDA receptor have antidepressant efficacy  
(Figure 2). Clinical studies first reported that a single dose of the 
selective GluN2B antagonist CP101,606 produces antidepres-
sant actions in depressed patients, although significant effects 
were not observed until 5 days later55. Recent clinical studies with  
another GluN2B-selective agent, CERC-301, have been mixed; 
early studies reported positive effects, and a more recent report  
was negative, although this could be because of the lower dose 
used for the latter study56. Rodent studies demonstrate that a 
single dose of the GluN2B antagonist Ro 25-6981 produces 
antidepressant actions in several different antidepressant  
models, including the forced swim test (FST), LH, and novelty  
suppressed feeding test (NSFT), as well as in the chronic  
unpredictable stress-anhedonia model18,57. Additional studies are 
needed to further test the efficacy and rapid actions of GluN2B- 
selective agents.

Another agent of interest is rapastinel, also referred to as GLYX-
13, which was initially thought to act as an NMDA glycine site 
partial agonist (Figure 2). More recent studies indicate that 
rapastinel has activity that is similar to that of a glycine site  
partial agonist but acts via an allosteric site58. Preclinical studies 
demonstrate that a single dose of rapastinel results in antide-
pressant actions in several rodent models, including the FST, 
NSFT, LH, chronic mild stress/anhedonia, and social defeat  
stress27,59. In contrast to ketamine, rapastinel does not influence 
sensory motor gating or conditioned place preference. A single 
dose of rapastinel also increases synapse number and function in  
the mPFC and requires BDNF release and mTORC1 activation27,41. 
However, one study reports that the antidepressant actions of 
rapastinel in a social defeat model as well as its effects on BDNF-
TrkB signaling are not as long-lasting as those of (R)-ketamine60.  

A double-blind randomized clinical trial reported that a single 
dose of rapastinel produces antidepressant actions that per-
sisted for about 7 days61. Rapastinel has received breakthrough  
classification and currently is in phase III clinical trials. Another 
agent that works via the glycine site is AV-101, a prodrug  
(L-4-chlorokynurenine) that is transported into the brain where 
it is converted to 7-chlorokynurenic acid, a potent antagonist of  
the glycine B coagonist site of the NMDA receptor62; AV-101 is in 
phase II clinical trials and has received fast-track status from the 
FDA.

Based on evidence that the actions of ketamine occur via a “gluta-
mate burst” and the subsequent enhancement of synaptic func-
tion, other approaches to increase glutamate neurotransmission 
have been tested. Most notable are the metabotropic GluR2/3 
antagonists, which increase glutamate activity by blocking presy-
naptic autoreceptors (Figure 1). Preclinical studies have reported 
that mGluR2/3 antagonists, notably LY341,495 and MGS0039, 
produce antidepressant effects in a number of rodent models, 
including the FST, NSFT, and a chronic unpredictable stress-
anhedonia model, and also require mTORC1 signaling29,63,64.  
Clinical trials are needed to determine whether blockade of 
mGluR2/3 receptors produces a therapeutic response in patients 
and to determine the side effect profile of these agents.

Additional rapid-acting antidepressant approaches
Although drug development has focused on direct-acting gluta-
matergic approaches, there is evidence for other initial targets 
that produce rapid antidepressant responses, although some 
of these also indirectly influence glutamate transmission. The 
most notable of these is scopolamine, a non-selective acetylcho-
line muscarinic (AChM) receptor antagonist, which has shown 
promise in clinical trials. These studies have reported that a sin-
gle low dose (4 µg/kg IV) of scopolamine produces an antide-
pressant response at the first assessment time point, 3 days after 
dosing, and there is anecdotal evidence of improvement within  
24 hours65,66. These rapid therapeutic actions led us to examine 
the cellular actions of scopolamine in rodent models. These 
studies showed that, like ketamine, scopolamine causes a 
rapid burst of glutamate in the mPFC and increases mTORC1  
signaling and synapse formation and that the antidepressant 
actions of scopolamine require BDNF release and mTORC167,68  
(Figure 1). We have also found that the antidepressant actions of 
scopolamine occur through blockade of AChM1 receptors on 
GABA interneurons, demonstrating that scopolamine acts via 
a disinhibition mechanism69. Despite these interesting findings, 
there has been less interest in developing AChM antagonists for  
the treatment of depression relative to ketamine and direct-acting 
glutamatergic agents.

Another indirect approach that influences glutamate transmission 
is via the regulation of GABA

A
 receptors, particularly selective  

inverse agonists that would increase glutamate transmission. 
Rodent studies targeting the α5-subunit-containing GABA

A
 recep-

tor, which is enriched in the PFC and hippocampus, report that 
a single dose of the α5-selective inverse agonists L-655,708 or  
MRK-016 produce rapid antidepressant behavioral responses in a 
number of tests, including the FST and female urine sniffing test 
(FUST), and chronic restraint stress and chronic unpredictable 
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stress-anhedonia models70,71. The actions of these inverse agonists 
require AMPA receptor activity, indicating an increase in  
glutamate transmission as expected. These compounds lack 
the side effects of ketamine on sensory motor gating and condi-
tioned place preference, and this is possibly due to the restricted  
expression of α5-subunit-containing GABA

A
 receptors. Clinical 

studies are required to determine the therapeutic potential and to 
confirm the reduced side effect profile of these agents.

One other very different approach is based on evidence that keta-
mine and several other rapid-acting agents increase mTORC1 
signaling in the mPFC. The biotech company Navitor has devel-
oped an agent, NV-5138, that stimulates mTORC1 signaling via 
binding to sestrin, an upstream regulatory pathway72 (Figure 1).  
We have found that a single oral dose of NV-5138 increases 
mTORC1 signaling in the mPFC as expected and produces rapid 
antidepressant actions in the FST, NSFT, FUST, and chronic  
unpredictable stress-anhedonia models27. These behavioral  
actions of NV-5138 are long-lasting (up to 7 days). In addition, a 
single dose of NV-5138 increases synapse number and function 
and levels of synaptic proteins in the mPFC. Preliminary stud-
ies also demonstrate that the actions of NV-5138 require BDNF  
(unpublished). Based on these promising preclinical findings,  
efforts are under way to test NV-5138 in human subjects and 
depressed patients.

Another exciting finding is the recent report that the neuroac-
tive steroid allopregnanolone (SAGE-547, now referred to as  
brexanolone) produces rapid therapeutic actions in women with 
post-partum depression (PPD) (Figure 1). Allopregnanolone 
is a positive allosteric modulator of synaptic and extrasynaptic  
GABA

A
 receptors, particularly the δ-subunit that regulates 

tonic firing of GABA interneurons. PPD is associated with the  
precipitous drop at birth of allopregnanolone and other  
progesterone-derived neurosteroids that are very high during  
pregnancy; since PPD occurs in a subpopulation of women,  
there are likely vulnerability factors that are also involved. Pre-
vious studies have reported that mice with a deletion of the  
δ-subunit show depression-like behavior and abnormal mater-
nal care during the post-partum period73. The clinical study 
reports that sustained infusion (IV) of brexanolone results in a  
therapeutic response within 24–48 hours in severely depressed 
PPD women74,75. Brexanolone has received breakthrough status 
for the treatment of PPD and currently is in phase III trials. In  
addition, Sage has developed an orally available synthetic  
analogue, SAGE-217, that has shown therapeutic efficacy in  

both female and male patients with major depression; SAGE-217 
has also received breakthrough therapy status and soon will be 
starting phase III trials.

Future studies and drug development
The discovery of ketamine and related agents holds tremendous 
promise for the rapid, efficacious treatment of depression. We 
are experiencing an unprecedented time of antidepressant drug  
development in this area; at least five different agents (rapasti-
nel, esketamine, AV-101, brexanolone, and SAGE-217) have 
been awarded breakthrough therapy or fast-track status from the 
FDA. However, there are several critical problems to overcome.  
First, ketamine is a drug of abuse and has serious side effects, 
so new agents with a reduced side effect profile are needed. 
Second, although ketamine produces a rapid antidepressant  
response, the effects last for about 1 week, at which time patients 
typically relapse. New agents that can be used on a daily,  
sustained basis are needed. Third, studies are needed to under-
stand why new ketamine-induced synapses are lost after 1 week 
and whether there are approaches or agents (or both) that can 
sustain the synaptic as well as the therapeutic actions of keta-
mine. Fourth, additional research is needed to fully understand the  
cellular mechanisms underlying the actions of ketamine and  
other rapid-acting agents and to determine the critical patho-
physiological abnormalities that cause depression. The future 
for novel rapid-acting antidepressants looks very bright, as the  
drugs currently being tested in phase II and III clinical trials 
may address some of these issues. With continued efforts, 
there is hope that there will soon be a number of novel, rapid, 
and efficacious choices for the treatment of depression and 
the possibility that these could target the underlying causes of  
illness.
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