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Patients with lung cancer are particularly vulnerable to complications from coronavirus

disease-2019 (COVID-19). Recurrent hospital visits and hospital admission are potential

risk factors for acquiring infection with its causative pathogen, severe acute respiratory

syndrome coronavirus−2 (SARS-CoV-2). As immune checkpoint inhibitors (ICIs)

constitute the therapeutic backbone for the vast majority of patients with advanced

lung cancer in the absence of actionable driver oncogenes, there have been intense

discussions within the oncology community regarding risk-benefit of delaying these

treatments or use of alternative extended-interval treatment strategies tominimize the risk

of viral transmission secondary to unintended nosocomial exposures. In the midst of the

COVID-19 pandemic, the U.S. Food and Drug Administration (FDA) granted accelerated

approval for extended-interval strategy of pembrolizumab at a dose of 400mg every

6 weeks for all already approved oncologic indications. Herein, we summarize the

evidence from the in silico pharmacokinetic modeling/simulation studies supporting

extended-interval dosing strategies for the ICIs used in lung cancer. We further review the

evolving clinical evidence behind these approaches and predict that they will continue to

be used in routine practice even long after the pandemic, particularly for patients with

durable disease control.

Keywords: lung cancer, extended-interval dosage, immune checkpoint inhibitors, pembrolizumab, nivolumab,

atezolizumab, durvalumab, COVID-19

INTRODUCTION

Immune checkpoint inhibitors (ICIs) have acquired an indisputable place in the evidence-
based care of lung cancers (1). Drugs targeting the programmed death (PD)-1/PD-ligand-1
(PD-L1) and cytotoxic T lymphocyte antigen (CTLA)-4 pathways have been approved, either
as monotherapy or in combination with other agents, for management of locally advanced
and metastatic non-small cell lung cancer (NSCLC) by the United States (U.S.) Food and
Drug Administration (FDA) and other regulatory agencies around the world (Table 1). These
include PD-1 inhibitors (pembrolizumab and nivolumab), PD-L1 inhibitors (atezolizumab and
durvalumab), and a CTLA-4 inhibitor (ipilimumab). Additionally, PD-L1 inhibitors have been
approved in combination with chemotherapy by the U.S. FDA for first line management of
extensive-stage small cell lung cancer (SCLC), while PD-1 inhibitors are currently approved in third
or later-line treatment settings for metastatic SCLC (Table 1).
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TABLE 1 | Dosing strategies of immune checkpoint inhibitors approved for lung cancer by the U.S. Food and Drug Administration.

Anti-PD-1 antibodies Anti-PD-L1 antibodies Anti-CTLA4 antibody

Pembrolizumab Nivolumab Atezolizumab Durvalumab Ipilimumab

Metastatic or advanced

unresectable NSCLC (First

or later-line settings)

Single agent (either

monotherapy or

maintenance therapy)

200mg every 3 weeks

OR

400mg every 6 weeks

240mg every 2 weeks

OR

480mg every 4 weeks

1200mg every 3 weeks

OR

840mg every 2 weeks

OR

1680mg every 4 weeks

Along with chemotherapy 200mg every 3 weeks

OR

400mg every 6 weeks

240mg every 2 weeks

OR

480mg every 4 weeks

1200mg every 3 weeks

Along with chemotherapy +

bevacizumab

1200mg every 3 weeks

Combination

immunotherapy

3 mg/kg every 2 weeks

(+ Ipilimumab 1 mg/kg

every 6 weeks)

1 mg/kg every 6 weeks

(+ Nivolumab 3 mg/kg

every 2 weeks)

Combination

immunotherapy along with 2

cycles of chemotherapy

360mg every 3 weeks

(+ Ipilimumab 1 mg/kg

every 6 weeks)

1 mg/kg every 6 weeks

(+ Nivolumab 360mg

every 3 weeks)

Unresectable Stage III

NSCLC (after concurrent

chemoradiation therapy)

Single agent as

maintenance therapy

10 mg/kg

every 2 weeks

Extensive stage SCLC Along with chemotherapy 1200mg every 3 weeks 1500mg every

3 weeks

Single agent as

maintenance therapy

1200mg every 3 weeks

OR

840mg every 2 weeks

OR

1680mg every 4 weeks

1500mg every

4 weeks

Extensive stage/recurrent

metastatic SCLC

(progression on/after

platinum-based

chemotherapy and at least

one other line of therapy)

Single agent 200mg every 3 weeks

OR

400mg every 6 weeks

240mg every 2 weeks

CTLA-4, Cytotoxic T lymphocyte antigen-4; NSCLC, Non-small cell lung cancer; PD-1, Programmed death-1; PD-L1, Programmed death ligand-1; SCLC, Small cell lung cancer.

Coronavirus disease-2019 (COVID-19) is an ongoing global
pandemic which has causedmore than 380,000 deaths worldwide
as of June 4th, 2020 (2). Patients with cancer are among the
most vulnerable groups for infection with its causative pathogen,
severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2),
and can develop severe morbidity andmortality from COVID-19
(3–8). Even among all cancer patients, those with lung cancer
appear to be at a disproportionately higher risk for poor
outcomes (3, 7–10). In a preliminary analysis of 200 patients with
lung cancer and COVID-19 enrolled in the global TERAVOLT
(Thoracic cancERs international coVid 19 cOLlaboratTion)
registry, the mortality rate was 33.3% (10). This increased risk
may be attributable to association of lung cancer with advanced
age, smoking, preexisting lung damage and therapy-related
immune impairment– all risk factors for severe COVID-19
complications (11). The specific impact of active treatment
with ICIs in patients with cancer who develop COVID-19 is
not entirely clear (12). While ICIs may theoretically promote
immunocompetence to fight viral infection, they may also
potentiate hyperinflammation associated with severe COVID-19.

Anecdotal case reports of fatalities have been described in
patients with advanced lung cancer who were receiving treatment
with ICIs (13). However, a single-center study assessing 69
consecutive patients with lung cancer and COVID-19 did not
find an association between PD-1 blockade and severity of
COVID-19 after adjustment for smoking status (9).

Hospital admissions and recurrent hospital visits have
been identified as potential risk factors for infection with
SARS-CoV-2 (3, 5). To minimize the risk of hospital-
acquired transmission, there have been fervent discussions
within the oncology community about the risk-benefit of
delaying/extending intervals of treatment cycles for those
receiving ICIs as part of routine care (12). The majority of ICIs
were initially approved as either every 2 weeks (Q2W) or every
3 weeks (Q3W) dosing regimens. Extended-interval dosing of
nivolumab and atezolizumab have subsequently been approved
based on in silico (modeling/simulation) studies (14, 15). The
extended-interval frequency of treatment with pembrolizumab
(the most commonly utilized ICI in the first-line setting for
advanced NSCLC) at 400mg every 6 weeks (Q6W) was recently
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granted accelerated approval by the U.S. FDA on April 28, 2020,
thereby providing an evidence-based option for less frequent
treatment of patients with lung and other cancers for which
pembrolizumab has previously obtained approval. Herein, we
summarize the pharmacokinetic/pharmacodynamic and clinical
evidence behind extended-interval dosing regimens of ICIs
currently approved by the U.S. FDA for management of patients
with lung cancer.

LESSONS LEARNT FROM EARLY PHASE
DEVELOPMENT TRIALS

Early drug development studies provided data on
pharmacokinetic (PK) and pharmacodynamic (PD) properties
of immune-checkpoint inhibitors, including anti-PD-1, anti-
PD-L1 and anti-CTLA-4 antibodies (1, 16, 17). These are
either humanized or fully human monoclonal immunoglobulin
(IgG)-1 antibodies, with the exception of the PD-1 inhibitors
pembrolizumab and nivolumab, which are IgG4 molecules. As
with other monoclonal antibodies, they exhibit a low volume of
distribution, low clearance, and long half-lives; their clearance is
also minimally affected by renal or hepatic impairment (16, 17).

Two compartment models best characterize the PK properties
of ICIs (16). Over the dose range studied, linear PK profiles with
time-varying clearance have been described for: pembrolizumab
(0.3–10 mg/kg) (18–20), nivolumab (0.1–20 mg/kg) (21–23),
atezolizumab [1–20 mg/kg including 1,200mg dose) (24), and
durvalumab (>3 mg/kg) (25, 26). A time-invariant linear
PK model characterizes ipilimumab (0.3–10 mg/kg) (27, 28).
However, at lower dose ranges, the PK profile has been found
to be non-linear for pembrolizumab (<0.3 mg/kg) (18, 19)
and durvalumab (<3 mg/kg) (25, 26). Steady-state exposure is
achieved after treatment for ∼19 weeks with pembrolizumab
(Q3W) (29), 12 weeks with nivolumab (Q2W) (21, 22),
and 16 weeks with durvalumab (Q2W) (26). In the dose-
escalation studies, maximal tolerated dose was not reached
for pembrolizumab (0.005-10 mg/kg) (19), nivolumab (0.1–10
mg/kg) (21, 30, 31), atezolizumab (0.01–20 mg/kg) (32–34),
or durvalumab (0.1–15 mg/kg) (35). PD analyses have shown
maximal occupancy of PD-1 receptors with nivolumab at doses as
low as 0.1–0.3 mg/kg (21, 30) and with duvalumab at≥0.3 mg/kg
(36), while maximal effect on lymphocyte stimulation was seen
with pembrolizumab at doses ≥1 mg/kg (19).

Clinicopathological features are known to influence the PKs
of monoclonal antibodies and may contribute to interpatient
variability (16, 37). Body weight is the most important
patient variable influencing clearance of ICIs. Other patient
characteristics such as age, sex, ethnicity, performance status,
tumor type, initial tumor burden, serum albumin level, initial
lactate dehydrogenase level, liver function, and renal function
have not been shown to affect PK parameters in a clinically
relevant manner (20, 22, 25, 27, 29). An exception is a prospective
study of nivolumab in NSCLC, melanoma and renal cancer,
where sex and baseline serum albumin significantly affected
drug clearance in addition to body surface area (38). Finally,

development of anti-drug antibodies (ADA) has not been
associated with a clinically significant deleterious effect on PKs
or efficacy of pembrolizumab (39), nivolumab (40), atezolizumab
(24), or durvalumab (26). However, the effect of ADA on drug
clearance merits further investigation, as a negative association
with overall survival has been found for ipilimumab in patients
with advanced melanoma (41), and conflicting results have been
reported for nivolumab in the post-drug approval setting (16).

EXPOSURE-MATCHING: LEVERAGING
POPULATION PHARMACOKINETIC
MODELING

Population pharmacokinetic (PPK) modeling and simulation
studies have relied on data collected in the early dose-ranging
studies of ICIs. Flat exposure-response relationship with a wide
therapeutic index has been described for pembrolizumab in
patients with NSCLC (42, 43) and other solid malignancies
(19, 44–46). Similar results were seen in a study which
retrospectively pooled data from KEYNOTE-002 (melanoma)
and KEYNOTE-010 (NSCLC), with subsequent prospective
validation in data from KEYNOTE-024 (NSCLC) (47). In
addition, drug clearance has also been associated with patient
outcomes (survival/response) with pembrolizumab treatment
(47, 48). With regards to nivolumab, exposure concentrations
reached plateau at doses ≥3 mg/kg for patients with NSCLC
and at ≥1 mg/kg for patients with melanoma in a phase I
dose-escalation study (21, 22, 30). Most subsequent studies have
reported relatively flat dose/exposure-response for nivolumab
with a wide therapeutic index in patients with NSCLC (49, 50)
and other solid malignancies (51–53). However, a real-world
study in 76 patients with metastatic NSCLC reported a potential
exposure-response relationship with nivolumab treatment at the
3 mg/kg dose (54). Higher trough concentrations were seen
in patients with longer overall survival; however, this was not
adjusted for clinical or biological factors. Multiple studies have
consistently demonstrated baseline clearance to be a strong
predictor of objective response and overall survival on treatment
with nivolumab across multiple tumor types (30, 51, 52),
including NSCLC (38, 49). In addition, decrease in clearance
over time has also been found as an independent predictor of
objective response (23). Atezolizumab has also been shown to
have a flat exposure-response profile (including 1200mg Q3W
dosing) with regards to efficacy and safety in urothelial carcinoma
(24). In contrast, exposure-response relationship for efficacy and
safety has been consistently reported with ipilimumab treatment
in patients with advancedmelanoma, supporting its body weight-
based dosing (55–57).

Fixed flat dosing of PD-1/PD-L1 ICIs has been evaluated using
PPK and exposure-response analyses in modeling/simulation
studies. This is consistent with the model-informed drug
development approach endorsed by the U.S. FDA, where in silico
studies may provide primary evidence for alternative dosing
strategies when effectiveness is well-established in other settings
(58, 59). These in silico studies with PD-1/PD-L1 inhibitors
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predicted comparable exposures between flat and traditional
body weight-based dosing strategies (25, 60, 61), leading to
regulatory approval of fixed dose regimens for nivolumab
and pembrolizumab. Interestingly, the 1200mg Q3W flat dose
of atezolizumab was selected early during drug development
process, as it achieved preclinically determined target serum
tough concentration of 6µg/mL in >95% of patients (24, 62).

A potential limitation of in silico studies is the inability
to fully account for drug clearance, development of ADA
and other clinicopathological variables. The simulated exposure
concentrations require prospective validation in biologically
dynamic systems. In addition, the vast majority of these
studies have either been performed or provided funding by
manufacturing pharmaceutical companies, which may have been
a factor in the selection of the dose and frequency chosen for
comparisons (63).

EXPOSURE-MATCHING: DEVELOPMENT
OF EXTENDED-INTERVAL DOSING
STRATEGIES

The model-based approach was further expanded to evaluate
extended-interval frequencies based on the aforementioned
principles and data. The initial study with nivolumab compared
the standard 3 mg/kg Q2W and 240mg Q2W regimens with
the extended-interval strategy of 480mg every 4 weeks (Q4W)
(14, 58). This study utilized steady-state PK measures of
trough concentration (Cmin) and time-averaged concentration as
surrogate markers for efficacy, while peak concentration (Cmax)
was used as a surrogate marker for safety. Using data from
3,817 patients from clinical trials across tumor types (including
NSCLC and SCLC), nivolumab administration at 480mg Q4W
was predicted to lead to similar steady-state time-averaged
concentrations, 16% lower Cmin and 45% higher Cmax compared
to traditional 3 mg/kg Q2W dosing. Notably, a modest increase
in interpatient variability in exposure was detected with the
extended-interval regimen. The predicted Cmax was lower than
that of 10 mg/kg Q2W, the maximal dose evaluated and well-
tolerated in the dose-escalation trials. Another simulation study
predicted comparable clinical outcomes (objective response rate,
overall survival) for patients with NSCLC, melanoma, and renal
cell cancer with nivolumab 480mg Q4W compared to 3 mg/kg
Q2W regimen (64). These data collectively led to the approval
of nivolumab 480mg Q4W in patients with previously treated
advanced NSCLC.

Subsequently, another modeling study simulated
pembrolizumab concentration time profiles by utilizing the
PPK model based on data from 2,993 participants in five clinical
trials of patients with multiple tumor types (65). This study
also measured steady-state PK profiles to compare efficacy
and safety of pembrolizumab 400mg Q6W with the standard
doses of 200mg Q3W and 2 mg/kg Q3W. Of the two efficacy
parameters assessed, area under the curve (AUC) was nearly
identical between the different groups. The more conservative
estimate of mean Cmin for 400mg Q6W regimen was predicted
to be 12% and 34% lower compared to 200mg Q3W and 2 mg/kg

Q3W dosing, respectively. Only ∼0.5% patients with the 400mg
Q6W dose had Cmin below the lowest value for 2 mg/kg Q3W for
an average of 3 days. This was thought to not have a significant
effect on target saturation of PD-1 receptors, as it was predicted
that reduced concentrations would be required for at least 7 days
(based on five half-lives of receptor turnover) for replacement
of steady state levels of PD-1. The surrogate measure for safety-
Cmax with 400mg Q6W regimen was predicted to be lower at
all times when compared to 10 mg/kg Q2W, the highest/most
frequent pembrolizumab dose administered in clinical trials.
The authors further demonstrated that these PK profiles were
consistent across tumor types with a flat exposure-response
relationship over a five-fold dose range. These data ultimately led
to approval of pembrolizumab 400mg Q6W for all previously
approved indications by the U.S. FDA on April 28, 2020.

A similar exposure-matching study with atezolizumab
employed data from three clinical trials: PCD4989g (NSCLC and
urothelial carcinoma cohorts), OAK (NSCLC), and IMvigor211
(urothelial carcinoma) (15). The predicted exposure with
extended-interval dosing at 1680mg Q4W was comparable
to the standard 1200mg Q3W regimen. At steady-state, the
predicted serum Cmin with 1680mg Q4W was 6% lower than
that for 1200mg Q3W regimen– but remained tenfold higher
than the target serum Cmin of 6µg/mL. The predicted AUC was
4.8% higher than that for 1200mg Q3W. Further evaluation
revealed no clear exposure-safety relationship for atezolizumab.
The predicted Cmax with 1680mg Q4W was within the range
observed with the maximal 20 mg/kg dose tested in the dose-
escalation study PDC4989g, with a comparable safety profile
demonstrated in those below or above this predicted Cmax. This
study contributed to the US. FDA approval of the 1680mg Q4W
atezolizumab regimen when used as monotherapy in first or
later-line settings.

CLINICAL EVIDENCE BEHIND
EXTENDED-INTERVAL DOSING
STRATEGIES

The regulatory approval of extended-interval strategies of
ICIs has been predominantly based on the aforementioned
in silico studies. While these strategies have the potential to
improve patient experience and reduce infusion center-related
costs, concerns remain regarding less frequent monitoring for
progression and immune-related adverse events with potentially
serious consequences. The clinical evidence behind use of these
strategies is still evolving.

The safety profile of the nivolumab 480mg Q4W regimen
was evaluated in a pooled dataset of 61 patients from four
phase III (CheckMate 066, 025, 057, and 017) clinical trials
(14). This study included patients who either transitioned to
the extended-interval nivolumab strategy or crossed over after
disease progression in the comparator arm in the open-label
phase. When compared to data available for 1,030 patients
receiving the 3 mg/kg Q2W regimen, the incidence of treatment-
related adverse events (TRAEs, 14.8%) was similar. Ongoing
randomized clinical trials evaluating the nivolumab 480mgQ4W
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schedule include phase IIIB/IV CheckMate 384 (NCT02713867)
in previously treated advanced NSCLC and CheckMate 511
(NCT02714218) in advanced melanoma. CheckMate 384 is an
international open-label randomized study comparing 480mg
Q4W and 240mg Q2W regimens in patients with previously
treated stage IIIB/IV or recurrent NSCLC who have received
prior treatment with nivolumab 240mg Q2W for ≤12 months
with ≥2 consecutive response assessments without evidence
of disease progression. In an interim analysis of 329 patients
(166 in 480mg Q4W and 163 in 240mg Q2W groups) with
median follow up of 9.5 months (Q4W) and 10.2 months (Q2W),
respectively, endpoints of efficacy and safety were comparable
(66). The co-primary endpoint of post-randomization 6-months
progression-free survival (PFS) rates for 480mg Q4W vs. 240mg
Q2W regimens were 75 vs. 80%, respectively; 12-month PFS
rates were 53% in both groups. Median PFS rates for 480mg
Q4W vs. 240mg Q2W regimens were 12.1 vs. 12.2 months,
respectively (HR, 0.96). Any grade TRAEs were seen in 48% and
61% of patients on 400mg Q4W and 200mg Q2W nivolumab
doses, respectively. The other CheckMate 511 study is utilizing
480mg Q4W nivolumab regimen in the maintenance phase for
treatment of advanced melanoma for the two main cohorts (67).
In the third cohort of the trial not included in the original
protocol, 27 patients have been randomized to initial treatment
with 6 mg/kg nivolumab and ipilimumab 1 mg/kg, followed by
480mg every 8 weeks (Q8W) nivolumab in the maintenance
phase. Preliminary results available at ClinicalTrials.gov showed
comparable rates of serious adverse events (37.0%), other (not
including serious) adverse events (96.3%), and all-causemortality
(25.9%) in this cohort as compared to the other twomain cohorts
studying different combinations of nivolumab and ipilimumab
at 1–3 mg/kg doses. Nivolumab 360mg Q3W has most recently
been approved in combination with ipilimumab and 2 cycles
of platinum-doublet chemotherapy for first line treatment of
advanced NSCLC based on results from CheckMate 9LA trial
(NCT03215706) (68).

The extended-interval 400mg Q6W regimen of
pembrolizumab is currently being evaluated in 100 patients
with advanced melanoma in cohort B of the ongoing Phase
I open-label KEYNOTE-555 study (NCT03665597). Interim
analysis of results from the first 44 patients enrolled in this
cohort showed overall response rate (primary endpoint) of 38.6%
(95% CI, 24.4-54.5) and complete response rate of 9.1% (69).
These are similar to the historically reported response rates with
pembrolizumab in metastatic melanoma. Additionally, exposure
concentrations observed in patients in this study with the 400mg
Q6W regimen were within the 90% prediction intervals of
simulated concentrations from the model-based study (65). Cmin

with 400mg Q6W was 18% lower than 200mg Q3W, while
Cmax was 38% lower than the maximum clinically tested dose
of 10 mg/kg Q2W. The safety profile of the Q6W regimen was
also comparable to that seen with the Q3W regimen in clinical
trials, with grade 3-4 all-cause adverse events reported in 25.0%
patients. These interim results were included in the resubmitted
Supplemental Biologics License Application, which ultimately
led to approval of the 400mg Q6W pembrolizumab regimen by
the U.S. FDA.

No completed clinical trials have yet evaluated the extended-
interval atezolizumab dosing regimen of 1680mg Q4W; 1200mg
Q3W was utilized in all landmark IMpower trials in advanced
NSCLC and extensive-stage SCLC (15). The 1680mg Q4W
regimen of atezolizumab has, however, been approved based on
in silico studies for all indications when used as monotherapy.
Ongoing clinical trials in lung cancer which have incorporated
the 1680mg Q4W regimen include NCT04267237 (in both
study arms) and NCT03178552 (in experimental cohort being
compared to chemotherapy).

The phase III CASPIAN trial (NCT03043872), which led to
approval of durvalumab in extensive-stage SCLC, evaluated a
dose of 1500mg Q3W in combination with chemotherapy in
the initial phase; then followed by 1500mg Q4W regimen in
the maintenance phase (70). In NSCLC, durvalumab is currently
approved only at the dose of 10 mg/kg Q2W for maintenance
therapy after curative intent chemoradiation therapy for patients
with stage IIIB disease.

Ipilimumab is the most recently approved ICI for
management of advanced NSCLC in the first-line setting. It
has been approved at a dose of 1 mg/kg Q6W in combination
with nivolumab 3 mg/kg Q2W, as evaluated for patients
with tumor PD-L1 expression in the CheckMate 227 trial
(NCT02477826) (71), as well as in combination with nivolumab
360mg Q3W and 2 cycles of platinum-doublet chemotherapy, as
evaluated in the CheckMate 9LA trial (NCT03215706) (68).

ALTERNATIVE DOSING REGIMENS IN THE
REAL-WORLD

The wide therapeutic index and flat exposure-response profiles
seen with ICIs have raised additional questions regarding
strategies that would permit the lowest and least frequent dosage
of the drug with optimal efficacy outcomes (72, 73). Few real-
world studies have evaluated administration of standard FDA-
approved (or lower) doses of ICIs at extended intervals. A
multicenter retrospective study from Israel with median follow
up of 35.6 months found no significant differences in PFS for
patients with previously treated advanced NSCLC who received
nivolumab for >2 years at approved doses (3 mg/kg Q2W/
240mg Q2W/ 480mg Q4W) (N = 25) vs. extended-interval
doses (3 mg/kg Q3W- Q8W) (N = 13) (74). Another study from
South Korea retrospectively evaluated outcomes of 18 patients
with advanced NSCLC treated with low doses of nivolumab
chosen to approximate 0.1 mg/kg and 1 mg/kg [20mg [N =

3] or 100mg [N = 15], respectively] Q3W (due to financial
toxicity) compared to 29 patients who received standard dose
nivolumab (3 mg/kg) Q3W (75). At mean follow up of 5.2
months, the authors reported no significant differences in the
response rates, PFS, or overall survival between the two groups.
In another retrospective multicenter study, our group evaluated
association of treatment delays/extensions with outcomes in
patients with advanced NSCLC who received at least four
cycles of pembrolizumab treatment. Similar outcomes were seen
in those who received two or more pembrolizumab 200mg
Q3W cycles at extended-intervals (>3 weeks + 3 days) due
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to immune-related adverse events, medical reasons, or patient-
physician preferences (N = 27), as compared to those who
received all (or up to one non-standard) treatment cycles on
the standard 200mg Q3W schedule (N = 65) (76). All these
studies, however, are limited by the retrospective nature of
their analyses and small sample sizes, making these results
at best hypothesis generating. In addition, the evolution of
disease biology and patient characteristics may affect outcomes
in those with extension of the ICI intervals after achieving disease
stability/response. This data should not be extrapolated to those
at the beginning of ICI therapy.

ECONOMICS OF EXTENDED-INTERVAL
DOSING STRATEGIES

The rapid adoption of ICIs in routine practice has had a
substantial financial impact on global health care systems (73,
77, 78). Cost analyses have been performed to compare different
dosing strategies including body-weight based, fixed/flat, PK-
derived, and banded dosing (79). While multiple studies
have predicted cost-savings with personalized body-weight
administration of ICIs compared to fixed/flat dosing (80–
82), data is sparse on cost impact of extended-interval
dosing strategies. A simulation study based on a PPK model
of nivolumab predicted a potential for 70% cost-savings if
nivolumab 480mg was administered every 8 to 14 weeks
following two initial doses at 480mg Q4W (83). Another
study proposed therapeutic drug monitoring of exposure
concentrations to evaluate potential use of nivolumab 480mg
Q8W or longer in selected patients (72).

POTENTIAL PITFALLS OF
EXTENDED-INTERVAL DOSING
STRATEGIES

The aforementioned clinical evidence supporting extended-
interval dosing regimens is still preliminary. The impact on
monitoring for clinical progression, especially in patients with
SCLC, and detection of immune-related adverse events is yet
undefined. This may, however, be potentially addressed by
incorporation of telemedicine visits for symptom check-in and
laboratory testing with local partners in the community. Another
potential pitfall is the applicability of data derived from PPK
modeling from patients with multiple types of malignancies to
patients with NSCLC and SCLC. Whether patients with different
tumor histologies and treatment characteristics would have
different benefit-to-risk ratios from extended-interval strategies
is not fully understood. Moreover, the consequences of longer
intervals on eligibility for subsequent clinical trials, which
incorporate timing from the last ICI dose in the inclusion criteria,
still need to be addressed. Finally, patient-reported outcomes
have not been described yet, making the potential advantage of
improved patient experience an assumption at this time.

CONCLUSIONS AND FUTURE
DIRECTIONS

Knowledge of ICI PK properties from dose-ranging studies
during early drug development has proven fruitful in facilitating
subsequent modeling and simulation efforts that have permitted
exploration of the efficacy and safety of extended-interval dosing
strategies, thus resulting in regulatory approval for multiple ICIs
currently used in routine clinical practice. These data clearly
highlight the importance of well-designed early phase drug trials
incorporating wide dose-ranging strategies. Despite potential
limitations of in silico studies to fully account for clearance,
ADA, and other clinicopathologic variables, predictions of the
performance characteristics of extended-interval pembrolizumab
have since been clinically validated in the preliminary results of
the KEYNOTE-555 trial (69).

As the indications for their use continue to expand,
optimization of access to, use of, and patient-experience with
ICIs will entail continued exploration of strategies that will
permit their application at the lowest dose and longest intervals
with maximal efficacy. For any given ICI, this remains yet to
be determined. Modeling and simulation studies utilizing PPK
models have the potential to answer these questions with nominal
costs. Therapeutic drug monitoring of ICIs, while taking into
account time-varying clearance of PD-1/PD-L1 inhibitors, is
another strategy which has the potential to personalize dosing
and result in cost-savings (63, 72). Integration of biomarkers
such as circulating tumor-free DNA, T-cell receptor expansion,
and inflammatory/nutritional surrogates may help guide the
optimal timing for switch from standard to extended-interval
regimens. Finally, early incorporation of pharmacoeconomic
analyses during the drug development phase may allow selection
of the most cost-effective regimen.

Extended-interval dosing strategies have the potential to
improve patient-reported outcomes by providing flexibility
and convenience to both patients and their caregivers,
while reducing hospital and infusion-related costs. This has
acquired additional importance during the global COVID-19
pandemic. The availability of more flexible dosing regimens
provides an evidence-based approach to minimize healthcare
exposure to SARS-CoV-2 for this vulnerable population without
compromising therapeutic efficacy. The clinical data supporting
continued use of extended-interval strategies in routine settings
is, however, still evolving. Outside unprecedented situations
such as the COVID-19 pandemic, these will likely be the most
attractive for patients with lung cancer who have already achieved
disease control with ICIs. Individual patient level considerations,
however, are warranted to balance the convenience of these
extended-interval regimens with the appropriate interval of
patient assessment for clinical progression and immune-related
adverse events.
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