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ABSTRACT: Anisotropic growth to form Cu particles of rod and wire shapes has
been obtained typically in a complex system that involves both organic capping
agents and Cl− ions. However, the sole effect of Cl− ions on the formation of Cu
wires has yet to be fully understood, especially in an organic system. This present
work determines the effect of Cl− ions on the morphologies of Cu particles in an
organic phase without any capping agents. The results revealed that anisotropic Cu
rods could be grown with the sole presence of Cl− ions. The rods have the (011)
facets as the long axis, the (111) facets as the tip, and the (100) facets as the side
surface. By increasing the Cl− ion concentration, more Cu atoms contributed to the
formation of Cu rods and the kinetic growth of the length and the diameter of the
rods varied. This suggests that Cl− ions have preferential adsorption on the (100) Cu
surfaces to promote the anisotropic growth of Cu. Meanwhile, the adsorption of Cl−

to the (111) and (100) surfaces at high Cl− concentrations regulates the relative
growth of the particle length and diameter.

1. INTRODUCTION

Metallic fine particles have been intensively researched for
several decades.1−13 Among the metals available, copper (Cu)
is of great interest because it is non-expensive, abundant, and
non-toxic and has impressive properties such as good
conductivity, good catalytic properties, and anti-electromigra-
tion.14−40 Cu particles with different morphologies and sizes
have been used in many industries. For example, Cu fine
particles are widely applied in printing electronic fields14−18

and Cu nanoparticles are broadly used as catalysts19−22 while
Cu nanowires are popular as transparent conducting electrode
materials.23−40

While there are many methods on preparing the Cu
particles, chemical synthesis is a favorable method because
this method is cost-effective, requires a simple equipment
setup, and can manipulate the size and shape of the
synthesized particles.41 In a typical chemical synthesis of Cu
particles, the formation of different morphologies of Cu
particles is generally governed by the initial geometry of the
seeds and the preference of capping agents (i.e., shape-directing
agents) to be adsorbed on certain facets of the nanocrystal to
control the growth of the facets.30,38−40,42−49,51 A cuboctahe-
dron seed grows into a sphere if the growth rates of all facets
are the same.43,44 When the adsorption affinity of the
surfactants is stronger in a certain facet of the cuboctahedron
seed, for instance, on the (100) surface, the growth rate of the
(111) surface is then higher, leading to the formation of a
cubic-shaped particle.42−44 On the other hand, if the initial
seed is a decahedron seed particle, the growth rate of the (111)
surface is higher than that of the (100) surface, leading to the

elongation of the seed into a rod-shaped or wire-shaped
particle.38,42−49

The ability to synthesize Cu particles with tunable sizes and
shapes could improve the application of the Cu particles in
various fields.14−40 Peculiarly, Cu nanowires are widely studied
as one-dimensional nanostructures for achieving high con-
ductivity and optical transparency when using Cu as
transparent conducting materials.23−40 While the directing
agents such as polyvinylpyrrolidone (PVP) or amines (e.g., 1-
hexadecylamine (HDA) and ethylenediamine (EDA)) play an
important role in controlling the morphology of Cu nanowires,
the existence of Cl− ions is also deemed as necessary for most
of the synthesis method available.42,44−49 Regardless, the exact
role of Cl− ions in the formation of one-dimensional structured
Cu particles is yet to be fully understood, especially in an
organic phase since the syntheses often involve a complex
system.45,50 With a better understanding on how Cl− ions
solely affect the morphologies of Cu particles, especially for the
growth of Cu wires and rods in an organic system, the strategy
to tune the morphologies of Cu could be further improved. We
hereby design a simple synthesis system in ethylene glycol
(EG) without using organic shape-directing agents to study the
sole effect of Cl− ions on the morphologies of Cu particles.
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2. RESULTS AND DISCUSSION

Cu particles were synthesized in a system without organic
capping agents. The Cu particles were prepared by reducing a
Cu complex in EG using ascorbic acid (AsA) with various Cl−

concentrations, 0−17 mM, as shown in Figure 1.

The samples obtained in these syntheses are labeled
according to the Cl− concentration in the final reaction
solution, i.e., samples Cl_0, Cl_2, Cl_9, Cl_17_20h, and
Cl_17_42h. Figure 2 shows the XRD data of the synthesized

Cu particles with different concentrations of Cl− ions. The Cu
particles for the samples Cl_0, Cl_2, Cl_9, and Cl_17_42h
have peaks in 2θ at 43.30, 50.43, 74.13, 89.93, and 95.14°,
identical with that in the reference pattern of Cu (JCPDS no.
004-0836). No oxide peaks were detected, indicating that the
samples are metallic Cu. For samples Cl_0, Cl_2, and Cl_9,
the Cu peaks were observed after 20 h reaction time. However,
for the sample Cl_17_20h, Cu peaks were not detected after
20 h reaction time. By prolonging the reaction time to 42 h
(sample Cl_17_42h), the Cu peaks were observed, indicating
that Cu was reduced. This result suggests that by increasing the
amount of Cl− ions, it is harder for the Cu complex to be
reduced to Cu, and hence, a longer reaction time is needed for
the reduction of Cu.
The morphologies of the Cu fine particles were determined

by SEM images (Figure 3). In sample Cl_0 (Figure 3a), when
there is no Cl− ions, the sample consists only of particles in
various shapes (term as “other shapes” in this paper) such as
triangles, pentagons, hexagons, and cubes (Figure S1). No rods
or wires were observed. For sample Cl_2 (Figure 3b), when

the Cl− ion concentration increases to 2 mM, few short rods
with an average length of 4.3 μm and an average diameter
around 261 nm (aspect ratio ∼16.2) were observed, along with
the Cu particles of other shapes. The results prove that Cl−

ions are needed for the anisotropic growth of Cu to a rod-
shaped structure. In previous studies, nanowires were observed
when Cl− ions existed in the reaction system along with other
capping agents such as PVP and HDA.42,44−48,50 In our study,
without using any organic capping agents, we can confirm the
sole effect of Cl− ions in directing the anisotropic growth of Cu
to a rod shape. By further increasing the concentration of Cl−

ions to 9 mM in sample Cl_9 (Figure 3c and Figure S2),
similarly, the Cu rods and Cu particles of other shapes were
observed. However, the Cu rods grow longer with an average
length of 12.8 μm and an average diameter around 224 nm.
The aspect ratio of the Cu rods is improved to ∼57.4. For the
sample Cl_17_42h (Figure 3d and Figure S3), both Cu rods
and Cu particles of other shapes were also observed. The
average length of Cu rods increases slightly to 15.4 μm, while
the average diameter increases twice to around 409 nm,
resulting in a shorter aspect ratio (∼37.5) than sample Cl_9.
Table 1 summarizes the average diameter, the average length,

and the corresponding aspect ratios of Cu rods for all
concentrations of Cl− ions. Based on the observations for
samples Cl_2 and Cl_9, it is obvious that initially, the length of
Cu rods increases when there is more Cl− ions in the reaction.
However, by further increasing the concentration of Cl− ions,
the length of rods only increases slightly, while the diameter of
Cu rods continues to increase, as observed in the Cl_17_42h
sample. In a previous report where the Cl− ion concentration
was increased in a three-phase system with colloidal templates
(surfactant), the diameter of Cu nanorods increased while the

Figure 1. Scheme of the synthesis of Cu particles and Cu rods of
different sizes without and with using Cl−, respectively.

Figure 2. XRD patterns of the Cu fine particles that were synthesized
with different concentrations of Cl− ions and the reference patterns of
Cu (JCPDS no. 004-0836), CuO (JCPDS no. 045-0937), and Cu2O
(JCPDS no. 005-0667).

Figure 3. SEM images of the Cu fine particles that were synthesized
with Cl− concentrations of (a) 0, (b) 2, (c) 9, and (d) 17 mM (42 h
reaction).

Table 1. Dimensions of Cu Rods with Different Cl−

Concentrations in the Reaction Solution

sample [Cl−] (mM) diameter (nm) length (μm) aspect ratio

Cl_0 0 NA NA NA
Cl_2 2 261.0 ± 95.2 4.3 ± 1.9 ∼16.2
Cl_9 9 224.1 ± 59.8 12.8 ± 7.2 ∼57.4
Cl_17_42h 17 409.6 ± 123.4 15.4 ± 6.5 ∼37.5
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length reached a maximum (with an aspect ratio around 12).50

However, the length of Cu rods in our case kept increasing
slightly rather than reaching a maximum and the aspect ratio in
our case is higher (∼37). Our results imply that when Cl− ions
exist at low concentrations in the system, the growth of the
length of Cu rods is preferable. However, with more Cl− ions,
the growth of the diameter speeded up relative to that of the
length. Overall, at a high Cl− concentration, the aspect ratio of
the rod was smaller.
Without any effect from other organic capping agents in EG,

it is obvious that Cl− ions are pivotal in the anisotropic growth
and formation of Cu rods. To understand the role of Cl− ions
in the growth of Cu rods more deeply, we compared the
percentage of Cu atoms that contribute to form the rods aside
from the percentage of the number of Cu rods among the
samples. Since the synthesized Cu rods and Cu particles of
other shapes have different volumes due to their morphologies,
it is significant to compare the percentages of the morphologies
in terms of the number of Cu atoms rather than simply
counting the number of particles for each morphology. The
details on the calculation method and results are shown in the
Supporting Information (Figure S4, Tables S1 and S2, and
Appendix S1). The results are plotted and shown in Figure 4.

When 2 mM Cl− ions was used in the reaction solution, 22.2%
of Cu atoms formed the rods, resulting in 12.2% Cu rods in the
sample. When the concentration of Cl− ions was 9 mM, even
though the number of resulting Cu rods is lesser (3.4%), in
fact, more Cu atoms (22.4%) contributed to the formation of
the rods with the highest aspect ratio. On the other hand, with
17 mM Cl− ions, 54.1% of Cu atoms contributed to the
formation of Cu rods, resulting in the number of Cu rods being
21.7%. These results clearly show that Cl− ions could enhance
the formation of the anisotropic rod-shaped structure of Cu, as
there were more Cu atoms involved in the formation of rods
when more Cl− ions existed in the system.
We further analyzed SAED patterns coupled with the TEM

images of Cu rods to understand the particle growth. The
bright spots in the SAED pattern (Figure 5b) of the Cu rod
shown in the TEM image (Figure 5a) were indexed to the
diffraction from the (111) and (200) planes of Cu, confirming
the fcc structure. Furthermore, the SAED result and the TEM
image reveal that the Cu rod grows along the [011] direction
with the (100) facets toward the side of the rod. The tip
surface is normal to the [111] direction (Figure 5c), suggesting
that the facets on the tip are the (111) planes. We noticed that

the defects such as twin planes or twisted areas could be
present in the rods, as observed in the TEM images with areas
of darker contrast. The growth direction and facets of Cu rods
are further confirmed by HRTEM and HAADF images (Figure
5d−f) where the (220) planes along the rod and the (111)
facets at the tip were clearly visible. On the other hand, Cu
particles of other shapes consist of facets that are either (111)
or (200) (Figures S5 and S6). This suggests that the kinetics of
all facets are more similar for the case of Cu particles, which
does not lead to elongated structures. EELS analysis (Figure
S7) was performed on the side (Figure S7a) and tip (Figure
S7b) of the Cu rods. At both the inner and outer areas of the
side of the rod (areas 1 and 2), the spectra showed L3 (200
eV) and L2 (202 eV) edges of Cl, suggesting the presence of Cl
on the (100) facets. In contrast, the edges of Cl were only
detected for the inner area of the tip. These observations
suggest that Cl− ions have a stronger preferential adsorption on
the (100) facets of Cu than the (111) facets. DFT simulation
results (Table 2) showed that the adsorption of Cl on the

Cu(100) surface is more preferable than that on the Cu(111)
surface. This is consistent with the experimental results. Since
Cl− ions have a stronger adsorption on the (100) facets, the
addition of Cu atoms on these facets will be delayed. During
growth, Cu atoms continue to add to the (111) facets, leading
to the elongation of rods in the [011] direction. At high
concentrations of Cl− (i.e., sample Cl_17_42h), Cl− ions can
be more involved in the adsorption to the (111) facets, causing
less difference in the growth rate between the (111) and (100)
planes. This explains the growth of Cu rods with a thicker
diameter. Figure 6 illustrates the preferential adsorption of Cl−

ions on Cu facets for the anisotropic growth of Cu rods at low

Figure 4. (left y-axis) Percentages of Cu atoms contributing to Cu
rods and Cu particles of other shapes and (right y-axis) number of Cu
particles of rod shape and other shapes with different concentrations
of Cl− ions.

Figure 5. (a) TEM image of a Cu rod with (b) its corresponding
SAED pattern taken at the area marked with a circle in the TEM
image. (c) Directions on the side and the tip facets of the rod. (d)
TEM image of another Cu rod and (e) HRTEM image of the side of
the rod (marked with a red square in (d)), confirming that the rod
grew in the [110] direction, which is equivalent to [011] in the fcc
structure. (f) STEM-HAADF image showing the (111) facets at the
tip of a Cu rod, which is marked with a red square in the inset of (f).

Table 2. Adsorption Energy of Cl on Cu Surfaces Obtained
from Simulation

Cu
surface

super cell
size

coverage of Cl
(atom/nm2)

adsorption energy
(eV)

(100) 2 × 2 1.9 −3.4
(100) 1 × 1 7.6 −3.3
(111) 2 × 2 4.4 −3.2
(111) 1 × 1 13.6 −0.7

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c00359
ACS Omega 2022, 7, 7414−7420

7416

https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c00359/suppl_file/ao2c00359_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c00359/suppl_file/ao2c00359_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c00359/suppl_file/ao2c00359_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c00359/suppl_file/ao2c00359_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c00359/suppl_file/ao2c00359_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c00359/suppl_file/ao2c00359_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c00359/suppl_file/ao2c00359_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c00359/suppl_file/ao2c00359_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00359?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00359?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00359?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00359?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00359?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00359?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00359?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c00359?fig=fig5&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c00359?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


and high Cl− concentrations for the growth of the length and
the diameter of the rods.

3. EXPERIMENTAL SECTION
3.1. Materials. Copper(II) nitrate trihydrate (Cu-

(NO3)2.3H2O, Kanto, Japan), ethylene glycol (EG, Kanto),
sodium chloride (NaCl, Wako), ascorbic acid (AsA, Kanto),
and methanol (MeOH, Wako) were used as received.
3.2. Synthesis of Cu Fine Particles. Cu particles were

synthesized by using a chemical reduction method (Figure 7).

The synthesis consists of two steps: preparation of the Cu
complex as a Cu precursor and reduction of the Cu complex to
form Cu particles.
(a) Preparation of Cu-complex as a Cu precursor

First, 100 mL of EG was added into a two-neck
Kjeldahl-shaped flask and heated at 130 °C for 1 h under
an argon atmosphere with magnetic stirring at 1000 rpm.
Simultaneously, Cu(NO3)2 solution (0.1 M, in EG) was
prepared. Then, 10 mL of Cu(NO3)2 solution was
injected into the preheated EG solution and left stirring
for 15 min. Subsequently, the reaction solution was
heated to 172 °C to form the Cu complex with EG. The
reaction solution was quenched down immediately once

the solution turned to opaque blue, an indication of the
formation of the Cu complex (Figure S8).

(b) Reduction of the Cu complex to form Cu fine particles

NaCl solution (1 M, in EG) and AsA solution (0.6 M, in
EG) were prepared. The Cu-complex solution was cooled
down to 0 °C under vigorous magnetic stirring. Subsequently,
in a typical synthesis, 1 mL of NaCl solution was injected into
the reaction solution and stirred for 15 min followed by the
injection of 5 mL of AsA solution and 15 min vigorous stirring.
The solution was then heated in an oil bath to 70 °C and left
reacting for 20 h without stirring. Finally, the reaction solution
was quenched down to room temperature and centrifuged
twice at 3000 rpm for 10 min with MeOH. The purified Cu
particles were dispersed in MeOH for further characterization.
To investigate the impact of Cl− ions on the morphologies of
Cu particles, the volume of the injected 1 M NaCl solution was
varied (0, 0.25, 1, and 2 mL), which resulted in the final Cl−

concentrations of 0, 2, 9, and 17 mM, respectively, in the
reaction solution. The samples obtained in these syntheses are
labeled according to the Cl− concentration in the final reaction
solution, i.e., samples Cl_0, Cl_2, Cl_9, Cl_17_20h, and
Cl_17_42h. The same procedures were carried out for each
synthesis, and the detailed parameters are summarized in Table
3.

3.3. Characterization. The crystalline and phase struc-
tures of Cu particles were characterized using X-ray diffraction
(XRD, Rigaku Miniflex II X-ray diffractometer, Cu Kα
radiation, λ = 1.5418 Å, scanning speed of 10° min−1). The
morphologies and selective area electron diffraction (SAED)
images of the synthesized Cu particles were examined using
scanning electron microscopes (SEM, JEOL-JSM-6701F and
Hitachi TM3030 Plus, 15 kV) and transmission electron
microscopes (TEM, JEOL JEM-2000FX, 200 kV and JEOL
JEM-2010, 200 kV), respectively. High-resolution (HR)TEM
and high-angle annual dark-field (HAADF) images and
electron energy loss spectra (EELS) were acquired using a
scanning TEM (STEM, ARM200F, 200 kV). The TEM sample
was prepared by adding a drop of Cu particle dispersion onto a
molybdenum TEM grid. The average particle size of Cu
particles was measured based on SEM and TEM images.

3.4. DFT Calculation. DFT calculation was carried out for
the Cu(111) and Cu(100) surfaces with 1 × 1 and 2 × 2
supercells to vary the coverage of Cl. The supercell consisted of
a single Cl atom and periodically repeated five Cu atomic
layers with a 15 Å vacuum layer. We performed DFT
calculations using the Vienna ab initio Simulation Package
(VASP 5.4.4)52−55 and the projector-augmented wave (PAW)
method.56,57 We adopted the generalized gradient approx-
imation proposed by Perdew, Burke, and Ernzerhof58 as an
exchange−correlation functional. The plane-wave basis set was
used with an energy cutoff of 400 eV. We used 16 × 16 × 1, 8
× 8 × 1, 12 × 12 × 1, and 6 × 6 × 1 Γ-point centered

Figure 6. Schematic showing the preferential adsorption of Cl− ions
on the Cu facets for the growth of the rods in the length (left) and
diameter (right) depending on the Cl− concentration.

Figure 7. Synthesis procedure of Cu fine particles.

Table 3. Amount of EG, Cu(NO3)2, NaCl, and AsA Used for Each Synthesis

injected solution reaction solution

sample EG before injection (mL) 0.1 M Cu(NO3)2 (mL) 1 M NaCl (mL) 0.6 M AsA (mL) total EG (mL) [Cl−] (mM) reaction time (h)

Cl_0 100 10 0 5 115.00 0 20
Cl_2 100 10 0.25 5 115.25 2 20
Cl_9 100 10 1.00 5 116.00 9 20
Cl_17_20h 100 10 2.00 5 117.00 17 20
Cl_17_42h 100 10 2.00 5 117.00 17 42
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Monkhorst−Pack grids59 for Brillouin zone sampling with a
Gaussian smearing σ of 0.2 eV for the 1 × 1 Cu(111), 2 × 2
Cu(111), 1 × 1 Cu(100), and 2 × 2 Cu(100) surfaces,
respectively. The top three Cu atomic layers and Cl atoms
were fully relaxed until the force on each atom was less than
0.02 eV/Å. We adopted fcc-hollow and four-fold hollow sites
as the Cl adsorption sites for the Cu(111) and Cu(100)
surfaces. We defined the adsorption energies of the Cl atom on
Cu surfaces Ead using the following equation:

E E E Ead Cl/Cu Cu Cl= − [ + ] (1)

where ECl/Cu, ECu, and ECl are the total energies of Cl-adsorbed
Cu surfaces, clean Cu surfaces, and isolated Cl atoms,
respectively. The minus sign of the adsorption energy means
that Cl adsorbed on the Cu surface. The absolute value
indicates the strength of the adsorption.

4. CONCLUSIONS
This research demonstrates that without organic capping
agents in the system, Cl− ions are needed for the anisotropic
growth of Cu rods. The concentration of Cl− ions affects the
number of Cu atoms that contribute to the formation of Cu
rods, the aspect ratio, and the particle number percentage of
the rods. At a low Cl− concentration, the Cl− ions have a
stronger adsorption affinity on the (100) facets of Cu, leaving
the (111) facets to grow faster and forming Cu rods along the
[011] direction. On the other hand, at a high Cl−

concentration, the growth of the (111) facets become less
preferable in comparison to that of the (100) facets, forming
thicker rods. This study has provided more insight on the role
of Cl− ions in controlling the anisotropic growth of Cu in the
absence of organic capping agents.
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