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Abstract: We present a novel method for interpolating univariate time series data. The proposed
method combines multi-point fractional Brownian bridges, a genetic algorithm, and Takens’ theorem
for reconstructing a phase space from univariate time series data. The basic idea is to first generate
a population of different stochastically-interpolated time series data, and secondly, to use a genetic
algorithm to find the pieces in the population which generate the smoothest reconstructed phase space
trajectory. A smooth trajectory curve is hereby found to have a low variance of second derivatives
along the curve. For simplicity, we refer to the developed method as PhaSpaSto-interpolation, which
is an abbreviation for phase-space-trajectory-smoothing stochastic interpolation. The proposed
approach is tested and validated with a univariate time series of the Lorenz system, five non-model
data sets and compared to a cubic spline interpolation and a linear interpolation. We find that
the criterion for smoothness guarantees low errors on known model and non-model data. Finally,
we interpolate the discussed non-model data sets, and show the corresponding improved phase
space portraits. The proposed method is useful for interpolating low-sampled time series data sets
for, e.g., machine learning, regression analysis, or time series prediction approaches. Further, the
results suggest that the variance of second derivatives along a given phase space trajectory is a
valuable tool for phase space analysis of non-model time series data, and we expect it to be useful for
future research.

Keywords: time series interpolation; phase space reconstruction; Takens’ theorem; interpolation;
stochastic interpolation; genetic algorithm; time series data; preprocessing; strange attractor; attractor;
attractor reconstruction

1. Introduction

Many real-life time series data sets originate from complex systems and/or non-linear
phenomena. Often these data sets are sparsely sampled as, e.g., long-term temperature,
yield, or environmental data sets. The non-linear and stochastic nature of these data sets,
in addition to being sparsely sampled, make predictions and analysis rather challenging.
Thus, one tends to employ data augmentation or interpolation techniques.

Typical examples where such data augmentation techniques are deployed include
gaps in time series from solar wind measurements [1,2], spatio-temporal wind fields from
meteorological mast arrays [3], as well as the study of particle transport in intergalactic
magnetic fields [4]. An enhancement of data in these examples is commonly achieved by
relying on one of the various interpolation techniques, such as linear, polynomial, fractal,
or stochastic interpolation methods. Nonetheless, choosing a suitable interpolation method
can be difficult, and one should take into account the characteristics of the data at hand.
For fluctuative and inherently random data, one would choose a stochastic interpolation
as discussed in [5]. However, regarding deterministically chaotic systems where one can
reconstruct a phase space based on Takens’ theorem [6], the choice is not so clear. Here,
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we present a method taking into account the properties of a data’s reconstructed phase
space. Thereby, we want our reconstructed phase space trajectories to be as smooth as
possible. This is achieved by combining multi-point Brownian bridges [5] and a genetic
algorithm. For simplicity, we refer to the developed method as PhaSpaSto-interpolation,
which is an abbreviation for phase-space-trajectory-smoothing stochastic interpolation. We
show, that the developed method performs well for the reconstructed phase space of the
Lorenz system and several univariate, sparsely-sampled time series data. The results show
that the presented method can effectively interpolate the Lorenz system and some of the
discussed non-model data sets with comparatively low errors on known data points and
convincing phase space portraits.

Furthermore, many of today’s most employed time series analysis and prediction
techniques are from the domain of machine and/or deep learning. These methods are
data-based, i.e., they learn from data; thus, a sufficient amount of data and data of good
quality are necessary to, e.g., train a neural network. It is shown that interpolating time
series data using a fractal or linear interpolation can improve the accuracy of the algorithm
drastically [7]. We thus suggest PhaSpaSto-interpolation to be tested and used for data-
based learning algorithms. Further, the presented criterion to guarantee a smooth phase
space trajectory, i.e., the variance of second derivatives along a trajectory, is shown to be
valuable for non-linear time series analysis. It can effectively identify interpolations with
low errors for the presented model and non-model data sets. Thus, the presented PhaSpaSto-
interpolation and the corresponding criterion should be considered when dealing with
complex non-linear data sets.

This article is structured as follows: Section 2 collects publications related to the
developed method and discusses them briefly. Section 3 describes the multi-point Brownian
bridges [5], the Lorenz system, and the employed genetic algorithm, and further sums
up the developed scheme. All results with the corresponding error tables and figures are
discussed in Section 4. Section 5 concludes the findings of this article.

2. Related Work

The presented research is motivated by findings of [7,8]. It is further based on the
stochastic interpolation method presented in [5]. Thus, we will briefly describe the men-
tioned publications, and list them chronologically, i.e., by their date of publication.

• Ref. [9]: This publication presents a method to determine if images are blurry. For this
purpose, the second derivatives of grey-scale images are calculated pixel per pixel,
and the corresponding variance is analyzed for all pixels and their neighbors. If the
variance is below a certain threshold, the image is blurry. This concept is used in the
presented article. We adapted the idea of variances of second derivatives, which is
discussed in Section 3.3.1.

• Ref. [10]: This research applies a combination of inverse distance methods, fuzzy set
theory, and a genetic algorithm to interpolate rainfall data. The genetic algorithm was
used to determine the parameters of the corresponding fuzzy membership functions.
Thus, the idea of improving interpolation techniques is adapted from this publication.

• Ref. [5]: This publication presents a novel interpolation technique where the idea of a
Brownian bridge, i.e., a constrained fractional Brownian motion (fBm), is extended
to more than two points, i.e., to multi-point fractional Brownian bridges. The authors
present an explicit construction that operates linearly on the fBm and can thus be
interpreted as a Gaussian random process constrained on multiple, prescribed points.
Further applications of this method are presented, such as determining optimal Hurst
exponents for sparsely sampled time series filled up by multi-point fractional Brow-
nian bridges with varying Hurst exponents. This method is used in the presented
research to fuel the genetic algorithm.

• Ref. [7]: This publication presents a fractal interpolation to interpolate univariate time
series data. The proposed method considers the Hurst exponent of the data under
study. The authors show that fractal interpolation can increase the predictability of
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a given univariate time series. This research suggests that different interpolation
methods for univariate time series data may yield predictions of different qualities.
Thus, as presented here, an attractor-based interpolation is an obvious next step in
contrast to a fluctuation-based interpolation.

• Ref. [8]: This publication is a continuation of [7]. The fractal interpolation and LSTM
neural network approach are continued as ensembles of predictions. Randomly
parameterized LSTM neural networks are generated from non-, linear-, and fractal-
interpolated data. Afterward, these predictions are filtered based on their signal
complexities. Some of the mentioned complexity measures require a suitable phase
space embedding of the data under study and are related to the presented research in
this article. Further, some of the data sets used here are discussed and predicted. We
expect LSTM neural network predictions of stochastically interpolated data to outper-
form other interpolated approaches when considering the reconstructed phase space.

• Ref. [11] describes a multi-point reconstruction of a given time series. The method is
based on the assumption of Markovianity of the time series. A refinement algorithm is
presented, which allows to systematically fill up data points based on the empirically
determined transition probability from one level to the next.

3. Methodology

The developed method consists of two steps. Firstly, generating a population of
stochastically-interpolated time series data using multi-point fractional Brownian bridges;
see Section 3.1. Secondly, these multi-point fractional Brownian bridges are improved
via a genetic algorithm to minimize the variance of second-order derivatives along the
reconstructed phase space trajectory (see Section 3.3). The whole scheme is depicted in
Figure 1. Finally, we briefly discuss the Lorenz system and its implementation in Section 3.4.

Figure 1. Depiction of the employed scheme.

3.1. Multi Point Fractional Brownian Bridges

As depicted in Figure 1, the employed genetic algorithm is fueled by a population
of stochastically-interpolated time series data, in our case multi-point fractional Brownian
bridges. To generate these stochastically-interpolated time series data, multi-point fractional
Brownian bridges [5] were used. An in-depth discussion and corresponding applications
of regular fractional Brownian bridges are provided in [12,13].

We consider a Gaussian random process X(t) whose covariance is defined as C(t, t′) =
〈X(t)X(t′)〉. In the following, we focus on fractional Brownian motion with the covariance
given as 〈X(t)X(t′)〉 = 1

2
(
t2H + t′2H − |t− t′|2H), where H is the Hurst exponent. To eluci-
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date our interpolation scheme, we first define a so-called fractional Brownian bridge [14,15],
which is a construction of fBm starting from 0 at t = 0 and ending at X1 at t = t1, i.e.,

XB(t) = X(t)− (X(t1)− X1)
〈X(t)X(t1)〉
〈X(t1)2〉 . (1)

This construction ensures that XB(t1) = X1. This single bridge can now be generalized to
an arbitrary number of (non-equidistant) prescribed points Xi at ti by virtue of a multi-point
fractional Brownian bridge [5]

XB(t) = X(t)− (X(ti)− Xi)σ
−1
ij
〈

X(t)X(tj)
〉

, (2)

where σij = 〈X(ti)X(tj)〉 denotes the covariance matrix. Furthermore, we imply summation
over identical indices. The latter linear operation on the Gaussian random process X(t)
ensures that the bridge takes on exactly the values Xk at tk, which can be seen from
XB(tk) = X(tk)− (X(ti)− Xi)σ

−1
ij σkj = X(tk)− (X(ti)− Xi)δik = Xk, where δik denotes

the Kronecker-delta. Hence, this method allows for the reconstruction of a sparse signal
where small-scale correlations are determined by the choice of the Hurst exponent H.

3.2. Phase Space Reconstruction

We first need to introduce the concept of reconstructed phase spaces [16,17], to explain
the developed interpolation technique.

To choose a suitable phase-space-embedding for each data set one has to determine
two parameters, the embedding dimension, and the time delay.

To estimate the time delay τ, i.e., the delay between two consecutive time steps, we
employed a method based on the average information between two signals and a technique
where the time delay is set using the autocorrelation-function of a signal [18].

To estimate the embedding dimension dE, we use the algorithm of false nearest
neighbors [19]. Furthermore, because the evaluations performed in this paper aim to depict
the embedding space graphically, but with no limitations to the general applicability of our
approach, we chose the embedding dimension to be three, i.e., dE = 3, with a corresponding
value of τ = 1 for all data sets. This is because, though the algorithms to determine a phase
space embedding work well for deterministic chaotic systems, these algorithms sometimes
yield unreasonable estimates for real-life data sets. We give all estimates for all data sets and
a detailed discussion on why our choice for an embedding is reasonable in Appendix A.

The phase space embedding for a given signal [x1, x2, . . . , xn], thus is:

~y(i) =
[

xi, xi+τ , . . . , xi+(dE−1)∗τ

]
, (3)

and the corresponding three-dimensional phase space embedding, thus is

~y(i) = [xi, xi+τ , xi+2τ ]. (4)

3.3. Genetic Algorithm

We build a simple genetic algorithm to find the best possible interpolation given a
time-series data’s phase space reconstruction. We want our reconstructed phase space
trajectory to be as smooth as possible and thus define the trajectory’s fitness as follows.

3.3.1. The Fitness of a Trajectory

The basic idea is to use a concept from image processing, i.e., measuring the blurriness
of a picture, and apply it to phase space trajectories. We want our trajectory as blurry, i.e.,
as smooth as possible. In image processing, blurriness is determined via second-order
derivatives of grey-scale images at each pixel [9]. We employ this concept, but instead of
using it at each pixel, we calculate the variance of second-order derivatives along our phase
space trajectories. Similar to the concept from image processing, where the low variance
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of second-order derivatives implies that an image is blurry, curves with a low variance
of second-order derivatives exhibit comparatively smooth trajectories. The reason here is
intuitively apparent. Curves with an increased variance of second-order derivatives have a
range of straight and pointy sections. In contrast, curves with a low variance of second-
order derivatives have a similar curvature along the trajectory and thus are smoother.
Hence, in order to guarantee smoothness along the trajectory, we want this variance to be
as low as possible, which thus is our loss L. Concluding, our fitness is maximal when our
loss L is minimal, and the algorithm aims to achieve the lowest possible value for L.

Again, we start with the phase space vector and the corresponding embedding dimen-
sion dE and time delay τ (see Section 3.2) of each signal as

~y(i) =
[

xi, xi+τ , . . . , xi+(dE−1)·τ

]
. (5)

Thus, we have one component for each dimension of the phase space. Consequently we
can write the individual components as:

yj(i) = xi+(j−1)∗τ , (6)

where j = 1, 2, . . . , dE. We then take the second-order finite difference central derivative of
a discrete function [20]:

u′′j (i) = xi+(j−1)∗τ+1 − 2xi+(j−1)∗τ + xi+(j−1)∗τ−1, (7)

at each point, and for each component. Next, we add up all the components as:

u′′(i) =

√√√√ dE

∑
j=1

u′′j (i)
2. (8)

Furthermore, finally, we use the variance of the absolute values of second derivatives along
the phase space curve as our loss L of a phase space trajectory:

L = Vari
[
u′′(i)

]
. (9)

3.3.2. Stochastic Optimization Algorithm

The employed genetic algorithm consists of the following building blocks:
A candidate solution is an interpolated time series using a random Hurst exponent

H ∈ ]0; 1[. The corresponding population of candidates is, e.g., 1000 of these stochastically
interpolated time series with randomly set Hurst exponents. A population of interpolated
time series is generated using the multi-point Brownian bridges such that, for each member
of the population, a random Hurst exponent with H ∈ ]0; 1[ is chosen, which then defines
the interpolation of this member of the population. After generating the population, all
members are sorted with respect to their fitness, i.e., the lower the loss L, the better an
interpolation is. The mating is implemented such that only the best 50%, with respect
to fitness, can mate to produce new offspring. The mating is performed such that, for
every gene, i.e., each interpolation between two data points, there is a 50:50 chance to
inherit it from either one of the parents. The mutation was implemented such that, in
each generation, there is a 20% chance that a randomly chosen interpolated time series is
replaced with a new interpolated time series with a corresponding random Hurst exponent.
Furthermore, we implemented a criterion for aborting the program, which was fulfilled if
the population fitness mean did not change for ten generations. This described procedure
is then performed for 1000 generations. In our numerical experiments the 1000 genera-
tions were never reached, as the criterion for abortion triggered every time, usually at
approximately 200 generations.
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3.4. The Lorenz System

For this research and to show the applicability of the proposed interpolation method,
we chose the Lorenz system [21] as a model to illustrate our ideas.

The Lorenz system is a set of three nonlinear equations:

dx
dt

= 10(−x + y) ,

dy
dt

= 28x− y− xz ,

dz
dt

= xy− 8
3

z .

(10)

We solved this system using a basic Runge–Kutta 4 approach [22]. We chose the step size
and length of the simulation with respect to the number of interpolation points to test the
quality of our interpolation scheme,

dt =
0.1

nI + 1
, L = 200 · (nI + 1) , (11)

where dt is the step size and L is the length of the simulation. The initial conditions of the
system were chosen to be:

x = −8 , y = 8 , z = 27 . (12)

Finally, we need a univariate signal for the phase space reconstruction, and to test our
method, thus we choose one of the three variables. Accordingly, here we chose x(t).

4. Results

Here, we present the genetic algorithm results for all data sets, first for the Lorenz
system, then for five non-model data sets. For both cases, we validate the developed
method such that we delete data points from the original time series and reconstruct the
missing data points using the presented interpolation technique. Further, we tested the
presented interpolation technique against the best random interpolation of the popula-
tion, against a linear interpolation, and a cubic spline interpolation [23]. Both the linear
and spline interpolation were performed using the python package scipy [24]. The em-
ployed spline interpolation from SciPy is a piecewise cubic polynomial which is twice
continuously differentiable [25].

We emphasize the Lorenz system for the validation, as the generated model data
allows us to test arbitrary settings, i.e., using different numbers of missing data points in
accordance with the number of interpolation points. Contrary to that, for the non-model
data sets, we delete every second data point and reconstruct the missing data points using
the presented method. For the non-model data sets, we also present actual interpolation
results, i.e., data sets with smoothed-out phase space trajectories.

4.1. Results for the Lorenz System

We perform our interpolation for a number of different interpolation points
NI = {1, 2, 3, 4, . . . , 20}.

We develop the following experimental steps to assess the performance of our interpo-
lation scheme:

1. Obtain a univariate time series from the Lorenz system.
2. Delete points from the data which will be reconstructed later on.

Given some univariate time series data of the Lorenz system, [x1, x2, . . . , xn], we
extract certain data points with respect to the number of interpolation points nI ∈ NI
and the interpolated data set such that:[

x1, xnI+2, x2nI+2, . . . , xn
]

Original data points to be kept for interpolation,[
x1, x̂1, . . . , x̂nI , xnI+2, x̂nI+1, . . . , x̂2nI+1, x2nI+2, x̂2nI+2, . . . xn

]
Interpolated data,

(13)

where x̂i are the new found interpolated data points.
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3. Perform the interpolation according to the method described in Section 3.3.
4. Calculate the RMSE for the interpolated data points with respect to the previously

extracted original data points
[
x2, . . . , xnI+1, xnI+3, . . . , x2nI+1, . . .

]
. Do the same for

the population mean and each time series of the initial population.

Thus, we obtain errors for the mean values of the initial population, for each time series in
the initial population and the time series that was improved using the presented genetic
algorithm. Furthermore, from all randomly generated interpolations, we select the one
with the lowest RMSE to test it against the gen. alg. improved ones. Here, the root mean
squared error ERMSE, which is applied throughout this article, is given as:

ERMSE =

(
1
n

n

∑
i=1

[x̂i − xi]
2

) 1
2

, (14)

where xi are the original data points, x̂i are the predicted (in this case interpolated) values
and n is the length of the signal.

The presented results for the Lorenz system show that the algorithm can identify/generate
the best interpolation in terms of a low RMSE on missing data points out of the given
initial population. This can be seen in Table 1, where we highlighted the results where the
genetic-algorithm-improved-interpolation outperformed every random interpolation of
the population. Still, the spline interpolation outperforms the presented approach. This is
also depicted in Figure 2, where we plotted the RMSE on missing data points for varying
numbers of interpolation points. This graphic shows that the presented approach requires
a certain amount of interpolation points, in this case, three, to be close to the best random
interpolation of the population. We assume that the reason for this is that the variance of
second derivatives along a phase space trajectory requires a certain density of phase space
points to be able to differ between smooth and edgy phase space trajectories. On the other
hand, the spline interpolation performs well right from the start.

The corresponding reconstructed phase space plots (Figure 3) show that both the best
random interpolation (e) and the genetic-algorithm-improved interpolation (f) provide
convincing phase space portraits, as both are indeed close to the ground truth (a). On
the other hand, the population mean (b) is far off and features many sharp edges and
pointy sections. Furthermore, the linear interpolation (c) provides a very edgy phase-space
portrait, just as one would expect from linear interpolation. Contrary to that, from all
presented phase space portraits, the one for the spline interpolation (d) is most similar to
the original one, i.e., even the initial abbreviations caused by the time delay are almost
perfectly reconstructed.

We further plotted all obtained results for 13 interpolation points as time series in
Figure 4. The results show that the population mean (a) is far off the ground truth and
differs drastically at the high and low peaks, as it does not reach the actual data points.
Both the genetic-algorithm-improved (b) and the best random interpolation of the initial
population (c) capture most of the high and low peaks compared to the population mean.
Further, when comparing the genetic-algorithm-improved and the population mean (d),
one can see that the improved interpolation provides a smoother curve when depicted
as a time series. In contrast, the population mean tends to produce sharp peaks. Finally,
we compare the linear interpolation (e), and the spline interpolation (f) to the genetic
algorithm improved interpolation. The linear interpolation here is far off, but the spline
interpolation reproduces the Lorenz system almost perfectly and thus outperforms the
genetic-algorithm-improved interpolation.
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Table 1. Errors for the interpolated data on the Lorenz system depending on the number of inter-
polation points. The errors are shown for the mean interpolation of all populations and improved
interpolation using the presented genetic algorithm. Lowest RMSE in population refers to the best
randomly interpolated result, i.e., the one interpolation from the population that produced the lowest
error by chance. We also featured the results for the linear and spline interpolation. We highlighted
the interpolations where the genetic-algorithm-based interpolation outperformed the whole pop-
ulation of interpolations. Further, we give the percentage of the population outperformed by the
genetic-algorithm-improved interpolation. This table is depicted in Figure 2.

nI 1 2 3 4 5 6 7 8 9 10

RMSE
population

mean
0.77419 0.88263 0.91026 0.89442 0.87013 0.86858 0.89120 0.84220 0.90323 0.88777

lowest
RMSE in

population
0.17939 0.18068 0.16757 0.19206 0.16126 0.18134 0.17782 0.17211 0.18216 0.19371

RMSE linear
interpolated 0.42534 0.44752 0.44179 0.44185 0.41574 0.42406 0.42894 0.40883 0.43263 0.43353

RMSE spline
interpolated 0.12263 0.11808 0.09968 0.12586 0.09678 0.12195 0.12280 0.10862 0.11554 0.13008

RMSE
gen. alg.

improved
1.03779 0.24381 0.17517 0.19488 0.16264 0.18182 0.17818 0.17121 0.18239 0.19374

below
best % 74.4% 21.6% 4.3% 2.2% 1.4% 1.1% 0.7% 0.1% 0.8% 0.3%

nI 11 12 13 14 15 16 17 18 19 20

RMSE
population

mean
0.90844 0.92145 0.91509 0.90686 0.91750 0.90326 0.90789 0.90080 0.88835 0.89651

lowest
RMSE in

population
0.18789 0.19238 0.18693 0.18632 0.19943 0.19640 0.19208 0.18449 0.18415 0.20291

RMSE linear
interpolated 0.43649 0.44211 0.43687 0.43423 0.44142 0.43534 0.43720 0.43170 0.42685 0.43398

RMSE spline
interpolated 0.12086 0.12646 0.11530 0.11765 0.12532 0.12873 0.13098 0.12581 0.11912 0.12581

RMSE
gen. alg.

improved
0.18816 0.19141 0.18670 0.18626 0.19943 0.19663 0.19215 0.18462 0.18441 0.20300

below
best % 0.8% 0.1% 0.1% 0.1% 0.1% 0.8% 0.6% 0.6% 0.8% 0.6%
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Figure 2. Errors from Table 1 depending on the different numbers of interpolation points.
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Figure 3. Reconstructed attractors for the interpolated Lorenz system. (a): Non-interpolated original
data (i.e., the one the errors are calculated with); (b): Average interpolation of the whole population;
(c): Linear interpolated; (d): Spline interpolated; (e): The one interpolation of the population that has
the lowest RMSE; (f): Interpolation improved by the presented genetic algorithm approach.
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Figure 4. Original vs. interpolated time series data. (a): Non-interpolated original data (i.e., the one
the error’s are calculated with) and population average; (b): Genetic-algorithm-improved interpola-
tion; (c): The one interpolation of the population that has the lowest RMSE; (d): Population average vs.
genetic-algorithm-improved interpolation; (e): Linear interpoaltion vs. genetic-algorithm-improved
interpolation; (f): Spline interpolation vs. genetic-algorithm-improved interpolation.
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4.2. Results for Non-Model Data Sets

This section tests our interpolation scheme on real-life data sets with only a limited
number of sampled data points. However, these are the focus of the proposed method,
i.e., to increase the fine-grainedness of short, sparsely-sampled time series data, e.g., en-
vironmental or agricultural data sets. We must stress that our method is not restricted
to equidistant time series: Due to the general form of the bridge construction (2), non-
equidistant time series excerpts can be interpolated as well.

For this reason, we chose five data sets to demonstrate our method further, i.e., we
validate the interpolation with missing data points and then present an actual interpolation
and the improved phase space trajectories for each time-series data. We consider a phase
space trajectory to be improved if we achieve smoother trajectories, which exhibit fewer
edgy points in a phase space representation. Further, we rescaled every data set to the unit
interval and subtracted a linear fit from the data set if a linear trend was clearly visible for
the reconstructed phase space plots.

The validation on these non-model data sets is performed such that every second
data point of the original time series is deleted. Then, all the gaps are interpolated to
reconstruct the missing data points. The results are shown for the average prediction of the
population, the random interpolation with the lowest RMSE, a linear interpolation, a cubic
spline interpolation, and the improved interpolation using the presented genetic algorithm.
This section features only the validation errors; the corresponding plots are collected in
Appendix B to keep the main text focused.

4.2.1. NYC Measles Outbreaks

This is a data set that we obtained from [26], where it is discussed and shown to feature
an attractor structure in the embedded phase space. The corresponding original source
is [27]. It depicts measles outbreaks in New York City (NYC) from 1928 to 1964, binned
every two weeks, with a total of 432 data points. The data set depicts sharp repetitive peaks,
i.e., the increase and decrease of measles cases in NYC. Due to its regularity, we expect
PhaSpaSto-interpolation to perform well.

The results on how well the presented interpolation can reproduce missing data points
of this data set are collected in Table 2 and depicted in Figure A8a. These results show that,
though the genetic-algorithm-improved interpolation drastically outperforms the average
random interpolation, the algorithm did not once outperform the best interpolation of the
population. Still, starting with seven interpolation points, the genetic-algorithm-improved
interpolation performs well and is very close to the best of 1000 randomly interpolated
results, i.e., always below or around the best 1% of the population. Further, PhaSpaSto-
interpolation does outperform the cubic spline interpolation starting with five interpolation
points. We thus conclude that the presented interpolation technique captures the phase-
space properties of this data set and effectively can be used to interpolate this time series.
Furthermore, compared to the cubic and linear interpolation, the proposed method requires
at least seven interpolation points to reach peak performance for this data set. All validation
plots, are collected in Appendix B.2.

An interpolation of the original data set is depicted in Figure 5. Comparing the recon-
structed phase space of the original data set, the population mean (c), and the presented
interpolation technique (d); we see that the phase space portrait of the latter features a
smoothed-out phase space trajectory compared to the original time series (b) and the popu-
lation mean (c), which are both pointy and contain many sharp edges. Further, considering
the graph of the actual time series (a), we see that the presented interpolation technique
increases the major peaks, thus making extreme events more prominent.
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Table 2. Errors for the interpolated data on the NYC measles data set depending on the number of
interpolation points. The errors are shown for the mean interpolation of all populations, the lowest
error in the population, and the interpolation improved using the presented genetic algorithm. We
highlighted the interpolation where the genetic-algorithm-based interpolation performed best. The
corresponding plots for the best interpolation are shown in Appendix B.2. Further, we give the
percentage of the population outperformed by the genetic-algorithm-improved interpolation.

nI 1 3 5 7 9 11 13 15

RMSE
Population

Mean
860.56140 860.56165 860.56098 860.56235 860.56124 860.56210 860.56145 860.56220

Lowest
RMSE in

population
594.27833 594.27832 594.27832 594.27832 594.27748 594.27831 594.27832 594.27833

RMSE linear
interpolated 713.61079 713.61089 713.61089 713.61089 713.61089 713.61089 713.61089 713.61089

nI 1 3 5 7 9 11 13 15

RMSE spline
interpolated 607.03778 607.03778 607.03778 607.03778 607.03778 607.03778 607.03778 607.03778

RMSE
gen. alg.

improved
1138.28460 621.70136 602.03361 594.36367 594.33054 594.34891 594.34819 594.34132

Below
Best % 75.3% 25.8% 13.4% 0.8% 0.8% 0.8% 0.8% 0.8%

nI 17 19 21 23 25 27 29 31

RMSE
Population

Mean
860.56196 860.56132 860.56168 860.56090 860.56153 860.56287 860.56138 860.56192

Lowest
RMSE in

population
594.27901 594.27750 594.27934 594.27834 594.28039 594.27831 594.28069 594.27833

RMSE linear
interpolated 713.61089 713.61089 713.61089 713.61089 713.61089 713.61089 713.61089 713.61089

RMSE spline
interpolated 607.03778 607.03778 607.03778 607.03778 607.03778 607.03778 607.03778 607.03778

RMSE
gen. alg.

improved
594.33772 594.33837 594.33400 594.35508 594.31806 594.36050 594.42183 594.39145

Below
Best % 0.8% 0.8% 0.8% 0.8% 0.6% 0.8% 1.1% 1.1%
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Figure 5. Interpolated data and reconstructed attractors for the NYC measles outbreaks data set.
(a): The original and interpolated time series data; (b): Phase space reconstruction of the original data;
(c): Phase space reconstruction of the average population data; (d): Phase space reconstruction of the
genetic-algorithm-improved data.

4.2.2. Car Sales in Quebec

This is a data set from the Time Series Data Library [28]. It depicts monthly car sales in
Quebec from January 1960 to December 1968, with a total of 108 data points. This data set
clearly shows an increasing linear trend and oscillatory regularities, i.e., seasonal behavior.

The results on the reproducibility of missing data points for all interpolation techniques
are collected in Table 3, and depicted in Figure A8b. The genetic-algorithm-improved
interpolation drastically outperforms the average random interpolation. Further, the
PhaSpaSto-interpolation always outperforms the cubic spline and linear interpolation. The
overall best performance is mostly achieved by a random interpolation, still the PhaSpaSto-
interpolation performs best for one, three, and five interpolation points. Overall, the
genetic-algorithm-improved interpolation performs well and is very close to the best of
1000 randomly interpolated results, i.e., for most cases below or around the best 1% of
the population. Thus, we conclude that the presented interpolation technique effectively
captures the phase-space properties of this data set and can be used to interpolate this
time series data. All additional plots for the validation are collected in Appendix B.3,
where one can find the reconstructed attractors for all interpolated validation sets and the
corresponding time series plots.

An interpolation of the original data set is depicted in Figure 6. Here Figure 6c,d
present the population mean and the improved interpolation, respectively. When compar-
ing them, one can see that the genetic algorithm improves the phase space portrait in terms
of a smoothed-out phase space trajectory compared to the original time series (b) and the
population mean (c), which are both pointy and have many sharp edges. When considering
the actual time-series graph (a), the presented interpolation technique increases the major
peaks, thus making extreme events more prominent. Further, it provides a rather smooth
curve, i.e., no pointy edges, as depicted in the zoomed-in plot in (a).

Table 3. Errors for the interpolated data on the car sales in Quebec data set depending on the number
of interpolation points. The errors are shown for the mean interpolation of all populations, the linear
interpolation, the cubic spline interpolation, as well as for the lowest error in the population, and
for the interpolation that was improved using the presented genetic algorithm. We highlighted the
interpolation where the genetic-algorithm-based interpolation performed best. The corresponding
plots for the best interpolation are shown in Appendix B.3. Further, we give the percentage of the
population that is outperformed by the genetic-algorithm-improved interpolation.

nI 1 3 5 7 9 11 13 15

RMSE
Population

Mean
2030.11005 2030.11166 2030.11148 2030.11230 2030.11030 2030.11138 2030.11106 2030.11110
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Table 3. Cont.

nI 1 3 5 7 9 11 13 15

Lowest
RMSE in

population
1954.95010 1954.95013 1954.95016 1954.95013 1954.95005 1954.95009 1954.95020 1954.95015

RMSE linear
interpolated 2017.79949 2017.79949 2017.79949 2017.79949 2017.79949 2017.79949 2017.79949 2017.79949

RMSE spline
interpolated 1971.23755 1971.23755 1971.23755 1971.23755 1971.23755 1971.23755 1971.23755 1971.23755

RMSE
gen. alg.

improved
1907.40084 1960.21475 1954.94790 1954.94792 1954.95375 1954.97452 1958.57232 1954.97468

Below
Best % 0.1% 17.2% 0.1% 0.1% 0.6% 1.01% 14.6% 1.01%

nI 17 19 21 23 25 27 29 31

RMSE
Population

Mean
2030.11260 2030.11057 2030.11226 2030.11047 2030.11078 2030.11105 2030.11171 2030.11013

Lowest
RMSE in

population
1954.95010 1954.95007 1954.95011 1954.95014 1954.95007 1954.95010 1954.95003 1954.95021

RMSE linear
interpolated 2017.79949 2017.79949 2017.79949 2017.79949 2017.79949 2017.79949 2017.79949 2017.79949

RMSE spline
interpolated 1971.23755 1971.23755 1971.23755 1971.23755 1971.23755 1971.23755 1971.23755 1971.23755

RMSE
gen. alg.

improved
1954.97730 1954.99153 1955.00052 1954.99273 1955.02450 1955.02418 1955.01367 1954.98108

Below
Best % 1.3% 1.4% 1.4% 1.4% 1.6% 1.6% 1.4% 1.4%
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Figure 6. Cont.
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Figure 6. Interpolated data and reconstructed attractors for the car sales in Quebec data set. (a): The
original and interpolated time series data; (b): Phase space reconstruction of the original data;
(c): Phase space reconstruction of the average population data; (d): Phase space reconstruction of the
genetic-algorithm-improved data.

4.2.3. Perrin Freres Champagne Sales

This is a data set from the Time Series Data Library [28]. It depicts Perrin Freres
Champagne sales from January 1964 to September 1972, with a total of 105 data points.

The validation results for this data set are collected in Table 4 and Figure A8c.
Though the genetic-algorithm-improved interpolation drastically outperforms the

average random interpolation, the algorithm did not once outperform the best interpolation
of the population. Still, starting with five interpolation points, the genetic-algorithm-
improved interpolation performs well and is very close to the best of 1000 randomly
interpolated results, i.e., consistently below or around the best 1% of the population. Overall
the cubic spline interpolation performed best on this data set. The linear interpolation,
though outperforming the population mean, is still far off. We thus conclude that the
presented interpolation technique does capture the phase-space properties of this data set
from a given population and can be used to interpolate this time series data, but the cubic
spline interpolation is the better choice.

An interpolation of the original data set is depicted in Figure 7. We again show the
population mean (c) and the improved interpolation (d). The presented interpolation
technique improves the phase space portrait in terms of a smoothed-out phase space
trajectory (d) compared to the original time series (b) and the population mean (c), which
are both pointy and contain many sharp edges. Here the population mean increased
sharp edges drastically. Further, considering the graph of the actual time series (a), the
presented interpolation technique increases the major peaks, thus making extreme events
more prominent and providing a thoroughly smooth curve, as depicted in the zoom-in
window in (a).

Table 4. Errors for the interpolated data on the Perrin Freres champagne sales data set depending on
the number of interpolation points. The errors are shown for the mean interpolation of all populations
and for the lowest error in the population, the linear interpolation, the cubic spline interpolation,
and the interpolation that was improved using the presented genetic algorithm. We highlighted the
interpolation where the genetic-algorithm-based interpolation performed best. The corresponding
plots for the best interpolation are shown in Appendix B.4. Further, we give the percentage of the
population that is outperformed by the genetic-algorithm-improved interpolation.

nI 1 3 5 7 9 11 13 15

RMSE
Population

Mean
2320.03501 2320.03532 2320.03403 2320.03366 2320.03524 2320.03333 2320.03195 2320.03301
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Table 4. Cont.

nI 1 3 5 7 9 11 13 15

Lowest
RMSE in

population
2144.04985 2144.05002 2144.04987 2144.05007 2144.04991 2144.04986 2144.04981 2144.04995

RMSE linear
interpolated 2264.24606 2264.24606 2264.24606 2264.24606 2264.24606 2264.24606 2264.24606 2264.24606

RMSE spline
interpolated 2099.58713 2099.58713 2099.58713 2099.58713 2099.58713 2099.58713 2099.58713 2099.58713

RMSE
gen. alg.

improved
2540.17542 2153.68153 2144.43642 2144.07624 2144.16502 2144.15580 2144.14292 2144.16357

Below
Best % 82.5% 6.9% 1.01% 0.3% 0.6% 0.6% 0.6% 0.6%

nI 17 19 21 23 25 27 29 31

RMSE
Population

Mean
2320.03312 2320.03073 2320.03244 2320.03250 2320.03279 2320.03565 2320.03406 2320.03476

Lowest
RMSE in

population
2144.04987 2144.04986 2144.04967 2144.04982 2144.04997 2144.04985 2144.04976 2144.04999

RMSE linear
interpolated 2264.24606 2264.24606 2264.24606 2264.24606 2264.24606 2264.24606 2264.24606 2264.24606

RMSE spline
interpolated 2099.58713 2099.58713 2099.58713 2099.58713 2099.58713 2099.58713 2099.58713 2099.58713

RMSE
gen. alg.

improved
2144.09078 2144.13364 2144.17573 2144.13637 2144.16380 2144.10973 2144.10709 2144.13681

Below
Best % 0.5% 0.6% 0.6% 0.6% 0.6% 0.6% 0.6% 0.6%
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Figure 7. Interpolated data and reconstructed attractors for the Perrin Freres Champagne sales data
set. (a): The original and interpolated time series data; (b): Phase space reconstruction of the original
data; (c): Phase space reconstruction of the average population data; (d): Phase space reconstruction
of the genetic-algorithm-improved data.

4.2.4. Monthly Airline Passengers

This is a data set from the Time Series Data Library [28]. It depicts monthly interna-
tional airline passengers from January 1949 to December 1960, with 144 data points, given
in units of 1000. Again, this data set shows a visible linear trend, and strong seasonal
oscillatory regularities.

The results on how well the presented interpolation can reproduce missing data points
of this data set are collected in Table 5 and depicted in Figure A8d. The results show that,
though the genetic-algorithm-improved interpolation drastically outperforms the average
random interpolation, the algorithm did not once outperform the best interpolation of the
population. Still, starting with three interpolation points, the algorithm did outperform
both the linear and the cubic spline interpolation. What is curious, though, is that, for
this data set, of all the non-model data sets, the linear interpolation outperforms the cubic
spline interpolation.

The genetic-algorithm-improved interpolation does not perform that well for this data
set compared to a random interpolation of the time series. The improved interpolation is
only around the best ≈ 40% of the initial population for this data set. We thus conclude
that the presented interpolation technique does not capture the phase-space properties of
this data set very well. Still, the genetic algorithm does improve the initial population such
that the population mean, the linear interpolation, and the cubic spline interpolation are
outperformed, starting with three interpolation points. All-time series and reconstructed
attractor plots for this data set can be found in Appendix B.5.

An actual interpolation of the original data set is depicted in Figure 8. We again show
the population mean (c) and the improved interpolation (d). The presented PhaSpaSto-
interpolation (d) improves the phase space portrait in terms of a smoothed-out phase space
trajectory, compared to the original time series (b) and the population mean (c), which are
both pointy and contain many sharp edges. Further, considering the actual time series (a)
graph, PhaSpaSto-interpolation technique slightly increases the major peaks. Furthermore,
compared to the other non-model data sets, the improved interpolation does provide a
relatively smooth curve, but it appears much sharper than for, e.g., the car sales in Quebec
data set (see Figure 6a).
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Table 5. Errors for the interpolated data on the monthly airline passengers data set depending on the
number of interpolation points. The errors are shown for the mean interpolation of all populations,
the linear interpolation, the cubic spline interpolation, as well as for the lowest error in the population
and for the interpolation that was improved using the presented genetic algorithm. We highlighted
the interpolation where the genetic-algorithm-based interpolation performed best. The corresponding
plots for the best interpolation are shown in Appendix B.5. Further, we give the percentage of the
population that is outperformed by the genetic-algorithm-improved interpolation.

nI 1 3 5 7 9 11 13 15

RMSE Population Mean 19.93996 19.93999 19.93841 19.94072 19.93976 19.93873 19.94070 19.93889

Lowest RMSE in population 16.55624 16.55779 16.55732 16.55753 16.55558 16.55836 16.55719 16.55776

RMSE linear interpolated 17.39496 17.39496 17.39496 17.39496 17.39496 17.39496 17.39496 17.39496

RMSE spline interpolated 18.33872 18.33872 18.33872 18.33872 18.33872 18.33872 18.33872 18.33872

RMSE gen. alg. improved 18.65257 16.81653 16.84539 17.02728 16.84536 16.84545 16.84540 16.84539

Below Best % 59.4% 35.6% 38.0% 42.20% 38.1% 38.0% 38.1% 38.0%

nI 17 19 21 23 25 27 29 31

RMSE Population Mean 19.94029 19.94030 19.93985 19.93939 19.93659 19.94172 19.94023 19.93909

Lowest RMSE in population 16.55752 16.55730 16.55810 16.55715 16.55733 16.55603 16.55789 16.55741

RMSE linear interpolated 17.39496 17.39496 17.39496 17.39496 17.39496 17.39496 17.39496 17.39496

RMSE spline interpolated 18.33872 18.33872 18.33872 18.33872 18.33872 18.33872 18.33872 18.33872

RMSE gen. alg. improved 16.84546 16.84545 16.84548 16.84540 16.84535 16.84544 16.84544 16.84546

Below Best % 38.1% 38.1% 38.0% 38.1% 38.1% 38.1% 38.2% 38.1%
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Figure 8. Interpolated data and reconstructed attractors for the monthly international airline passen-
gers data set. (a): The original and interpolated time series data; (b): Phase space reconstruction of
the original data; (c): Phase space reconstruction of the average population data; (d): Phase space
reconstruction of the genetic-algorithm-improved data.
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4.2.5. Monthly Mean Temperature in Nottingham Castle

This is a data set from the Time Series Data Library, [28]. It depicts the mean monthly
temperature in Nottingham castle from January 1920 to December 1939, given in degrees
Fahrenheit, with a total of 240 data points. This data set shows strong seasonal regularities
and behaves stationary, as no linearly increasing or decreasing trend is visible.

The results on how well the presented interpolation can reproduce missing data points
of this data set are collected in Table 6 and depicted in Figure A8e. The results show
that, though the genetic-algorithm-improved interpolation drastically outperforms the
average random interpolation, the algorithm did not once outperform the best interpolation
of the population, although outperforming the linear and the cubic spline interpolation.
The genetic-algorithm-improved interpolation does not perform that well for this data
set compared to a random interpolation of the time series. The improved interpolation
is only around the best ≈ 34% for this data set. We thus conclude that the presented
interpolation technique does not capture the phase-space properties of this data set very
well. The corresponding time-series and reconstructed phase space plots are collected in
Appendix B.6.

An interpolation of the original data set is depicted in Figure 9. We again show the
population mean (c) and the improved interpolation (d). The presented interpolation
technique improves the phase space portrait (d) in terms of a smoothed-out phase space
trajectory compared to the original time series (b) and the population mean (c), which are
both pointy and contain many sharp edges. Furthermore, given the time-series depiction of
the PhaSpaSto-interpolation (Figure 9a), we see the same behavior as for all the other data
sets; the major peaks are increased.

Table 6. Errors for the interpolated data on the monthly mean temperature in Nottingham castle
data set depending on the number of interpolation points. The errors are shown for the mean
interpolation of all populations, the lowest error in the population, and the interpolation improved
using the presented genetic algorithm. We highlighted the interpolation where the genetic-algorithm-
based interpolation performed best. The corresponding plots for the best interpolation are shown
in Appendix B.6. Further, we give the percentage of the population that is outperformed by the
genetic-algorithm-improved interpolation.

nI 1 3 5 7 9 11 13 15

RMSE Population Mean 3.09115 3.09170 3.09167 3.09055 3.09088 3.09055 3.09166 3.09165

Lowest RMSE in population 2.47879 2.47858 2.47910 2.47890 2.47886 2.47901 2.47900 2.47875

RMSE linear interpolated 2.61279 2.61279 2.61279 2.61279 2.61279 2.61279 2.61279 2.61279

RMSE spline interpolated 2.59028 2.59028 2.59028 2.59028 2.59028 2.59028 2.59028 2.59028

RMSE gen. alg. improved 2.48413 2.50179 2.50279 2.50406 2.50420 2.50521 2.50512 2.505089

Below Best % 12.6% 31.3% 32.4% 33.5% 33.8% 34.4% 34.4% 34.1%

nI 17 19 21 23 25 27 29 31

RMSE Population Mean 3.09095 3.09177 3.09115 3.09122 3.09146 3.09143 3.09179 3.09023

Lowest RMSE in population 2.47887 2.47920 2.47925 2.47899 2.47867 2.47941 2.47885 2.47892

RMSE linear interpolated 2.61279 2.61279 2.61279 2.61279 2.61279 2.61279 2.61279 2.61279

RMSE spline interpolated 2.59028 2.59028 2.59028 2.59028 2.59028 2.59028 2.59028 2.59028

RMSE gen. alg. improved 2.50494 2.50541 2.50529 2.50552 2.50505 2.50547 2.50550 2.50533

Below Best % 33.9% 34.6% 34.4% 35% 34.6% 34.6% 34.7% 34.7%
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Figure 9. Interpolated data and reconstructed attractors for the monthly mean temperature in
Nottingham castle data set. (a): The original and interpolated time series data; (b): Phase space
reconstruction of the original data; (c): Phase space reconstruction of the average population data;
(d): Phase space reconstruction of the genetic-algorithm-improved data.

4.2.6. Monthly Shampoo Sales

This is a data set from the Time Series Data Library [28]. This data set describes
monthly shampoo sales over three years, i.e., 36 observations. Although this data set
clearly shows a linear trend, no obvious regularities or seasonalities are apparent. Thus, we
consider this data set to be a more stochastical rather than an oscillatory one. We expect
PhaSpaSto-interpolation to not perform well on data sets such as these.

Table 7 and Figure A8f both show the results on how well the employed interpolation
techniques can reconstruct missing data points on this data set. For this data set, PhaSpaSto-
interpolation does not perform well at all. The best performance is achieved by the
random interpolation with the lowest error, followed by the population mean and the
linear interpolation. Spline interpolation performs worst on this data set. Because of its
stochastic nature and no apparent seasonalities, PhaSpaSto-interpolation is not a well-suited
method for interpolating this data set. The corresponding time-series and reconstructed
phase space plots are collected in Appendix B.7.

An interpolation of the original data set is depicted in Figure 10. We again show
the population mean (c) and the improved interpolation (d). The presented interpolation
technique improves the phase space portrait (d) in terms of a smoothed-out phase space
trajectory compared to the original time series (b) and the population mean (c), which are
both pointy and contain many sharp edges. Furthermore, given the time-series depiction
of the PhaSpaSto-interpolation (Figure 10a), we see that PhaSpaSto-interpolation slightly
increases some of the major peaks, but overall presents an interpolation similar to what we
would expect from a spline interpolation of the data set.
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Table 7. Errors for the interpolated data on the shampoo sales data set depending on the number of
interpolation points. The errors are shown for the mean interpolation of all populations, the lowest
error in the population, and the interpolation improved using the presented genetic algorithm. We
highlighted the interpolation where the genetic-algorithm-based interpolation performed best. The
corresponding plots for the best interpolation are shown in Appendix B.7. Further, we give the
percentage of the population that is outperformed by the genetic-algorithm-improved interpolation.

nI 1 3 5 7 9 11 13 15

RMSE population mean 93.77985 93.78096 93.77794 93.78474 93.78852 93.78078 93.78285 93.78171

Lowest RMSE in population 75.17553 75.01493 75.04488 75.13511 75.02854 75.20329 75.08445 75.12778

RMSE linear interpolated 100.56301 100.56301 100.56301 100.56301 100.56301 100.56301 100.56301 100.56301

RMSE spline inteprolated 108.02059 108.02059 108.02059 108.02059 108.02059 108.02059 108.02059 108.02059

RMSE gen. alg. improved 110.19816 105.25685 106.31509 105.51261 105.50765 103.98034 105.90568 105.86858

Below Best % 99.5% 99.4% 99.5% 99.5% 99.5% 99.5 99.5% 99.5%

nI 17 19 21 23 25 27 29 31

RMSE population mean 93.78587 93.78108 93.77988 93.78166 93.78444 93.77972 93.78210 93.78348

Lowest RMSE in population 75.12903 75.08101 75.26534 75.15750 75.12706 75.17626 75.03625 75.05900

RMSE linear interpolated 100.56301 100.56301 100.56301 100.56301 100.56301 100.56301 100.56301 100.56301

RMSE spline inteprolated 108.02059 108.02059 108.02059 108.02059 108.02059 108.02059 108.02059 108.02059

RMSE gen. alg. improved 105.44456 105.51313 105.51292 103.69012 104.71252 104.01555 103.73095 103.88873

Below Best % 99.5% 99.5% 99.5% 99.5% 99.5% 99.5 99.5% 99.5%
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Figure 10. Interpolated data and reconstructed attractors for the shampoo sales data set. (a): The
original and interpolated time series data; (b): Phase space reconstruction of the original data;
(c): Phase space reconstruction of the average population data; (d): Phase space reconstruction of the
genetic-algorithm-improved data.



Entropy 2022, 24, 718 22 of 43

4.2.7. Annual Maize Yields in Austria

This is a data set of the annual yields of maize in Austria ranging from 1961 to 2017 with
an overall of 57 data points. This data set can be downloaded at http://www.fao.org/faostat/,
accessed on 15 May 2022. as with the shampoo sales data set, this data set does not provide
us with visible seasonalities but an overall random behavior and a visible increasing
linear trend.

The results on how well the presented interpolation can reproduce missing data points
of this data set are collected in Table 8 and depicted in Figure A8g. PhaSpaSto-interpolation
performs second-worst on this data set. Spline interpolation performs worst, and the
random interpolation with the lowest error performs best. The second-best is the average
interpolation of all random interpolations. The third-best is the linear interpolation, thus
concluding that a random or a linear interpolation is a better choice on data sets with no
apparent trends. The corresponding time-series and reconstructed phase space plots are
collected in Appendix B.8.

An interpolation of the original data set is depicted in Figure 11. We again show
the population mean (c) and the improved interpolation (d). The presented interpolation
technique improves the phase space portrait (d) in terms of a smoothed-out phase space
trajectory compared to the original time series (b) and the population mean (c), which are
both pointy and contain many sharp edges. Furthermore, given the time-series depiction
of the PhaSpaSto-interpolation (Figure 11a), we see similar behavior as for all the other data
sets, some major peaks are increased, and overall the interpolation is very much how one
would expect a spline interpolation to appear.

Table 8. Errors for the interpolated data on the annual maize yields in Austria data set depending
on the number of interpolation points. The errors are shown for the mean interpolation of all
populations, the lowest error in the population, and the interpolation improved using the presented
genetic algorithm. We highlighted the interpolation where the genetic-algorithm-based interpolation
performed best. The corresponding plots for the best interpolation are shown in Appendix B.8.
Further, we give the percentage of the population that is outperformed by the genetic-algorithm-
improved interpolation.

nI 1 3 5 7 9 11 13 15

RMSE
population

mean
9467.34946 9467.34909 9467.34932 9467.35117 9467.34672 9467.349182 9467.35129 9467.35127

Lowest
RMSE in

population
8552.33575 8552.40507 8552.33623 8552.26190 8552.26676 8552.30054 8552.37868 8552.27861

RMSE
linear

interpolated
9641.12086 9641.12086 9641.12086 9641.12086 9641.12086 9641.12086 9641.12086 9641.12086

RMSE
spline

inteprolated
10,655.09616 10,655.09616 10,655.09616 10,655.09616 10,655.09616 10655.09616 10,655.09616 10,655.09616

RMSE
gen. alg.

improved
10,204.70770 10,400.17016 10,404.69095 10,401.94629 10,401.12925 10,401.11260 10,400.83561 10,401.01686

Below
Best % 96.0% 96.0% 96.0% 96.0% 96.0% 96.0% 96.0% 96.0%

RMSE
population

mean
9467.35137 9467.35207 9467.34967 9467.34998 9467.35055 9467.35120 9467.35351 9467.35240

http://www.fao.org/faostat/
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Table 8. Cont.

nI 17 19 21 23 25 27 29 31

Lowest
RMSE in

population
8552.36502 8552.32328 8552.21861 8552.15975 8552.32538 8552.24323 8552.28914 8552.36142

RMSE
linear

interpolated
9641.12086 9641.12086 9641.12086 9641.12086 9641.12086 9641.12086 9641.12086 9641.12086

RMSE
spline

inteprolated
10,655.09616 10,655.09616 10,655.09616 10,655.09616 10,655.09616 10,655.09616 10,655.09616 10,655.09616

RMSE
gen. alg.

improved
10,400.94068 10,401.32128 10,401.59039 10,402.33613 10,401.94342 10,401.55254 10,401.35126 10,401.15196

Below
Best % 96.0% 96.0% 96.0% 96.0% 96.0% 96.0% 96.0% 96.0%
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Figure 11. Interpolated data and reconstructed attractors for the annual maize yields in Austria data
set. (a): The original and interpolated time series data; (b): Phase space reconstruction of the original
data; (c): Phase space reconstruction of the average population data; (d): Phase space reconstruction
of the genetic-algorithm-improved data.

4.3. Summary

We briefly summarize this research and highlight the main findings:

• We presented a genetic algorithm to improve a stochastic interpolation, i.e., multi-
point fractional Brownian bridges, to enhance the reconstructed phase space of any
given time series. For simplicity, we named this method PhaSpaSto-interpolation.

• We presented a novel approach to measure the quality of a phase space reconstruction
according to Takens’ theorem. Here we used an idea from image processing, i.e., to
identify blurry images via the variance of second derivatives. These second derivatives
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are calculated along the reconstructed phase space curve for any given reconstructed
phase space. We use the variance of these second derivatives to measure the quality
of our phase space reconstruction. Given two interpolated phase space curves of the
same time series, the one with the lower variance of second derivatives along the
curve is the better phase space reconstruction, as it is the smoother one.

• We showed that the developed technique performed well in the case of a model
data set, i.e., one variable of the Lorenz system. Here, we deleted data points from
the original time series data and were able to outperform, in some cases, any best
random interpolations of this time series data. Furthermore, the presented method
outperformed a linear interpolation when locating the missing data points. Still, the
proposed method did not outperform the presented cubic spline interpolation on this
task. This was conducted to validate our method and to show its applicability. Further,
the presented reconstructed phase spaces plots show that the interpolated phase space
reconstruction is similar to the original reconstructed phase space. The results for the
Lorenz system are collected in Section 4.1.

• We demonstrated the presented method using seven sparsely sampled non-model
data sets. The validation was performed such that we deleted every second data
point from the original time series and reconstructed these missing data points using
the developed technique. For three out of seven data sets, the developed method
effectively can identify the interpolations or parts of it with low errors, i.e., the result
is around the best 1% of the population in terms of the RMSE for the reconstructed
data points. PhaSpaSto-interpolation outperformed the spline interpolation for six
of seven non-model data sets and the linear interpolation on five non-model data
sets. Furthermore, the best random interpolation outperformed the cubic spline
interpolation on six non-model data sets. For the monthly airline passengers data
set, the PhaSpaSto-interpolation does not perform very well as it is only around the
best 30–40% of all RMSEs of the population. Furthermore, for the final two data sets,
i.e., the shampoo sales and maize yields data sets, PhaSpaSto-interpolation cannot
find a meaningful interpolation and is outperformed by every other interpolation
except the cubic spline interpolation. The interpolation performed well in case of
the measles cases in NYC data set (Section 4.2.1), the car sales in Quebec data set
(Section 4.2.2) and the Perrin Freres champagne sales data set (Section 4.2.3), which
are data sets that show regularities and an oscillatory behavior. The cases where
the presented method did not perform well are the monthly international airline
passengers data set (Section 4.2.4), the monthly mean temperature in Nottingham
castle data set (Section 4.2.5), the shampoo sales data set and the annual maize yields
in Austria data set. We conclude that PhaSpaSto-interpolation can retrieve missing
data points for time series with seasonal behavior or oscillatory regularities better
than for stochastic data sets.

• We also used the seven non-model data sets to show the applicability of the developed
technique as an actual interpolation technique, i.e., no deleted data points. The plots
of the reconstructed phase spaces show that it softens the edges and provides a
thoroughly smoother and cleaner reconstructed phase space trajectory. Therefore, the
authors conclude that this technique applies to arbitrary univariate data sets. All of
these plots are collected in Section 4.2. We further recommend it when dealing with
sparsely-sampled seasonal time series, or time series that show oscillatory regularities.

5. Conclusions

This article presents a novel approach to interpolate univariate time series data. For
simplicity, we named this method PhaSpaSto-interpolation. The concept is first to generate
a population of, e.g., 1000, different stochastically-interpolated time series data. This
is performed using multi-point Brownian bridges, each assigned with a random Hurst
exponent. Then, as a second step, a genetic algorithm generates one time series out of
the population with a low variance of second-order derivatives along the corresponding
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reconstructed phase space trajectory, i.e., we want this curve to be as smooth as possible.
The idea of using the variance of second-order derivatives is adapted from image processing,
where the variance of second-order derivatives is used to differentiate between blurry and
sharp images. We also tested the discussed approach with different loss functions that, in
the end, did not work. These failed attempts are collected in Appendix C. Thus, we want
to point out the variance of second-order derivatives as a valuable tool for phase space
analysis and should be considered when dealing with non-linear time series data.

We then applied the presented interpolation technique to the Lorenz system, or to be
specific, to one of the variables of the Lorenz system, since we are dealing with univariate
data only. Next, we deleted data points from this time series and interpolated the missing
data points with the presented interpolation technique, i.e., interpolated subsampled time
series. We also tested the proposed approach against linear interpolation and cubic spline
interpolation. The results show that the presented PhaSpaSto-interpolation can reproduce
the Lorenz system, i.e., the genetic algorithm can find the best parts of the initial population
to reconstruct the Lorenz system. Still, the spline interpolation outperformed the PhaSpaSto-
interpolation for the Lorenz system.

Finally, we applied the presented approach to various real-life and/or benchmark
data sets. There are no fine-grained model data available for data sets such as these. We
cannot verify the interpolation as we did with the Lorenz system. Instead, we deleted
every second data point of these data sets. We reconstructed them using the developed
method, i.e., generated interpolations using a range of interpolation points, selecting the
missing data points, and verifying them against the ground truth. PhaSpaSto-interpolation
performed well on three of seven data sets, as the genetic algorithm can identify/build
interpolations with low errors for the missing data points.

Further, PhaSpaSto-interpolation outperformed the spline-interpolation on six of seven
data sets. Thus, we conclude that the presented method can also be applied to non-
model data sets but performs best on seasonal data or data with oscillatory regularities.
For inherently random data sets, we recommend using multi-point Brownian bridges
instead. Lastly, we show actual interpolations on these non-model data sets, i.e., no
deleted data points. Given that the reader is familiar with how strange attractors of
chaotic systems appear, it should be clear from the presented reconstructed phase space
portraits that our approach can interpolate real-life data as one would expect a phase space
embedding of a strange attractor to appear, see Section 4.2. Future research will also be
devoted to generalizations of the bridge process (2) to random processes which exhibit
non-Gaussian features [29].

We expect the presented research to be useful for predicting and analyzing sparsely-
sampled time series data, e.g., in agriculture or other fields where fine-grained measure-
ments are expensive. Furthermore, our methodology could be applicable to a broad range
of other real-world problems such as the filling of gaps in solar wind measurements [2] or
spatiotemporal wind fields [3] for the assessment of wind turbine loads. As our method
can be considered as some “hybrid” between a stochastic (by virtue of the fractional Brow-
nian bridge interpolation) and a deterministic algorithm (by the embedding and genetic
algorithm), it should be highly relevant for the filling of such time series or spatial fields,
which often exhibit deterministic and stochastic elements at the same time.

We further expect the presented research to be utilized for improving machine and deep
learning approaches with insufficient data. Thereby, an enhanced phase space structure
might improve a forecast’s accuracy. Thus, the variance of second derivatives along recon-
structed phase space trajectories can be used as an indicator for the quality of a prediction.

Future improvements and applications of this technique include the expansion to
multi-variate data sets and using the presented loss function, i.e., the variance of second
derivatives along phase space trajectories, to find better phase space embeddings. The
interested reader is therefore referred to appendix D where we present the loss-surface of
the Lorenz system with a varying time delay τ and a varying embedding dimension dE.
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Furthermore, as previously mentioned, we wish to test to what degree improved
phase-space embeddings can be beneficial for machine and/or deep learning approaches
for learning and predicting time-series data.

Lastly, the presented interpolation technique code will be available on GitHub from
the corresponding author in the future.
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Appendix A. Phase Space Reconstruction

We calculated a time delay for all non-model data sets using the autocorrelation func-
tion and the average mutual information of a time series [18]. Further, we estimated the
embedding dimension using the false nearest neighbors algorithm [19], and the corre-
sponding results are collected in Table A1. As these did not provide us with interpretable
phase space portraits in terms of smoothness, we chose the phase space for all non-model
data sets as τ = 1 and dE = 3. As is shown in Table A1, this is not an unreasonable
choice for some data sets. Further this choice provides phase space portraits that suggest
behavior similar to a phase-coherent oscillator for the seasonal data sets, as depicted in
Figures A1–A5. Further, the previously mentioned figures depict the phase space portraits
for different time delays ( AMI, AC and τ = 1) in a three-dimensional embedding space.
We also used the same embedding for the two non-seasonal data sets, i.e., the annual maize
yields in Austria and shampoo sales data set, as depicted in Figures A6 and A7.
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Table A1. Time delay and embedding dimension calculated using the method of average mutual
information (AMI), the autocorrelation function (ACF) and the method of false nearest neighbors.

Data τ (AMI) dE (AMI) τ (ACF) dE (ACF)

Monthly International
Airline Passengers 1 3 3 4

Monthly Mean
Temperature in

Nottingham Castle
2 3 3 4

Perrin Freres
Champagne Sales 1 7 2 5

Car Sales
in Quebec 1 6 2 4

NYC Measles
Outbreaks 7 1 4 1

Annual Maize
Yields in Austria 3 3 5 1

Shampoo
Sales 1 1 1 1
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Figure A1. Reconstructed phase space trajectories for different time delays for the monthly interna-
tional airline passengers data set. (a): AMI and τ = 1time delay; (b): ACF time delay.
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Figure A2. Reconstructed phase space trajectories for different time delays for the monthly mean
temperature in Nottingham castle data set. (a): AMI time delay; (b): ACF time delay; (c): τ = 1.
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Figure A3. Reconstructed phase space trajectories for different time delays for the Perrin Freres
champagne sales data set. (a): AMI time delay; (b): ACF time delay; (c): τ = 1.
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Figure A4. Reconstructed phase space trajectories for different time delays for the car sales in Quebec
data set. (a): AMI and τ = 1 time delay; (b): ACF time delay.
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Figure A5. Reconstructed phase space trajectories for different time delays for the measles cases in
NYC data set. (a): AMI time delay; (b): ACF time delay; (c): τ = 1.
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Figure A6. Reconstructed phase space trajectories for different time delays for the annual maize
yields in Austria data set. (a): AMI time delay; (b): ACF time delay; (c): τ = 1.
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Figure A7. Reconstructed phase space trajectories for the shampoo sales data set, AMI, ACF and
τ = 1 time delay, as all of them are the same for this data set.

Appendix B. Additional Plots

This section provides additional plots for all data sets discussed in Section 4.2. As such
we plotted the evolution of errors for the validation depending on the varying number of
interpolation points, i.e., the errors from Tables 2–6. Further, we added each time series
and the corresponding best validation interpolation, and finally, the corresponding phase
space plots.

Appendix B.1. Evolution of Errors
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Figure A8. Evolution of errors depending on the number of interpolation points for the non-model
data validation. (a): Measles cases in NYC data set, results from Table 2; (b): Car sales in Quebec data
set, results from Table 3; (c): Perrin Freres champagne sales data set, results from Table 4; (d): Monthly
international airline passengers data set, results from Table 5; (e): Monthly mean temperature in
Nottingham castle data set, results from Table 6; (f): Shampoo sales data set, results from Table 7;
(g): Annual maize yields in Austria data set, results from Table 8.

Appendix B.2. NYC Measles Outbreaks Data Set
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Figure A9. Interpolated validation data (25 interpolation points) for the measles cases in NYC
data set. (a): Average population validation; (b): Validation, linear interpolation; (c): Validation,
spline interpolation; (d): Validation, best random interpolation; (e): Validation, gen. alg. improved
interpolation.
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Figure A10. Reconstructed validation attractors (25 interpolation points) for the measles cases in NYC
data set. (a): Reconstructed attractor, average population validation interpolation; (b): Reconstructed
attractor, linear interpolation; (c): Reconstructed attractor, spline interpolation; (d): Reconstructed
attractor, best random validation interpolation; (e): Reconstructed attractor, gen. alg. improved
validation interpolation.

Appendix B.3. Car Sales in Quebec Data Set
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Figure A11. Cont.
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Figure A11. Interpolated validation data (one interpolation point) for the car sales in Quebec data set.
(a): Average population validation; (b): Validation, linear interpolation; (c): Validation, spline inter-
polation; (d): Validation, best random interpolation; (e): Validation, gen. alg. improved interpolation.
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Figure A12. Cont.
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Figure A12. Reconstructed validation attractors (one interpolation point) for the car sales in Quebec
data set. (a): Reconstructed attractor, average population validation interpolation; (b): Reconstructed
attractor, linear interpolation; (c): Reconstructed attractor, spline interpolation; (d): Reconstructed
attractor, best random validation interpolation; (e): Reconstructed attractor, gen. alg. improved
validation interpolation.

Appendix B.4. Perrin Freres Champagne Sales Data Set
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Figure A13. Interpolated validation data (seven interpolation points) for the Perrin Freres champagne
sales data set. (a): Average population validation; (b): Validation, linear interpolation; (c): Validation,
spline interpolation; (d): Validation, best random interpolation; (e): Validation, gen. alg. improved
interpolation.
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Figure A14. Reconstructed validation attractors (seven interpolation points) for the Perrin Freres
champagne sales data set. (a): Reconstructed attractor, average population validation interpolation;
(b): Reconstructed attractor, linear interpolation; (c): Reconstructed attractor, spline interpolation;
(d): Reconstructed attractor, best random validation interpolation; (e): Reconstructed attractor, gen.
alg. improved validation interpolation.

Appendix B.5. Monthly Airline Passengers Data Set
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Figure A15. Cont.
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Figure A15. Interpolated validation data (three interpolation points) for the monthly international
airline passengers data set. (a): Average population validation; (b): Validation, linear interpolation;
(c): Validation, spline interpolation; (d): Validation, best random interpolation; (e): Validation, gen.
alg. improved interpolation.
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Figure A16. Cont.
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Figure A16. Reconstructed validation attractors (three interpolation points) for the monthly inter-
national airline passengers data set. (a): Reconstructed attractor, average population validation
interpolation; (b): Reconstructed attractor, linear interpolation; (c): Reconstructed attractor, spline
interpolation; (d): Reconstructed attractor, best random validation interpolation; (e): Reconstructed
attractor, gen. alg. improved validation interpolation.

Appendix B.6. Monthly Mean Temperature in Nottingham Castle Data Set
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Figure A17. Interpolated validation data (one interpolation point) for the monthly mean temperature
in Nottingham castle data set. (a): Average population validation; (b): Validation, linear interpolation;
(c): Validation, spline interpolation; (d): Validation, best random interpolation; (e): Validation, gen.
alg. improved interpolation.
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Figure A18. Reconstructed validation attractors (one interpolation point)for the monthly mean
temperature in Nottingham castle data set. (a): Reconstructed attractor, average population validation
interpolation; (b): Reconstructed attractor, linear interpolation; (c): Reconstructed attractor, spline
interpolation; (d): Reconstructed attractor, best random validation interpolation; (e): Reconstructed
attractor, gen. alg. improved validation interpolation.

Appendix B.7. Shampoo Sales
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Figure A19. Cont.
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Figure A19. Interpolated validation data (one interpolation point) for the shampoo sales data set.
(a): Average population validation; (b): Validation, linear interpolation; (c): Validation, spline interpo-
lation; (d): Validation, best random interpolation; (e): Validation, gen. alg. improved interpolation.
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Figure A20. Cont.
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Figure A20. Reconstructed validation attractors (one interpolation point) for the shampoo sales data
set. (a): Reconstructed attractor, average population validation interpolation; (b): Reconstructed
attractor, linear interpolation; (c): Reconstructed attractor, spline interpolation; (d): Reconstructed
attractor, best random validation interpolation; (e): Reconstructed attractor, gen. alg. improved
validation interpolation.

Appendix B.8. Annual Maize Yields
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Figure A21. Interpolated validation data (one interpolation point) for the annual maize yields in Aus-
tria data set. (a): Average population validation; (b): Validation, linear interpolation; (c): Validation,
spline interpolation; (d): Validation, best random interpolation; (e): Validation, gen. alg. improved
interpolation.
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Figure A22. Reconstructed validation attractors (one interpolation point) for the annual maize
yields in Austria data set. (a): Reconstructed attractor, average population validation interpolation;
(b): Reconstructed attractor, linear interpolation; (c): Reconstructed attractor, spline interpolation;
(d): Reconstructed attractor, best random validation interpolation; (e): Reconstructed attractor, gen.
alg. improved validation interpolation.

Appendix C. Failed Attempts

This section provides additional material for failed attempts to find a smooth phase
space trajectory. For this reason, we provide additional plots (Figure A23) and the cor-
responding errors for the Lorenz system in Table A2. These attempts for different loss
functions include:

• Minimizing the nearest neighbour distance between phase space points.
• Minimizing the mean of first-order derivatives along the phase space trajectory.
• Minimizing the variance of first-order derivatives along the phase space trajectory.
• Minimizing the mean of second-order derivatives along the phase space trajectory.
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Table A2. Errors for the interpolated data on the Lorenz system for 14 interpolation points and
different loss functions. The errors are shown for the mean interpolation of all populations, the
lowest error in the population, and the interpolation that was improved using the presented genetic
algorithm. Further, we give the percentage of the population that is outperformed by the genetic-
algorithm-improved interpolation. Here, one can see that only methods including the second
derivatives performed well. Further, the variance of second-order derivatives along the phase space
trajectory performed best.

Loss
Function

Nearest
Neighbour

Distance

First
Derivative

Mean

First
Derivative
Variance

Second
Derivative

Mean

Second
Derivative
Variance

RMSE
Population

Mean
0.90686

Lowest
RMSE in

population
0.18632

RMSE
gen. alg.

improved
1.13779 0.67649 0.54291 0.19274 0.18626

Below
Best % 73.9% 62.9% 55.5 4.2% 0.1%
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Figure A23. Reconstructed attractors for the interpolated Lorenz system for different loss functions.
(a): Nearest neighbour distance loss function; (b): First derivative mean loss function; (c): First
derivative variance loss function; (d): second derivative mean loss function.

Appendix D. Loss Surface

We present the loss surface for the Lorenz attractor in Figure A24 from two perspec-
tives. The orange dot marks the actual embedding of the Lorenz system. The plot suggests
that the correct phase space embedding is located in an area where the loss surface flattens
out. At this point, we did not check for possible ways to locate the correct phase space
embedding in the loss surface. Future approaches might identify ways to do so.



Entropy 2022, 24, 718 42 of 43

(a) (b)

Figure A24. Loss surface for the Lorenz attractor. (a,b) both show the same surface from different
angles. This is the employed loss function (Section 3.3.1) depending on a varying embedding
dimension and time delay. The orange dot marks the correct embedding dimension and time delay.
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