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Abstract

The effects of the variability of individual prey locomotory performance on the vulnerability to

predation are poorly understood, partly because individual performance is difficult to determine in

natural habitats. To gain insights into the role(s) of individual variation in predatory relationships,

we study a convenient model system, the neotropical sandy beach gastropod Olivella semistriata

and its main predator, the carnivorous snail Agaronia propatula. The largest size class of O. semi-

striata is known to be missing from A. propatula’s spectrum of subdued prey, although the

predator regularly captures much larger individuals of other taxa. To resolve this conundrum, we

analyzed predation attempts in the wild. While A. propatula attacked O. semistriata of all sizes,

large prey specimens usually escaped by ‘sculling’, an accelerated, stepping mode of locomotion.

Olivella semistriata performed sculling locomotion regardless of size, but sculling velocities deter-

mined in the natural environment increased strongly with size. Thus, growth in size as such does

not establish a prey size refuge in which O. semistriata is safe from predation. Rather, a behavioral-

ly mediated size refuge is created through the size-dependence of sculling performance. Taken

together, this work presents a rare quantitative characterization in the natural habitat of the causal

sequence from the size-dependence of individual performance, to the prey size-dependent out-

come of predation attempts, to the size bias in the predator’s prey spectrum.
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Locomotory performance, the efficiency of locomotion in terms of

acceleration, speed, maneuvering abilities, and endurance, relates to

survival and thus to fitness in mobile prey species (Webb 1986).

Unfortunately, the practical determination of the role of locomotory

performance in predator–prey relationships is complicated by sev-

eral factors. First, locomotion performed in controlled settings does

not necessarily reflect locomotory performance in the wild (Irschick

and Garland 2001). Similarly, prey escape responses triggered by

artificial stimuli in experiments are not necessarily valid models for

prey behavior under attack by a real predator that may show vari-

able behavior itself. Therefore, behavioral studies in natural habitats

are essential for understanding the ecological and evolutionary

significance of prey locomotory capabilities in the context of escape

responses (Moore and Biewener 2015). Second, behavior and
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performance in a given situation may differ individually, be it be-

cause individuals exhibit different ‘personalities’ (Wolf and

Weissing 2012), or because individual capabilities change in the

course of ontogenetic development (De Roos and Persson 2013). As

a result, averaging performance over a population or species is likely

to produce misleading results. Consequently, investigations into

the role(s) of locomotory performance should focus on individual

interactions between predator and prey, especially if individual vari-

ability must be suspected to be of a systematic rather than stochastic

nature (Nakazawa 2017).

Among classical investigations into predator–prey interactions

that drove the development of ecological theory, studies of intertidal

benthic invertebrate communities were particularly influential

(Robles and Desharnais 2002). Marine gastropods, for example, re-

spond to invertebrate predators with a variety of defensive behaviors

including flight (Ansell 1969), and several population- and

community-level effects of gastropod defense responses have been

characterized (Fishlyn and Phillips 1980; Hadlock 1980; Garrity

and Levings 1981). Still, the ecological relevance of numerous ap-

parent flight responses described in marine gastropods has remained

unclear. Gastropod flight velocities were rarely quantified and the

dependence of locomotory performance on individual body size

seems to have been determined in not more than a single study.

Schmitt (1981) found positive correlations between size and speed

of locomotion in three of the four gastropod species he tested; all

tests were conducted in the laboratory. Whether these correlations

affected predator-prey interactions in the natural habitats has been

left unexplored.

The carnivorous snail, Agaronia propatula Conrad 1849

(Olividae, Caenogastropoda), inhabits sandy beaches of the Central

American west coast (Keen 1971). Its predation and feeding behav-

ior, which resembles that reported from other large olivids (Kantor

and Tursch 2001; Kantor et al. 2017), has been described in detail

(Rupert and Peters 2011; Cyrus et al. 2012, 2015). The animals

hunt actively. Prey is grasped with the anterior foot and then secured

by the posterior foot or metapodium, which bends ventrally to form

a spherical pouch that encloses the prey item (compare

Supplementary Video S4). The highly extensible proboscis carrying

the mouth opening at its end is inserted into the metapodial pouch

for feeding. Analyses of metapodial pouch contents in A. propatula

revealed the suspension-feeding snail, Olivella semistriata Gray

1839, of the same family as the dominant prey (Robinson and Peters

2018). Intriguingly, large O. semistriata (maximal shell length is

about 2.1 cm; Troost et al. 2012) were missing from the prey spec-

trum of A. propatula, suggesting that O. semistriata can reach a size

refuge from predation. Prey size refugia (Chase 1999) are frequently

interpreted as resulting from gape-limited predation, where the size

of a predator’s gape or capture apparatus defines maximum prey

size (Urban 2007; for a case study involving marine gastropods, see

Boulding et al. 2016). While large olivid predators including A.

propatula are not gape-limited in the literal sense as they do not

swallow their prey whole, the dimensions of their metapodial

pouches probably set limits to prey size. Such limits, however, can-

not explain the observed absence of large O. semistriata from the

prey spectrum of A. propatula, as even the largest O. semistriata

are much smaller than some of the bivalves, crustaceans, and con-

specifics that were found in the predators’ metapodial pouches

(Robinson and Peters 2018). Thus, the mechanism behind the

size bias against large O. semistriata is unlikely to be purely mechan-

ical, and may include behavioral factors such as locomotory

performance.

When disturbed, crawling O. semistriata temporarily switch to

an accelerated, stepping locomotion mode (Seilacher 1959) that is

reminiscent of a person sculling a boat (Supplementary Video S2).

We hypothesized that flight by “sculling” might help O. semistriata

to avoid predation by A. propatula in a size-dependent manner, and

tested the idea in the natural habitat.

Materials and Methods

Notes on 57 naturally occurring attacks by Agaronia propatula on

Olivella semistriata were collected during field trips (2011�2014

and 2017, but not during the strong El Ni~no 2015�2016) to Playa

Grande, Costa Rica (10�20’N, 85�51’W). Twenty observations

(35%) were made in the dry season (December�April), 23 (40%) in

the rainy season (late May�October), and 14 (25%) during the

transition in early May (Supplementary Table S1). Details were

recorded immediately at the location in writing; in a few cases, vid-

eos of the attacks were recorded using digital cameras. An inter-

action between A. propatula and O. semistriata was classified as an

“attack” if the predator executed at least one strike with its anterior

foot at the prey (Figure 1A; compare Cyrus et al. 2012). Attacks

Figure 1. Stages in the predatory attacking behavior of Agaronia propatula

critical to our analysis of field observations. (A) Agaronia propatula initiates

an attack on Olivella semistriata by executing a fast strike at its victim with

the anterior part of the foot. Only when such a strike was executed the inter-

action was counted as a predatory attack. (B) After successful completion of

the attack, the prey is enclosed by the posterior foot, which forms the spheric-

al metapodial pouch, and the predator burrows into the sediment to consume

its prey. Only when A. propatula had started to burrow with the prey firmly

enclosed in the pouch, the attack was recorded as successful. The shell

lengths of the animals shown are 31.1 mm (A. propatula) and 17.2 mm

(O. semistriata).
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were classified as “successful” when A. propatula had stored the

prey in the metapodial pouch and started to burrow into the sedi-

ment (Figure 1B). After each attack, predator and prey shell lengths

(siphonal notch to apex) were measured to the nearest 0.1 mm with

calipers or on digital photographs (taken with various standard cam-

eras, Panasonic DMC-FZ30; Sony DSC-H20; Nikon Coolpix

AW130) of the animals next to a ruler (ImageJ; https://imagej.nih.

gov/ij). The original data is available as Supplementary Table S1.

To establish trajectories of linearly moving O. semistriata, digital

cameras (Sony DSC-H20) on small tripods were positioned with the

sightline perpendicular to the anticipated path. Sculling locomotion

was induced by gently touching the shell apex of a crawling animal

(Supplementary Video S2). Videos were taken at 30 frames per se-

cond and 1280�720 pixel resolution, and the position of the shell

apex was determined on each frame (ImageJ). Loess smoothing was

applied to these data to provide continuous trajectories, and numer-

ical derivation yielded velocity functions (TableCurve 2D; https://sys

tatsoftware.com).

Dependences of the distribution of successful and unsuccessful

attacks on predator size, prey size, and the size ratio (Figure 2B�D)

were analyzed by Mann–Whitney U-tests online at http://www.vas

sarstats.net. The correlation between body size (shell length) and

the velocity of the escape response (Figure 4C) was described by

the geometric mean functional relationship (GMFR; Draper and

Smith 1998). The strength of the correlation was quantified by

the coefficient of determination (r2) based on Pearson’s correlation

coefficient, r.

Results

We documented 57 attacks of A. propatula on O. semistriata in the

wild, of which two-thirds were successful (Table 1). In 48 cases, O.

semistriata initiated sculling and escaped in 18 of these attempts

(Table 1). Escape attempts by sculling generally succeeded if O.

semistriata propelled itself beyond the immediate reach of the at-

tacker within the first 2 s of the initial attack (compare

Supplementary Videos S3 and S4). In the remaining nine attacks,

no sculling was attempted, mostly because the initial strike was

immediately successful and/or the victim was partly embedded in

the sediment. In one of these nine attacks, the victim escaped by

crawling (Table 1).

The outcome of the observed attacks depended on the size rela-

tionship between A. propatula and O. semistriata (Figure 2A). All

attacks were successful if the shell length of O. semistriata was

<11.8 cm; attacks were always unsuccessful, with one exception, if

the shell length was >18.2 cm (Figure 2A; compare Supplementary

Table S1). Unsuccessful predation attempts were associated with

low predator–prey size ratios (Figure 2B). Both prey and predator

size contributed to the effect, but the influence of prey size appeared

stronger (Figure 2C and D).

Olivella semistriata usually switched from crawling to sculling

locomotion when it was touched posteriorly by an A. propatula

(Supplementary Videos S3, S4). This stimulus could be mimicked by

gently touching the shell apex of a crawling O. semistriata

(Supplementary Video S2), which facilitated quantitative analysis.

Sculling locomotion consisted of a series of steps that covered about

half the animal’s shell length each within 0.5–0.9 s. Sculling was sev-

eral times faster than regular crawling, but was never sustained for

more than 4–5 s (see representative analysis in Figure 3). When scul-

ling, bigger animals covered longer distances per unit time than

smaller ones (Figure 4A). In contrast, trajectories of all snails were

similar when distances were expressed as shell lengths (Figure 4B).

Evidently, sculling velocity was a function of body size.

To determine the dependence of sculling velocity on size more

precisely, we induced sculling in crawling animals of different sizes

that otherwise were undisturbed in their habitat. Because the initial

response phase seemed crucial for escape success, we focused on

velocities averaged over the first 2 s of sculling locomotion.

Averaged initial velocity and shell length were correlated (r2 ¼ 0.58,

n¼125); velocity increased by about 0.12 cm/s per one-mm increase

in shell length (Figure 4C). There was no such correlation when

velocity was expressed relative to body size, i.e., as shell length per

second (Figure 4D).

Discussion

A key finding emerging from the analysis of predation attempts that

occurred in the natural habitat was that large O. semistriata were in

fact attacked by A. propatula but mostly escaped (Figure 2). This re-

sult provided a sufficient explanation for the fact that large O. semi-

striata had not been found among the prey cached in metapodial

pouches of A. propatula (Robinson and Peters 2018). Consequently,

a prey preference executed by the predator is not required to account

for the size-bias in the prey spectrum.

As a rule, successfully escaping O. semistriata applied sculling

locomotion (Table 1). Sculling velocity averaged over the first 2 s of

the flight response rose 6-fold from the smallest to the largest ani-

mals tested (Figure 4C). At this time, we lack information about the

size-dependence of crawling speed in A. propatula, but peak veloc-

ities around 0.9 cm/s have been recorded (Cyrus et al. 2012). This

astonishing value is about twice the speed reported for other large

predatory olivids, arguably the fastest gastropods (Tursch and

Greifeneder 2001). If we accept the simplifying premise that hunting

A. propatula regularly reach such velocities regardless of their own

size, and further assume that the success of flight depends on O.

semistriata’s initial velocity after the induction of sculling, we will

be able to draw two inferences from Figure 4C. First, O. semistriata

of 12 mm shell length or more will have a significant chance to es-

cape a charging A. propatula. Second, O. semistriata of over 17 mm

almost always will outrun their attacker. These predictions, though

based on simplifying assumptions, are in excellent agreement with

our observations of successful escapes in the field (Figure 2A). There

are additional relevant factors, as indicated by the observation of

successful predation attempts in which no sculling locomotion was

initiated (Table 1). Nonetheless, the size-dependence of sculling

Table 1. Attacks of Agaronia propatula on Olivella semistriata observed in the wild

Prey behavior Attack successful Attack unsuccessful Row total

Sculling locomotion initiated 30 (53%) 18 (31%) 48 (84%)

No sculling locomotion initiated 8 (14%) 1 (2%) 9 (16%)

Column total 38 (67%) 19 (33%) 57 (100%)
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velocity is sufficient to explain why the observed attacks of A. prop-

atula on large O. semistriata were largely unsuccessful.

Quantitative assessments of individual flight capabilities in

natural environments (such as our tests summarized in Figure 4) are

complicated when the animals are forced to trade speed for maneu-

verability by the structural complexity of three-dimensional terrains

(Wheatley et al. 2015), or by the need to outmaneuver predators

that cannot be outrun (Clemente and Wilson 2015). These problems

are of limited relevance with our study species, for two reasons.

First, structural simplicity is a character of our study species’ habi-

tat. Both species burrow into the sediment to rest (Seilacher 1959,

Troost et al. 2012), but their predator–prey interactions generally

Figure 2. Attacks of Agaronia propatula on Olivella semistriata recorded in the wild. (A) Size relations between prey and predators, given as shell lengths for the

observed 38 successful and 19 unsuccessful attacks. Examples presented as Supplementary Videos S3 and S4 are marked. Straight lines mark the size ratios 1.5,

2, 3, and 4 (indicated at upper ends of lines). (B, C, D) The same attacks as in (A) ranked with increasing predator-prey size ratio, prey size, and predator size, re-

spectively. P, probabilities for obtaining distributions at least as strongly skewed as the observed ones in the absence of any real size-dependence (Mann–

Whitney U-test, two-tailed).

Figure 3. Locomotion kinematics of Olivella semistriata. The movement of a representative animal of 15.6 mm shell length is shown; phases of regular crawling

and sculling locomotion with average velocities are highlighted. Gray circles, position of the shell apex (from a video taken at 30 frames per second); blue line,

trajectory (Loess smoothing applied to data); orange line, velocity (derivative of trajectory).
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occur on the surface of the beach sediment, essentially a two-dimen-

sional stage. Second, speed and maneuverability certainly are antag-

onistic factors in animals moving at many body lengths per second

(e.g. quadrupeds, fishes, ants; Wilson et al. 2015). In contrast, snails

and other small animals moving at fractions of their body lengths

per second certainly are too slow, given body masses of a few grams

at most, for inertia effects to impair maneuvering abilities.

Prey may grow into size refuges when it becomes too large to be

handled by predators (Chase 1999; Urban 2007; Taborsky et al.

2018). For individuals in prey size refuges, active flight behavior

might become dispensable. For instance, immature individuals of

several aquatic gastropod species execute flight responses when they

sense certain predators, but abandon this responsiveness after hav-

ing reached sizes that exclude them as potential prey of these preda-

tors (Hoffman and Weldon 1978; Branch 1979; Alexander and

Covich 1991). In contrast, O. semistriata of all sizes attempt to flee

by sculling when attacked by A. propatula, but larger individuals ex-

hibit superior locomotory performances (Figure 4C) and thus have

an increased chance of escaping successfully (Figure 2). We conclude

that it is not size as such that physically prevents predation in O.

semistriata. Instead, a parameter correlated with size, sculling vel-

ocity, creates a behaviorally mediated size refuge. Olivella semi-

striata gradually moves into this size refuge as it grows from about

12 mm to 17 mm shell length.

If a prey species shows a pronounced positive correlation be-

tween body size and locomotory performance, and if its susceptibil-

ity to predation decreases with increasing locomotory performance,

predation must be expected to select for faster growth and larger

maximum size in this species. Other selection factors, however, may

override the effects of predation pressure, and this seems to apply to

O. semistriata. The species reaches highly variable sizes at different

locations, as indicated by dwarfish populations originally described

as a separate taxon, O. attenuata Reeve 1851 (Troost et al. 2012).

Maximum sizes of O. semistriata at different Costa-Rican locations

did not correlate with local densities of A. propatula and sometimes

remained below 12 mm shell length (Troost et al. 2012), the

estimated lower limit of the transition into the size refuge

(Figure 2A). Evidently, currently unknown factors other than preda-

tion by A. propatula exert influence on growth and development in

O. semistriata. In this context, we note that a positive correlation of

escape success with body size cannot drive selection for larger max-

imum size in prey that grows into a size refuge before it reaches its

size maximum. However, selection for faster growth into the refuge

still must be expected. Quantitative analyses of the development of

O. semistriata in different populations will clarify whether the spe-

cies responds to predation pressure by increased growth rates that

enable it to reach the size refuge more quickly.

The link(s) between locomotory performance and prey fitness re-

main obscure (Wilson et al. 2015), mainly because of difficulties in

measuring performance in its natural ecological context (Irschick

and Garland 2001; Irschick 2003) and insufficient information on

the effects of individual variability (Nakazawa 2017). We addressed

both problems using a molluscan predator–prey relationship,

which provided a useful model system due to the accessibility and

simple structure of the habitat. The present study may be the first to

quantitatively characterize the causal chain leading from the size-

dependence of individual performance (Figure 4), over the success

rate of actual predation attempts (Figure 2), to the size bias in the

predator’s prey spectrum (Robinson and Peters 2018), based entirely

on information collected in the natural habitat.
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