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A B S T R A C T   

A rolling bearing fault diagnosis method based on Recursive Quantitative Analysis (RQA) com-
bined with time domain feature extraction and Whale Optimization Algorithm Support Vector 
Machine (WOA-SVM) is proposed. Firstly, the recurrence graph of the vibration signal is drawn, 
and the nonlinear feature parameters in the recurrence graph combined with Standard Deviation 
(STD) are extracted by recursive quantitative analysis method to generate feature vectors; after 
that, in order to construct the optimal support vector machine model, the Whale Optimization 
Algorithm is used to optimize the c and g parameters. Finally, both Recursive Quantitative 
Analysis and standard deviation are combined with the WOA-SVM model to perform fault 
diagnosis of rolling bearings. The rolling bearing datasets from Case Western Reserve University 
and Jiangnan University were used for example analysis, and the fault identification accuracy 
reached 100% and 95.00%, respectively. Compared to other methods, the method proposed in 
this paper has higher diagnostic accuracy and wide practical applicability, and the risk of acci-
dents can be reduced through accurate fault diagnosis, which is also important for safety and 
environmental policies. This research originated in the field of mechanical fault diagnosis to solve 
the problem of fault diagnosis of rolling bearings in industrial production, it builds on previous 
research and explores new methods and techniques to fill some gaps in the field of mechanical 
fault diagnosis.   

1. Introduction 

Rolling bearings are the most common components in rotating machinery, and their operation can be affected by their wear or 
defects, thus affecting the regular operation of the equipment or even leading to catastrophic failure of the system. As a matter of fact, 
more than 50% of machinery defects are related to bearing faults [1]. Therefore, the study of fault diagnosis of rolling bearings is 
critical [2]. Fault diagnosis usually consists of two parts: the first part is to process the signals acquired by the sensors and extract the 
characteristic parameters of the fault [3]; the second part is to diagnose the type of fault [4]. 

Since mechanical equipment inevitably operates under friction, vibration, and shock, the vibration signals generated are often 
nonlinear and nonstationary [5]. The traditional method of Fourier transform [6] can only deal with linear and smooth signals, so the 
feature extraction of nonlinear nonstationary signals becomes an important topic in mechanical fault diagnosis. In fault diagnosis, 
extracting fault feature information [7] is very important [8]. Time-domain feature extraction is a feature extraction method proposed 
earlier, and the standard deviation in time-domain feature extraction is used as a feature extraction method in this paper [9]. 
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Furthermore, the recurrence diagram is vital for analyzing time series’ periodicity, chaos, and non-smoothness [10]. Through the 
principle of phase space reconstruction, the signal is analyzed qualitatively and provides valuable information, and then some 
quantitative characteristics in the recurrence diagram are extracted through recurrence quantization analysis [11] to prepare for the 
subsequent fault diagnosis of rolling bearings. 

In the pattern recognition of rolling bearing fault diagnosis, a support vector machine (SVM) is widely used [12]. SVM is a powerful 
supervised learning model [13] that can classify and regress data for analysis. In addition, the SVM algorithm has good robustness and 
generalization [14], and local extremes are effectively avoided. Before the SVM can be trained on the training set, the kernel function 
parameters g and the penalty factor c must be determined [15]; however, the performance of the SVM is sensitive to the values of the 
penalty factor and kernel function parameters, which are dependent on manual experience and have inconsistent results [16]. To 
overcome this problem, researchers usually use optimization algorithms to adaptively find the best parameters, g, and c [17]. Liu [18] 
et al. proposed convolutional-vector fusion network to improve the accuracy of RUL prediction. Pan [19] et al. proposed Non-parallel 
bounded support matrix machine method, which aims to solve the problem that SVM is more sensitive to outliers. Pan [20] et al. 
proposed multi-class fuzzy support matrix machine to improve classification accuracy and fault tolerance for samples with uncertain 
information. 

In the fault diagnosis process, traditional models based on neural networks, support vector machines, etc., require a proper se-
lection of parameters determined by repeated training iteration. If the parameters are not selected reasonably, they will significantly 
impact the subsequent fault diagnosis results. In recent years, many scholars have proposed some optimization models, for example, 
Hou et al. [21] proposed a probabilistic multi-objective congestion management method and applied it to optimize the transmission 
switching (OTS) strategy to maximise the system applicability and minimise the total production cost. Shi et al. [22] proposed a 
bi-objective mixed integer programming model for the multi-trip drone location routing problem. WOA was proposed by Mirjalili 
et al., in 2016 [23], which is characterised by fast convergence, strong global search capability, and a simple algorithm that is easy to 
implement. Therefore, this paper proposes to use Whale Optimization Algorithm (WOA-SVM) [24] based support vector machine to 
classify the extracted fault features for decision making, which optimizes the parameters and improves the learning and generalization 
ability compared with the traditional support vector machine, which is of great significance in practical engineering applications. The 
contribution of this paper mainly includes the following three points. 

(1) Feature extraction of rolling bearings is performed using threshold-based RQA analysis, and feature curves with high differ-
entiation can be obtained after selecting the optimal embedding dimension and delay time.  

(2) A feature extraction method based on RQA combined with standard deviation is proposed, and then the WOA-SVM model is 
used for fault diagnosis of rolling bearings, and the accuracy is significantly improved compared with the time domain feature 
extraction or recursive quantitative analysis alone, and the proposed method has certain superiority.  

(3) Combined with the two sets of experimental data, the proposed method for rolling bearing fault identification rate are 
significantly improved, the proposed method has certain applicability. 

2. Recursive quantitative analysis 

Recurrence maps are the basis of quantitative recurrence analysis and characterize the system’s dynamics [25]. A one-dimensional 
time series is reconstructed into a higher-dimensional phase space by selecting the appropriate embedding dimension m and delay time 
τ for the phase space reconstruction. The following equation calculates the points in the recurrence diagram: 

R(i, j)=H
(
ε− ‖xi − xj ‖

)
=

{
1,H(r) ≥ 0
0,H(r) ≤ 0 (1)  

Where ‖ xi − xj ‖ is the Euclidean parametrization, ε is the distance threshold, H(r) is the Heaviside function, R(i, j) is a non-zero that is 
one value, 0 means white point, that is, there is no recurrence between the reconstructed sequence xi and xj,1 means black point, that 
is, there is recurrence between the reconstructed sequence xi and xj. With i as the horizontal coordinate and j as the vertical coordinate, 

Table 1 
Recursive quantization characteristics and calculation formula.  

Features Formula 

Recurrence rate RR =
1

N2

∑N
i,j

Ri,j 

Determination rate 
DET =

∑N
l=lmin

l · P(l)
∑N

l=1l ·P(l)
Laminarity 

LAM =

∑N
v=vmin

v ·P(v)
∑N

v=1v ·P(v)
Recurrence entropy ENTR = −

∑N
l=minP(l) · ln P(l)

Diagonal mean length 
L =

∑N
l=lmin

l ·P(l)
∑N

l=lmin
P(l)

Trapping time 
TT =

∑N
v=vmin

v ·P(v)
∑N

v=1P(v)
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the graph obtained by plotting R(i, j) is the recurrence graph. 
Since recurrence graphs can only show their recurrence properties in a two-dimensional plane [26] and cannot be described 

quantitatively, the method of recurrence quantitative analysis was proposed [27].RQA extracts recurrence rate (RR), determinism 
(DET), laminarity (LAM), recurrence entropy (ENTR), diagonal mean length (L), trapping time (TT), and other nonlinear characteristic 
quantities by quantitatively analyzing the distribution of points and line segments, etc. in the graph. Laminarity (LAM), recurrence 
entropy (ENTR), diagonal mean length (L), trapping time (TT), and other nonlinear characteristic quantities. Among them, RR reflects 
the frequency of occurrence of specific states in the vibration signal, DET and LAM characterize the degree of dispersion of the vi-
bration signal, and ENTR characterizes the degree of randomness of the vibration signal [28]. The formulae for the above parameters 
are shown in Table 1.  

(1) Threshold-based RQA analysis 

The recurrence distance threshold directly influences whether the recurrence graph can correctly characterize the dynamics of the 
system [29]. The larger the distance threshold is chosen, the greater the probability that any point in the phase space will be deter-
mined as a recurrence point, and the recurrence graph shows an increase in the number of black recurrences points characterizing the 
occurrence of recurrence. On the contrary, the smaller the distance threshold e is chosen, the greater the probability that a point in the 
phase space will be determined as a non-recurrence point and the recurrence. The graph shows a significant increase in the white part. 

Fig. 1. Threshold-based RQA analysis.  
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Improperly chosen distance thresholds can significantly impact the macroscopic and microscopic structure of the recurrence diagram, 
making it impossible to characterize the system’s dynamics [30] correctly. They can also lead to the loss of meaning of the recurrence 
parameters calculated by quantitative analysis based on the recurrence diagram [31]. 

The recurrence plot (RP) is an important method for analysing the periodicity, chaos and non-stationarity of a time series, revealing 
the internal structure of the time series and providing a priori knowledge about the recurrence state, informativeness and predictability 
of the system. Knowledge. The original purpose of recurrence maps was to visualise the recurrence of trajectories in high-dimensional 
phase space. The graphical features of recurrence diagrams imply trends and patterns in the development of phase-space trajectories 
over time, and recurrence diagrams can also be applied directly to relatively short and unstable sequences. 

The Euclidean distance between two vectors [32] is denoted by I = 0, and the maximum value of the distance between each point of 
the two vectors is denoted by I = 1. A 1*100 vector is randomly generated, and the threshold-based RQA analysis is shown in Fig. 1. 
The distance matrix for the maximum distance of each point of the two vectors is shown in Fig. 1(a), and the distance matrix for the 
Euclidean distance of the two vectors is shown in Fig. 1(b). The neighbor-based sorting matrix of two vectors with maximum distance 
to each point is shown in Fig. 1(c), and the neighbor-based sorting matrix of two vectors with Euclidean distance is shown in Fig. 1(d). 

As can be learnt from the RP diagrams, there is a diagonal structure for both of the above methods, and in the case of the distance- 
based matrix, for example, most of them show a homogeneous pattern, and the recurrence points are mainly distributed in an inde-
pendent and discrete manner, with the yellow part representing the 1 of the matrix, which has a short relaxation time relative to that 
spanned by the recurrence diagram. 

3. Rolling bearing fault diagnosis based on RQA with STD and WOA-SVM 

Based on the above analysis, a diagnosis model of rolling bearings based on RQA with STD and WOA-SVM is proposed to perform 
fault diagnosis of rolling bearings. The basic flow of the model is shown in Fig. 2. 

According to the above process, the method mainly consists of the following steps.  

(1) Plotting the time domain spectrum of the rolling bearing;  
(2) Reconstructing the phase space for the samples of each state to generate the corresponding RP maps;  
(3) Extracting the feature information in the RP diagram, generating a 4-dimensional feature matrix for the samples of each state, 

and calculating the time-domain feature information, The formula for calculating the standard deviation is shown in equation 
(2); 

σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

∑n

i=1
(xi − x)2

√

(2)    

(4) Combined with recursive quantitative analysis, the samples for each state are characterized by a 5-dimensional gain; 
(5) Divide the feature matrix into M training samples and N test samples, and input the training and test samples and the corre-

sponding I class labels into the WOA-SVM classifier for recognition analysis;  
(6) Calculate the accuracy of rolling bearing fault recognition. 

4. Experimental analysis 

In order to ensure the accuracy and strong applicability of the method, this paper will analyze the experimental data of rolling 
bearings from two different sources and classify the different damage degrees and different damage categories of rolling bearings for 

Fig. 2. Flow chart of rolling bearing diagnosis method based on RQA with STD and WOA-SVM.  
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fault diagnosis, respectively.  

(1) Case Western Reserve University Bearing Data Analysis 

The rolling bearing data used in the experiments were provided by the Electrical Engineering Laboratory at Case Western Reserve 
University, Ohio, USA [33], and the experimental setup is shown in Fig. 3. 

The drive end SKF6205-2RS type deep groove ball bearing was selected as the research object. When the motor speed is 1797r/min, 
the sampling frequency of the vibration signal is 12 KHz. No fault characteristics and fault diameters, including 0.1778 mm, 0.3556 
mm, and 0.5334 mm, are selected to indicate a minor fault, medium fault, and severe fault, which are located on the position of the 
inner ring, outer ring, and rolling body of the bearing respectively. 

It is difficult to directly distinguish the level of failure of different bearings if only the time domain waveform graph is used to 
diagnose the bearing failure characteristics. For the above signals, the fault degree of the bearing signal is identified by the recursive 
quantitative analysis method. Firstly, the mutual information methods [34] and Feedforword Neural Network [35] method are used to 
determine the appropriate delay time and embedding dimension, and then according to these parameters, the phase space recon-
struction is performed, and 10% of the maximum phase space diameter is used as the recurrence threshold, 2048 sampling points under 
each different fault degree type are taken as a set of samples, and each fault degree is divided into 50 sets of data samples. The optimal 
embedding dimension and delay time corresponding to the class labels of the four states of rolling bearings are given in Table 2. 

Taking the first set of sub-signals in the normal state of rolling bearing as an example, according to the optimal embedding 
dimension and delay time calculated by mutual information method and feed-forward neural network [4,7], phase space recon-
struction is carried out, and the recursive map is generated by using the matlab 2021b software. The phase space diagram for the 
fault-free state is shown in Fig. 4(a) and the recursive diagram for the fault-free state is shown in Fig. 4(b). 

In threshold-based RQA analysis, when I = 1, the values corresponding to the feature parameters regression rate RR, determination 
rate DET, entropy ENTR and average diagonal length L are different, and 50 signal samples are taken as a group, which is shown in 
Fig. 5 according to the calculation formula in Table 1. 

Taking the fault-free sample as an example, some of its eigenvalues are shown in Table 3. 
In order to further analyze the recognition rate of the fault states, they must also be diagnosed using a fault recognition model. The 

training set and data set were randomly generated with 200*4 feature data at a ratio of 0.2 to establish the SVM model, and the SVM 
model was used for validation to derive the recognition accuracy value, which yielded an accuracy rate of 92.50%. SVM test classi-
fication results are shown in Fig. 6. 

The regression rate, determination rate, entropy, and average diagonal length are used as the input values of the WOA-SVM, which 
further enables the fault diagnosis of rolling bearings. The penalty factor c and kernel function g of the SVM model is optimized by the 
WOA algorithm, where the penalty factor c is taken in the range of [0.001,100], the kernel function is taken in the range of 
[0.001,100], the population size is 10, and the maximum number of iterations is 50. the optimal c = 23.6054, g = 4.95559 is obtained. 
the loss rate curve and the identification prediction results are shown in Fig. 8. It can be found that most of the test samples can be 
correctly classified, and the fault recognition rate is as high as 98%. The accuracy recognition results are shown in Fig. 7, where the loss 
iteration curve is shown in Fig. 7(a) and the confusion matrix is shown in Fig. 7(b). 

Fig. 3. Case Western Reserve University bearing test rig.  
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Table 2 
Dimensional and delay time selection for the four states.  

Label Bearing failure status Embedding Dimension Delay time 

0 Normal state 7 4 
1 Slight damage status 9 1 
2 Moderate damage status 8 1 
3 Severe damage status 9 1  

Fig. 4. Phase space reconstruction and recurrence diagram for normal state.  

Fig. 5. Characteristic diagram of different faults.  

Table 3 
Partial feature state values.  

RR   DET   ENTR   L   

0.012 0.013 0.013 0.720 0.729 0.728 0.956 0.992 0.989 2.858 2.938 2.934 
0.013 0.013 0.013 0.725 0.729 0.726 0.974 0.999 0.985 2.890 2.967 2.923 
0.012 0.012 0.012 0.727 0.716 0.724 0.980 0.962 0.971 2.900 2.888 2.889 
0.012 0.012 0.010 0.716 0.720 0.731 0.961 0.975 0.989 2.882 2.901 2.913  
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In order to further improve the accuracy of fault identification, this paper will combine the RQA feature extraction with the 
standard deviation in the time domain feature extraction in the feature extraction part to generate a 200*5 feature matrix corre-
spondingly and input the WOA-SVM model according to the above steps to obtain the optimal c = 2.2507,g = 2.41885, and the fault 
identification rate is 100%, as shown in Fig. 8.  

(2) Jiangnan capital bearing data analysis 

The dataset from Case Western Reserve University is of high quality, and to further demonstrate the applicability of the meth-
odology, the rolling bearing dataset from Jiangnan University was selected for further illustration. The experimental data are obtained 
from the bearing vibration data of Jiangnan University, and the vibration data under four states of normal, inner ring fault, outer ring 
fault, and rolling body fault with the motor speed at 800r/min are selected as the research object, and the sampling frequency of 
vibration signal is 50 KHz. 

Firstly, the mutual information method and FNN method are used to determine the appropriate delay time and embedding 
dimension, and then according to these parameters, the phase space reconstruction is carried out with 10% of the maximum phase 
space diameter as the recurrence threshold and 2048 sampling points under each different fault degree type are taken as a set of 
samples, and each fault degree is divided into 50 sets of data samples. The optimal embedding dimension and delay time corresponding 
to the class labels of the four states of rolling bearings are given in Table 5. 

Taking the first set of sub-signals of the normal state of the bearing as an example, the phase space reconstruction is performed, and 
the corresponding recurrence diagram is generated. The phase space diagram for the fault-free state is shown in Fig. 9(a) and the 
recursive diagram for the fault-free state is shown in Fig. 9(b). 

In the threshold-based RQA analysis, when I = 1, the values corresponding to the characteristic parameters regression rate RR, 
determination rate DET, entropy ENTR, and mean diagonal length L are different, as shown in Fig. 10. 

The corresponding eigenvalues are shown in Table 6. 
The 200*4 feature matrix data was randomly generated with a ratio of 0.2 for the training set, and the data set, and the SVM model 

was established, and the SVM model was used for validation to derive the recognition accuracy value, which yielded an accuracy rate 
of 77.50%, and the accuracy rate is shown in Fig. 11. 

The regression rate, determination rate, entropy, and average diagonal length are used as input values of the WOA-SVM, which 
further enables fault diagnosis of rolling bearings. The penalty factor c and kernel function g of the SVM model was optimized using the 
WOA algorithm, where the range of values of c and g, the population size, and the maximum number of iterations were set to the same 
as in the previous experiment. The optimal c = 80.4049 and g = 0.500161 were obtained. The loss rate curve and the recognition 
prediction results are shown in Fig. 13. It can be found that most of the test samples can be correctly classified, and the fault recognition 
rate reaches 87.5%. The accuracy recognition results are shown in Fig. 12, where the loss iteration curve is shown in Fig. 12(a) and the 
confusion matrix is shown in Fig. 12(b). 

In order to further improve the accuracy of fault identification, the RQA feature extraction is combined with the standard deviation 
in the time domain feature extraction in the feature extraction part to generate a 200*5 feature matrix correspondingly. The optimal c 
= 10.367,g = 1.86477 is obtained by inputting the WOA-SVM model according to the above steps, and the fault identification rate is 
95%, as shown in Fig. 13. 

From Table 7, it can be seen that after the feature extraction by recursive quantitative analysis combined with standard deviation 
and then input into the WOA-SVM model for fault diagnosis, the fault identification rate is improved by 32.82% and 7.5%, 

Fig. 6. SVM test classification result chart.  
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respectively, compared with RQA or STD feature extraction alone, and then for fault diagnosis. 

5. Conclusion 

For the rolling bearing fault diagnosis problem, a fault diagnosis method based on RQA and WOA-SVM is proposed, which is 
verified by two different sets of experimental data, and the following conclusions are obtained. 

Fig. 7. RQA + WOA-SVM identification prediction results.  

Fig. 8. RQA + STD and WOA-SVM identification prediction results.  

Table 4 
Dimensional and delay time selection for the four states.  

Method  Accuracy 

RQA + SVM  92.5% 
STD + WOA-SVM  82.15% 
RQA + WOA-SVM  98% 
RQA + STD + WOA-SVM  100% 

From Tables 4 and it can be seen that, after feature extraction by recursive quantitative 
analysis combined with standard deviation and then input into the WOA-SVM model for 
fault diagnosis, the fault identification rate is improved by 21.85% and 2%, respectively, 
compared with RQA or STD feature extraction alone, and then for fault diagnosis. 
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Table 5 
Dimensional and delay time selection for the four states.  

Label Bearing failure status Embedding Dimension Delay time 

0 Normal state 10 2 
1 Slight damage status 12 5 
2 Moderate damage status 12 3 
3 Severe damage status 15 2  

Fig. 9. Phase space reconstruction and recurrence diagram for normal state.  

Fig. 10. Characteristic diagram of different faults.  

Table 6 
Partial feature state values.  

RR   DET   ENTR   L   

0.001 0.001 0.001 0.331 0.408 0.385 0.425 0.498 0.455 2.276 2.290 2.210 
0.001 0.002 0.002 0.358 0.410 0.333 0.429 0.501 0.410 2.198 2.280 2.206 
0.001 0.001 0.003 0.361 0.352 0.445 0.450 0.429 0.548 2.260 2.205 2.367 
0.002 0.002 0.002 0.344 0.328 0.363 0.426 0.408 0.451 2.221 2.202 2.257  
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(1) Using threshold-based RQA analysis for feature extraction of rolling bearings, feature curves with high differentiation can be 
obtained after selecting the optimal embedding dimension and delay time.  

(2) A feature extraction approach based on RQA combined with standard deviation is proposed, and then a WOA-SVM model is 
used for fault diagnosis of rolling bearings. Compared with time domain feature extraction or recursive quantitative analysis 
alone, the accuracy rate is significantly improved, and the proposed method has certain superiority.  

(3) Combining the two sets of experimental data, the proposed method in this paper has significantly improved the fault recognition 
rate for rolling bearings, and the proposed method has certain practicality, which is not accidental.  

(4) When the signal is subject to more noise and other interference, the feature extraction method based on RQA will have certain 
limitations, which will also have an impact on the accuracy judgement of the fault category to a certain extent. Preprocessing 
the signal, amplifying the local feature signals, continuously improving the stability of the model and improving the accuracy 
judgement of fault types are the places where this paper can continue to improve. 
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