CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 17 May 2017
Accepted 1 June 2017

Edited by V. Rybakov, Moscow State University, Russia

Keywords: crystal structure; drug; polymorphism.

CCDC reference: 1553547
Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of 4-benzylcarbamoyl-1-methyl-pyridin-1-ium iodide: an efficient multimodal antiviral drug

T. N. Drebushchak, ${ }^{\text {a,b}}{ }^{\text {* }}$ Yu.A. Kryukov, ${ }^{c}$ A. I. Rogova ${ }^{c}$ and E. V. Boldyreva ${ }^{\text {a,b }}$

${ }^{\text {a }}$ Institute of Solid State Chemistry and Mechanochemistry, SB RAS, ul. Kutateladze 18, Novosibirsk 630128, Russian Federation, ${ }^{\mathbf{b}}$ Novosibirsk State University, ul. Pirogova 2, Novosibirsk 630090, Russian Federation, and ${ }^{\mathbf{c}}$ Institute for the Problems of the Technology of Energetic Materials, SB RAS, ul. Socialisticheskaia 1, Biisk 659322, Russian Federation.
*Correspondence e-mail: tanya@xray.nsu.ru
In the title compound, $\left[\mathrm{MeC}_{5} \mathrm{H}_{4} \mathrm{NCONHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right] \mathrm{I}$ or $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}^{+} . \mathrm{I}^{-}$, a cation and an anion form an ionic pair linked by a strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bond. In the crystal, ionic pairs linked by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonds form infinite ribbons along the crystallographic a axis. Polymorphism screening varying crystallization solvents (water, acetone 90%-water, ethanol 90%-water, 2-propanol 90%-water, DMF, DMSO, methanol, acetonitrile) and conditions (solution temperature, heating and cooling protocols) did not reveal any other polymorphs than the one reported in this work.

1. Chemical context

4-Benzylcarbamoyl-1-methylpyridin-1-ium iodide, [$\left.\mathrm{MeC}_{5} \mathrm{H}_{4} \mathrm{NCONHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right]$ I, is a multimodal antiviral drug (Buhtiarova et al., 2003; Frolov et al., 2004). For pharmaceutical applications, it is of utmost importance to identify possible polymorphs (Bernstein, 2002; Brittain, 1999; Hilfiker, 2006), see also https://www.fda.gov/downloads/Drugs/ Guidances/UCM072866.pdf; https://newdrugapprovals.org/ 2014/02/12/fda-guidance-on-polymorphic-compounds-in-generic-drugs/. Polymorphism screening varying crystallization solvents (water, acetone 90%-water, ethanol 90% water, isopropanol 90%-water, DMF, DMSO, MeOH, $\mathrm{CH}_{3} \mathrm{CN}$) and conditions (solution temperature, heating and cooling protocols) did not reveal any other polymorphs than the one reported in this work as has been confirmed by DSC (METTLER TOLEDO DSC $822 \mathrm{e}, 5^{\circ} \mathrm{min}^{-1}$ in N_{2}, samples

Figure 1
IR spectra of the title compound.

Figure 2
Powder diffraction patterns of the samples recrystallized from different solvents (an overlay) (a) and the diffraction pattern calculated for the structural model obtained based on single-crystal X-ray diffraction data in this work (b).
$1 / 6-3 / 5 \mathrm{mg}$), IR spectroscopy (IR-FT spectrometer FT-801, spectroscopic resolution $0.5 \mathrm{~cm}^{-1}$ and systematic error $\pm 0,05 \mathrm{~cm}^{-1}$; samples studied in KBr discs, 1.0 mg of substance in 200 mg of $\mathrm{KBr} ; 4000-600 \mathrm{~cm}^{-1}$, and FTIR ATR spectrometer DigiLab Excalibur 3100, Varian spectrometer equipped with a MIRacle ATR accessory in the range $4000-600 \mathrm{~cm}^{-1}$ with resolution of $2 \mathrm{~cm}^{-1}$ without addition of KBr) and X-ray powder diffraction (STOE STADI MP diffractometer, $\mathrm{CuK} \alpha_{1}$ radiation, curved Ge monochromator, transmission mode). The same thermal effect at the DSC curves related to sample melting at 464 K has been observed for all the samples. The position and relative intensities of the bands in the IR spectra were also the same (see section 5, Fig. 1). There were no differences between the IR spectra recorded with and without addition of KBr . The X-ray diffraction patterns were also the same for all the samples (Fig. 2) and matched the pattern calculated for the structural model based on single-crystal diffraction data (see next sections). WinXPOW (Stoe \& Cie, 2011) was used to analyze the diffraction patterns.

2. Structural commentary

The asymmetric unit of the title compound contains a [$\left.\mathrm{MeC}_{5} \mathrm{H}_{4} \mathrm{NCONHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right]^{+}$cation and an I^{-}anion (Fig. 3). All the bond lengths and angles are within normal ranges. A cation and an anion form an ionic pair linked by a strong N2$\mathrm{H} 2 \cdots$ I1 hydrogen bond (Table 1). The central part of the molecule ($\mathrm{N} 2 / \mathrm{C} 8 / \mathrm{O} 1$) and the pyridyl ring are located practically in the same plane [the average deviation of the atoms from the $\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{O} 1 / \mathrm{C} 8-\mathrm{C} 13$ plane is 0.015 (3) \AA and the maximum deviation is $0.025(3) \AA$]. The I^{-}anion is also close

Table 1
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{I} 1$	$0.98(6)$	$2.68(6)$	$3.563(3)$	$150(5)$
$\mathrm{C} 14-\mathrm{H} 14 A \cdots \mathrm{I} 1^{\mathrm{i}}$	0.96	3.08	$4.018(5)$	168
$\mathrm{C} 14-\mathrm{H} 14 C \cdots \mathrm{I} 1^{\mathrm{i}}$	0.96	3.06	$3.919(5)$	150

Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{1}{2},-z+1$; (ii) $x+1, y, z$.
to this plane [at a distance of 0.504 (3) \AA]. The dihedral angle between the pyridyl and benzene rings is $62.8(1)^{\circ}$.

3. Supramolecular features

In addition to the strong NH. \cdot I hydrogen bond, two weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonds are present in the crystal structure (Table 1, Fig. 4). Ionic pairs linked by these hydrogen bonds form infinite ribbons along the crystallographic a axis (Fig. 4). No hydrogen bonds link the ribbons with each other.

4. Database survey

No crystal structures containing the $\left[\mathrm{MeC}_{5} \mathrm{H}_{4} \mathrm{NCONH}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right]^{+}$cation could be found in the Cambridge Structural Database (CSD, Version 5.38, update November 2016; Groom et al., 2016). A crystal structure of 4-benzoylamino-1-methylpyridinium iodide (CSD refcode ESESUS; Navarro et al., 2016) is also formed by ionic pairs linked by a strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bond [the donor-acceptor distance is 3.675 (1) \AA]. Similarly to the compound studied in this work, the organic cation of ESESUS also contains a benzene and an N methylpyridine ring, with the N atom forming an $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bond in the centre of the cation (Fig. 5). Since the

Figure 3
The molecular structure of the title compound, showing the atomlabelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. The dotted line indicates the $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}^{-}$hydrogen bond.

Figure 4
Crystal packing of the title compound, viewed (a) along the b axis and (b) along the a axis. The dotted lines indicate the hydrogen bonds, $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ (blue) and $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}$ (olive).

Figure 5
The molecular structure and crystal packing of 4-benzoylamino-1methylpyridinium iodide (a) and of the title compound (b).
central part of the cation in the case of ESESUS is shorter than that of the title compound, the molecular conformation is very different, as is the molecular packing (Fig. 5).

5. Synthesis and crystallization

The title compound can be synthesized from N-benzylamide 4-pyridinecarboxylic acid $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NCONHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ and methyl iodide MeI in a 1:2 (Trinus et al., 1994) or 1:1.2 (Buhtiarova et al., 1997) molar ratio. N-Benzylamide 4 -pyridinecarboxylic acid, in turn, was synthesized by the condensation of isonicotinic acid $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NCOOH}$ with benzylamine $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NH}_{2}$ taken in a 1:2 molar ratio (Trinus et al., 1994).
$12.31 \mathrm{~g}(0.1 \mathrm{~mol})$ of isonicotinic acid were added with constant stirring over a period of one hour to 12.86 g (0.12 mol) of benzylamine heated to 413 K . After all of the isonicotinic acid had been added, the mixture was heated steadily to $493-503 \mathrm{~K}$. After water and the excess of benzamine had been distilled, the residue was cooled to $373-383 \mathrm{~K}$ and added on stirring to 100 ml of toluene. The hot solution was filtered and cooled to 288 K . After cooling, the precipitate was filtered, washed on the filter with 20 ml of toluene and dried in the air at ambient temperature. The yield was 18.57 g ($0.0875 \mathrm{~mol} ; 87.5 \%$) (Sysoljatin et al., 2011).
$18.57 \mathrm{~g}(0.0875 \mathrm{~mol})$ of N-benzylamide 4 -pyridinecarboxylic acid were added to 110 ml of acetone with stirring. After the dissolution was complete, $14.9 \mathrm{~g}(0.105 \mathrm{~mol})$ of methyl iodide MeI were added and the reaction mixture kept at 323 K for five h after which it was cooled to $283-288 \mathrm{~K}$ and filtered. The precipitate was washed on the filter with 50 ml of acetone and dried in the air. The yield was 24.65 g ($0.0696 \mathrm{~mol} ; 79.5 \%$) (Sysoljatin et al., 2011).

Table 2
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)

Data collection

Diffractometer
Absorption correction
$T_{\min }, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
Absolute structure

Absolute structure parameter

$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}^{+} \cdot \mathrm{I}^{-}$

354.18

Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
295
9.2867 (2), 10.8741 (2), 14.3038 (3)
1444.46 (5)

4
Mo $K \alpha$
2.21
$0.25 \times 0.17 \times 0.07$

Rigaku OD Xcalibur, Ruby, Gemini ultra
Multi-scan (CrysAlis PRO; Rigaku OD, 2015)
0.910, 1.000

18978, 3388, 3115
0.033
0.666
$0.024,0.053,1.08$
3388
168
H atoms treated by a mixture of independent and constrained refinement
$0.53,-0.35$
Flack x determined using 1207 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$
(Parsons et al., 2013)
-0.033 (11)

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2006), WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Calculated for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{OI}: \mathrm{C}, 47.46$; $\mathrm{H}, 4.21: \mathrm{N}, 7.91$; O , 4.52. Found: C, $47.31 ; \mathrm{H}, 4.13$: N, 7.62; O, 4.35. T melt. 464 K . IR spectrum $\left(\mathrm{cm}^{-1}\right): 611.27,631.44,703.72,777.41,759.32,860.4$, 920.77, $960.85,1020.8,1078.2,1147.6,1187.8,1218.8,1285.4$, 1329.8, 1416.4, 1452.5, 1505.1, 1541.1, 1571.6, 1663.7, 1641.4, 1828.1, 1950.9, 2828.6, 2936.6, 3040.4, 3237.6. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}, p.p.m.) : $\delta=4.40\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.55(d$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.22-7.45(m, 5 \mathrm{H}, A r), 8.44$ (d, 2H, Py), 9.19 (d, 2H, Py), 9.78 ($s, \mathrm{H}, \mathrm{NH}$). ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ NMR (100 MHz , DMSO- d_{6}, p.p.m.): $\delta=43.89\left(\mathrm{CH}_{2}\right), 49.00\left(\mathrm{CH}_{3}\right), 125.95,147.06,148.20$ (Py), 127.65, 128.01, 128.92, 139.18 (Ar), $162.63(\mathrm{C}=\mathrm{O})$.

The pharmaceutical substance was obtained by recrystallization from an aqueous solution with activated carbon (Sysoljatin et al., 2011). $5.0 \mathrm{~g}(0.014 \mathrm{~mol})$ of N-methyl-4benzylcarbamidopyridinium iodide were dissolved in 6 ml of water at 363 K and $0.15 \mathrm{~g}(3.0 \%)$ of activated carbon added. After the complete dissolution of the compound, the activated carbon was removed by filtering, and the solution was cooled
to 283 K. After stirring for one hour, the precipitate formed was filtered through a paper filter (white band), washed with 10 ml of acetone and dried at 373 K . Yield $4.71 \mathrm{~g}(0.0133 \mathrm{~mol}$; 94.3\%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The amine hydrogen atom bound to N2 was located in the difference maps and refined isotropically. All other hydrogen atoms were positioned geometrically and refined with a riding model $[\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$; $\left.U_{\text {iso }}(\mathrm{H})=1.2-1.5 U_{\text {eq }}(\mathrm{C})\right]$.

Acknowledgements

We thank Dr E. A. Losev for recording the FT-IR ATR spectra.

References

Bernstein, J. (2002). In Polymorphism in Molecular Crystals. New York: Oxford University Press Inc.
Brittain, H. G. (1999). In Polymorphism in Pharmaceutical Solids: London: Taylor \& Francis.
Buhtiarova, T. A., Danilenko, V. P., Homenko, V. S., Shatyrkina, T. V. \& Yadlovsky, O. E. (2003). Ukrainian Med. J. 33, 72-74.
Buhtiarova, T. A., Trinus, F. P., Danilenko, V. F., Danilenko, G. I., Ovrutskiy, V. M. \& Sharykina, N. I. (1997). Khim. Farm. Zh. 31, 3032.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Frolov, A. F., Frolov, V. M., Buhtiarova, T. A. \& Danilenko, V. P. (2004). Ukrainian Med. J. 39, 69-74.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Hilfiker, R. (2006). Pharm. Ind. 1st ed. London: Wiley-VCH.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
Navarro, M., Li, M., Müller-Bunz, H., Bernhard, S. \& Albrecht, M. (2016). Chem. Eur. J. 22, 6740-6745.

Parsons, S., Flack, H. D. \& Wagner, T. (2013). Acta Cryst. B69, 249259.

Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Stoe \& Cie (2011). WinXPOW. Stoe \& Cie GmbH, Darmstadt, Germany.
Sysoljatin, S. V., Sakovich, G. V., Kryukov, Yu. A., Rogov, A. I., Bubelo, V. D. \& Chernov, A. I. (2011). Patent 2429230, RF, 20.09.2011, Bull. 26.

Trinus, F. P., Danilenko, V. F., Buhtiarova, T. A., Rybalko, S. L., Arkad'ev, V. G., Klebanov, B. M. \& Maksimov, Yu. N. (1994). Patent 6752, Ukraine, 29.08.1994, Bull. 'Promyslova vlasnist' 8-1.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Crystal structure of 4-benzylcarbamoyl-1-methylpyridin-1-ium iodide: an efficient multimodal antiviral drug

T. N. Drebushchak, Yu.A. Kryukov, A. I. Rogova and E. V. Boldyreva

Computing details

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction:
CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

4-Benzylcarbamoyl-1-methylpyridin-1-ium iodide

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}^{+} \cdot \mathrm{I}^{-}$
$M_{r}=354.18$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=9.2867$ (2) Å
$b=10.8741$ (2) \AA
$c=14.3038(3) \AA$
$V=1444.46(5) \AA^{3}$
$Z=4$
$F(000)=696$

Data collection

Rigaku OD Xcalibur, Ruby, Gemini ultra diffractometer
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source
Graphite monochromator
Detector resolution: 10.3457 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.053$
$S=1.08$
3388 reflections
168 parameters
0 restraints
$D_{\mathrm{x}}=1.629 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: $464(2) \mathrm{K}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9574 reflections
$\theta=2.4-26.3^{\circ}$
$\mu=2.21 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Block, yellow
$0.25 \times 0.17 \times 0.07 \mathrm{~mm}$

$$
T_{\min }=0.910, T_{\max }=1.000
$$

18978 measured reflections
3388 independent reflections
3115 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=28.3^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-12 \rightarrow 12$
$k=-14 \rightarrow 13$
$l=-18 \rightarrow 18$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0267 P)^{2}+0.0479 P\right]$ where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.53$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.35$ e \AA^{-3}

Absolute structure: Flack x determined using 1207 quotients $\left[\left(I^{+}\right)-\left(I^{\prime}\right)\right] /\left[\left(I^{+}\right)+\left(I^{\prime}\right)\right]$ (Parsons et al., 2013)
Absolute structure parameter: -0.033 (11)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	0.1886 (4)	0.0803 (3)	0.9728 (2)	0.0423 (8)
C2	0.2939 (4)	0.0665 (4)	1.0407 (3)	0.0475 (9)
H1	0.3631	0.0054	1.0338	0.057*
C3	0.2982 (5)	0.1404 (4)	1.1172 (3)	0.0583 (11)
H3	0.3702	0.1296	1.1617	0.070*
C4	0.1975 (6)	0.2307 (5)	1.1293 (3)	0.0739 (13)
H4	0.2012	0.2817	1.1814	0.089*
C5	0.0909 (6)	0.2452 (5)	1.0639 (4)	0.0805 (16)
H5	0.0210	0.3054	1.0723	0.097*
C6	0.0869 (5)	0.1713 (4)	0.9858 (3)	0.0654 (12)
H6	0.0149	0.1827	0.9414	0.078*
C7	0.1838 (5)	-0.0028 (4)	0.8892 (3)	0.0555 (10)
H7A	0.2008	-0.0868	0.9093	0.067*
H7B	0.0882	0.0006	0.8619	0.067*
C8	0.4168 (4)	-0.0275 (3)	0.8098 (3)	0.0456 (8)
C9	0.5104 (4)	0.0078 (3)	0.7283 (3)	0.0407 (8)
C10	0.4765 (4)	0.0948 (4)	0.6614 (3)	0.0477 (9)
H10	0.3906	0.1385	0.6656	0.057*
C11	0.5694 (5)	0.1168 (4)	0.5888 (3)	0.0504 (9)
H11	0.5455	0.1751	0.5439	0.060*
C12	0.7303 (5)	-0.0274 (5)	0.6477 (3)	0.0677 (13)
H12	0.8177	-0.0686	0.6432	0.081*
C13	0.6423 (5)	-0.0514 (5)	0.7198 (3)	0.0627 (12)
H13	0.6700	-0.1084	0.7648	0.075*
C14	0.7913 (5)	0.0782 (5)	0.5020 (3)	0.0705 (13)
H14A	0.7477	0.1364	0.4602	0.106*
H14B	0.8087	0.0025	0.4694	0.106*
H14C	0.8810	0.1107	0.5246	0.106*
N1	0.6942 (4)	0.0555 (3)	0.5815 (2)	0.0494 (8)
N2	0.2902 (3)	0.0295 (3)	0.8172 (2)	0.0475 (7)
H2	0.262 (7)	0.085 (6)	0.766 (4)	0.12 (2)*
O1	0.4598 (4)	-0.1053 (3)	0.86557 (19)	0.0634 (8)
I1	0.06127 (3)	0.22276 (3)	0.68164 (2)	0.05375 (9)

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0396(19)$	$0.0438(18)$	$0.0435(18)$	$-0.0051(15)$	$0.0082(17)$	$0.0088(16)$
C2	$0.0350(19)$	$0.057(2)$	$0.050(2)$	$0.0010(16)$	$0.0021(18)$	$0.0085(19)$
C3	$0.055(3)$	$0.075(3)$	$0.044(2)$	$-0.014(2)$	$0.002(2)$	$0.003(2)$
C4	$0.103(4)$	$0.069(3)$	$0.050(2)$	$-0.011(3)$	$0.018(3)$	$-0.011(2)$
C5	$0.096(4)$	$0.069(3)$	$0.076(3)$	$0.033(3)$	$0.016(3)$	$0.000(2)$
C6	$0.059(3)$	$0.078(3)$	$0.059(3)$	$0.023(2)$	$-0.002(2)$	$0.015(2)$
C7	$0.052(2)$	$0.063(3)$	$0.051(2)$	$-0.015(2)$	$0.002(2)$	$-0.0028(19)$
C8	$0.051(2)$	$0.0456(19)$	$0.0401(18)$	$-0.0024(16)$	$-0.011(2)$	$-0.0033(16)$
C9	$0.0420(19)$	$0.042(2)$	$0.0382(19)$	$-0.0002(15)$	$-0.0065(16)$	$-0.0043(15)$
C10	$0.048(2)$	$0.047(2)$	$0.048(2)$	$0.0084(16)$	$-0.0015(17)$	$-0.0013(16)$
C11	$0.054(2)$	$0.048(2)$	$0.049(2)$	$0.002(2)$	$-0.004(2)$	$0.0057(16)$
C12	$0.046(3)$	$0.087(4)$	$0.070(3)$	$0.020(2)$	$0.002(2)$	$0.012(3)$
C13	$0.056(3)$	$0.076(3)$	$0.055(2)$	$0.021(2)$	$-0.002(2)$	$0.018(2)$
C14	$0.058(3)$	$0.097(4)$	$0.057(3)$	$-0.001(3)$	$0.010(2)$	$0.004(3)$
N1	$0.0408(17)$	$0.061(2)$	$0.0463(17)$	$-0.0012(15)$	$-0.0045(15)$	$-0.0002(15)$
N2	$0.0472(18)$	$0.0553(19)$	$0.0400(16)$	$0.0010(14)$	$0.0006(18)$	$-0.0012(17)$
O1	$0.068(2)$	$0.0664(18)$	$0.0562(15)$	$0.0077(17)$	$-0.0044(16)$	$0.0181(15)$
I1	$0.05146(14)$	$0.05593(15)$	$0.05386(14)$	$0.01142(12)$	$-0.00363(13)$	$-0.00252(12)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

C1-C6	1.381 (6)	C8-C9	1.504 (5)
C1-C2	1.387 (5)	C9-C10	1.383 (5)
C1-C7	1.500 (5)	C9-C13	1.389 (6)
C2-C3	1.358 (6)	C10-C11	1.371 (5)
C2-H1	0.9300	C10-H10	0.9300
C3-C4	1.367 (7)	C11-N1	1.341 (5)
C3-H3	0.9300	C11-H11	0.9300
C4-C5	1.371 (7)	C12-C13	1.342 (6)
C4-H4	0.9300	C12-N1	1.349 (5)
C5-C6	1.376 (7)	C12-H12	0.9300
C5-H5	0.9300	C13-H13	0.9300
C6-H6	0.9300	C14-N1	1.472 (5)
C7-N2	1.469 (5)	C14-H14A	0.9600
C7-H7A	0.9700	C14-H14B	0.9600
C7-H7B	0.9700	C14-H14C	0.9600
C8-O1	1.229 (4)	N2-H2	0.98 (6)
C8-N2	1.334 (5)		
C6-C1-C2	117.7 (4)	C10-C9-C13	117.2 (4)
C6- $\mathrm{C} 1-\mathrm{C} 7$	121.3 (4)	C10-C9-C8	125.5 (3)
C2-C1-C7	121.0 (4)	C13-C9-C8	117.3 (4)
C3-C2-C1	121.4 (4)	C11-C10-C9	120.0 (4)
C3-C2-H1	119.3	C11-C10-H10	120.0
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 1$	119.3	C9-C10-H10	120.0

$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$120.4(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.8
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.8
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$119.4(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	120.3
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	120.3
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$120.4(4)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	119.8
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	119.8
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$120.6(4)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	119.7
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6$	119.7
$\mathrm{~N} 2-\mathrm{C} 7-\mathrm{C} 1$	$113.2(3)$
$\mathrm{N} 2-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	108.9
$\mathrm{C} 1-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	108.9
$\mathrm{~N} 2-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	108.9
$\mathrm{C} 1-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	108.9
$\mathrm{H} 7 \mathrm{~A}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	107.8
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{N} 2$	$123.7(4)$
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 9$	$119.4(4)$
$\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 9$	$116.9(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.6(6)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-179.3(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.3(6)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$0.6(7)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$-1.2(8)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$0.9(8)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$0.0(6)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 2$	$178.7(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 2$	$103.1(4)$
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-78.2(5)$
$\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$0.6(5)$
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 13$	
$\mathrm{~N} 2-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 13$	

$\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 10$	$121.1(4)$
$\mathrm{N} 1-\mathrm{C} 11-\mathrm{H} 11$	119.4
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{H} 11$	119.4
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{N} 1$	$121.2(4)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{H} 12$	119.4
$\mathrm{~N} 1-\mathrm{C} 12-\mathrm{H} 12$	119.4
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 9$	$120.9(4)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{H} 13$	119.5
$\mathrm{C} 9-\mathrm{C} 13-\mathrm{H} 13$	119.5
$\mathrm{~N} 1-\mathrm{C} 14-\mathrm{H} 14 \mathrm{~A}$	109.5
$\mathrm{~N} 1-\mathrm{C} 14-\mathrm{H} 14 \mathrm{~B}$	109.5
$\mathrm{H} 14 \mathrm{~A}-\mathrm{C} 14-\mathrm{H} 14 \mathrm{~B}$	109.5
$\mathrm{~N} 1-\mathrm{C} 14-\mathrm{H} 14 \mathrm{C}$	109.5
$\mathrm{H} 14 \mathrm{~A}-\mathrm{C} 14-\mathrm{H} 14 \mathrm{C}$	109.5
$\mathrm{H} 14 \mathrm{~B}-\mathrm{C} 14-\mathrm{H} 14 \mathrm{C}$	109.5
$\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 12$	$119.4(4)$
$\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 14$	$120.4(3)$
$\mathrm{C} 12-\mathrm{N} 1-\mathrm{C} 14$	$120.2(4)$
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 7$	$122.5(4)$
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{H} 2$	$118(4)$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{H} 2$	$119(4)$
$\mathrm{C} 13-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$2.1(6)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$-178.4(3)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{N} 1$	$-0.4(6)$
N1-C12-C13-C9	$0.5(8)$
C10-C9-C13-C12	$-2.2(7)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 13-\mathrm{C} 12$	$178.2(4)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 12$	$-1.4(6)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 14$	$178.7(4)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{N} 1-\mathrm{C} 11$	$1.3(7)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{N} 1-\mathrm{C} 14$	$-178.7(5)$
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 7$	$-5.2(6)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 7$	$175.1(3)$
$\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 8$	$97.8(4)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 \cdots \mathrm{I} 1$	$0.98(6)$	$2.68(6)$	$3.563(3)$	$150(5)$
$\mathrm{C} 14 — \mathrm{H} 14 A \cdots \mathrm{I}^{\mathrm{i}}$	0.96	3.08	$4.018(5)$	168
$\mathrm{C} 14 — \mathrm{H} 14 C \cdots \mathrm{I}^{\mathrm{ii}}$	0.96	3.06	$3.919(5)$	150

Symmetry codes: (i) $x+1 / 2,-y+1 / 2,-z+1$; (ii) $x+1, y, z$.

